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Abstract
Current transfer learning methods are mainly
based on finetuning a pretrained model with
target-domain data. Motivated by the techniques
from adversarial machine learning (ML) that are
capable of manipulating the model prediction via
data perturbations, in this paper we propose a
novel approach, black-box adversarial reprogram-
ming (BAR), that repurposes a well-trained black-
box ML model (e.g., a prediction API or a pro-
prietary software) for solving different ML tasks,
especially in the scenario with scarce data and
constrained resources. The rationale lies in ex-
ploiting high-performance but unknown ML mod-
els to gain learning capability for transfer learning.
Using zeroth order optimization and multi-label
mapping techniques, BAR can reprogram a black-
box ML model solely based on its input-output
responses without knowing the model architecture
or changing any parameter. More importantly, in
the limited medical data setting, on autism spec-
trum disorder classification, diabetic retinopathy
detection, and melanoma detection tasks, BAR
outperforms state-of-the-art methods and yields
comparable performance to the vanilla adversar-
ial reprogramming method requiring complete
knowledge of the target ML model. BAR also out-
performs baseline transfer learning approaches by
a significant margin, demonstrating cost-effective
means and new insights for transfer learning.

1. Introduction
Transfer learning is a widely used practical machine learn-
ing (ML) methodology for learning to solve a new task in
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a target domain based on the knowledge transferred from
a source-domain task (Pan & Yang, 2009). One popular
target-domain task is transfer learning of medical imaging
with a large and rich benchmark dataset (e.g., ImageNet) as
the source-domain task, since high-quality labeled medical
images are often scarce and costly to acquire new sam-
ples (Raghu et al., 2019). For deep learning models, trans-
fer learning is often achieved by finetuning a pretrained
source-domain model with the target-domain data, which
requires complete knowledge and full control of the pre-
trained model, including knowing and modifying the model
architecture and pretrained model parameters.

In this paper, we revisit transfer learning to address two
fundamental questions: (i) Is finetuning a pretrained model
necessary for learning a new task? (ii) Can transfer learning
be expanded to black-box ML models where nothing but
only the input-output model responses (data samples and
their predictions) are observable? In contrast, we call fine-
tuning a white-box transfer learning method as it assumes
the source-domain model to be transparent and modifiable.

Recent advances in adversarial ML have shown great capa-
bility of manipulating the prediction of a well-trained deep
learning model by designing and learning perturbations to
the data inputs without changing the target model (Biggio &
Roli, 2018), such as prediction-evasive adversarial examples
(Szegedy et al., 2014). Despite of the “vulnerability” in deep
learning models, these findings also suggest the plausibility
of transfer learning without modifying the pretrained model
if an appropriate perturbation to the target-domain data can
be learned to align the target-domain labels with the pre-
trained source-domain model predictions. Indeed, the adver-
sarial reprogramming (AR) method proposed in (Elsayed
et al., 2019) partially gives a negative answer to Question (i)
by showing simply learning a universal target-domain data
perturbation is sufficient to repurpose a pretrained source-
domain model, where the domains and tasks can be different,
such as reprogramming an ImageNet classifier to solve the
task of counting squares in an image. However, the authors
did not investigate the performance of AR on the limited
data setting often encountered in transfer learning. More-
over, since the training of AR requires backpropagation of
a deep learning model, AR still falls into the category of
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Figure 1. Schematic overview of our proposed black-box adversarial reprogramming (BAR) method.

white-box transfer learning methods and hence does not
address Question (ii).

To bridge this gap, we propose a novel approach, named
black-box adversarial reprogramming (BAR), to reprogram
a deployed ML model (e.g., an online image classification
service) for black-box transfer learning. Comparing to the
vanilla (white-box) AR approach, our BAR has the follow-
ing substantial differences and unique challenges:

1. Black-box setting. The vanilla AR method assumes
complete knowledge of the pretrained (target) model,
which precludes the ability of reprogramming a well-
trained but access-limited ML models such as predic-
tion APIs or proprietary softwares that only reveal
model outputs based on queried data inputs.

2. Data scarcity and resource constraint. While data
is crucial to most of ML tasks, in some scenarios such
as medical applications, massive data collection can be
expensive, if not impossible, especially when clinical
trials, expert annotation or privacy-sensitive data are
involved. Consequently, without transfer learning, the
practical limitation of data scarcity may hinder the
strength of complex (large-scaled) ML models such as
deep neural networks (DNNs). Moreover, even with
moderate amount of data, researchers may not have
sufficient computation resources or budgets to train a
DNN as large as a commercial ML model or perform
transfer learning on a large pretrained ML model.

Our proposed BAR tackles these two challenges in a cost-
effective manner, which not only firstly extends white-box
transfer learning to the black-box regime but also “unlocks”

the power of well-trained but access-limited ML models
for transfer learning. In particular, we focus on adversarial
reprogramming of black-box image classification models for
solving medical imaging tasks, as image classification is one
of the most mature AI applications and many medical ML
tasks often entail data scarcity challenges. As will be evident
in the Experiments section (Sec. 4), BAR can successfully
leverage the powerful feature extraction capability of black-
box ImageNet classifiers to achieve high performance in
three medical image classification tasks with limited data.

Figure 1 provides an overview of our proposed BAR method.
To adapt to the black-box setting, we leverage zeroth-order
optimization (Ghadimi & Lan, 2013) on iterative input-
output model responses to enable black-box transfer learn-
ing. We also use multi-label mapping of source-domain and
target-domain labels to enhance the performance of BAR.
We summarize our main contributions as follows.

• We propose BAR, a novel approach to reprogram black-
box ML models for transfer learning. To the best of our
knowledge, BAR is the first work that expands transfer
learning to the black-box setting without knowing or
finetuning the pretrained model.

• We evaluate the performance of BAR using three dif-
ferent medical imaging tasks for transfer learning from
pretrained ImageNet models: (a) autism spectrum dis-
order (ASD) classification; (b) diabetic retinopathy
(DR) detection; and (c) melanoma detection. The re-
sults show that our method consistently outperforms
the state-of-the-art methods and improves the accuracy
of the finetuning approach by a significant margin. We
also explain the success of BAR through a representa-
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tion analysis and several ablation studies.

• We demonstrate the practicality and effectiveness of
BAR by reprogramming real-life image classification
APIs from Clarifai.com1 and Microsoft Custom Vi-
sion2, which is infeasible for the vanilla white-box AR
method due to the black-box setting. In terms of to-
tal expenses, it only costs less than $24 US dollars to
reprogram these two APIs for ASD classification.

2. Related Work
2.1. Adversarial ML and Reprogramming

Adversarial ML mainly studies how to manipulate the
decision-making of a target model and develop countermea-
sures (Biggio & Roli, 2018). In particular, several works
have identified the vulnerability of DNNs to different types
of adversarial threats, such as crafting prediction-evasive
adversarial examples (Biggio et al., 2013; Szegedy et al.,
2014; Goodfellow et al., 2015; Carlini & Wagner, 2017;
Chen et al., 2018) or poisoning training data and implanting
backdoors in the downstream ML models (Muñoz-González
et al., 2017; Chen et al., 2017b; Shafahi et al., 2018; Gu
et al., 2019; Xie et al., 2020), to name a few.

Adversarial reprogramming (AR) is a recently introduced
technique that aims to reprogram a target ML model for
performing a different task (Elsayed et al., 2019). Differ-
ent from typical transfer learning methods that modify the
model architecture or parameters for solving a new task with
target-domain data, AR keeps the model architecture un-
changed. Instead, AR uses a trainable adversarial program
and a designated output label mapping on the target-domain
data samples to perform reprogramming. Intuitively, the
adversarial program serves as a parametrized and trainable
input transformation function such that when applied to the
target-domain data (e.g., images having squares), the same
target model will be reprogrammed for the new task (e.g.,
the output label “dog” of a programmed data input translates
to “3 squares”). The work in (Neekhara et al., 2019) demon-
strates AR of text classification but still assumes white-box
access to the target ML models.

2.2. Zeroth Order Optimization for Black-box Setting

It is worth noting that the vanilla AR method proposed
in (Elsayed et al., 2019) requires complete access to the
target ML model to allow back-propagation for training the
parameters of adversarial program. In other words, vanilla
AR lacks the ability to reprogram an access-limited ML
model such as prediction API, owing to prohibited access to

1https://www.clarifai.com
2https://azure.microsoft.com/

en-us/services/cognitive-services/
custom-vision-service/

the target model disallowing back-propagation. To bridge
this gap and empower reprogramming advanced yet access-
limited ML models trained with tremendous amount of data
and considerable computation resources (e.g., Google cloud
vision API), we use zeroth order optimization techniques to
enable black-box AR for transfer learning.

In contrast to the conventional first order (gradient-based)
optimization methods such as stochastic gradient descent
(SGD), zeroth order optimization (Ghadimi & Lan, 2013)
achieves gradient-free optimization by merely using numer-
ical evaluations of the same training loss function instead
of gradients, making it a powerful tool for the black-box
setting. As the gradients of black-box ML models are infea-
sible to obtain, the main idea of zeroth order optimization is
to replace the true gradients in first-order algorithms with
gradient estimates from function evaluations. Prior arts in
adversarial ML have shown that zeroth order optimization
can be used to generate adversarial examples (Chen et al.,
2017a; Tu et al., 2019; Brendel et al., 2018; Ilyas et al., 2018;
Cheng et al., 2019; 2020), known as black-box adversar-
ial attacks. Moreover, advanced zeroth order optimization
methods can provide query-efficient solutions for black-box
ML tasks (Liu et al., 2018; 2019; 2020).

3. Black-box Adversarial Reprogramming
(BAR): Method and Algorithm

This section presents our proposed method and algorithm,
named BAR, for reprogramming black-box ML models. A
schematic overview of BAR is illustrated in Figure 1.

3.1. Problem Formulation

Black-box setting. We consider the problem of repro-
gramming a black-box ML classification model denoted
by F : X 7→ RK , where it takes a data sample X ∈ X as
an input and gives a vector of confidence scores F (X) =
[F1(X), F2(X), . . . , FK(X)] ∈ RK as its output, where
X denotes the space of feasible data samples (e.g., image
sizes and pixel value ranges) andK is the number of classes.
Similar to the access rights of a regular user when using
a prediction API, one is able to observe the model output
F (X) for any given X ∈ X , whereas inquiring the gradient
∇F (X) is inadmissible.

Adversarial program. To reprogram a black-box ML
model, we use the same form of adversarial program in
(Elsayed et al., 2019) as an input transformation func-
tion to translate the data of the target domain to the input
space of the source domain. Without loss of generality, let
X = [−1, 1]d denote the scaled input space of an ML model
F , where d is the (vectorized) input dimension. We also
denote the set of data from the target domain by {Di}ni=1,
where Di ∈ [−1, 1]d

′
and d′ < d to allow extra dimensions

https://www.clarifai.com
https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/
https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/
https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/
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for reprogramming. For each data sample i ∈ [n], where
[n] denotes the integer set {1, 2, . . . , n}, we let Xi be the
zero-padded data sample containing Di, such as embedding
a brain-regional correlation graph of size 200 × 200 to the
center of a 299 × 299 (width × height) image, as shown in
Figure 1. Let M ∈ {0, 1}d be a binary mask function indi-
cating the common embedding location for {Di}ni=1, where
Mj = 0 means the j-th dimension is used for embedding
and Mj = 1 otherwise. The transformed data sample for
AR is defined as

X̃i = Xi + P and P = tanh(W �M), (1)

where P is called an adversarial program to be learned
and is universal to all target data samples {Xi}ni=1, W ∈
Rd is a set of trainable parameters for AR, � denotes the
Hadamard (entry-wise) product, and tanh ∈ [−1, 1] ensures
X̃i ∈ [−1, 1]d. Note that the binary mask function M in
P ensures the target data samples {Di} embedded in {X̃i}
are intact during AR.

Multi-label mapping (MLM). As illustrated in Figure 1, in
addition to input data transformation via an adversarial pro-
gram, for AR we also need to map the source task’s output la-
bels (e.g., different objects) to the target task’s output labels
(e.g., ASD or non-ASD). Evaluated on three medical tasks
(see Section 4), we find that multiple-source-labels to one-
target-label mapping can further improve the accuracy of the
target task when compared to one-to-one label mapping. For
instance, the prediction of a transformed data input from the
source label set {Tench,Goldfish,Hammerhead} will be re-
programmed for predicting the target class ASD. LetK (K ′)
be the total number of classes for the source (target) task. We
use the notation hj(·) to denote the k-to-1 mapping function
that averages the predictions of a group of k source labels as
the prediction of the j-th target domain’s label. For example,
If the source labels {Tench,Goldfish,Hammerhead} map to
the target label {ASD}, then hASD(F (X)) = [FTench(X) +
FGoldfish(X) + FHammerhead(X)]/3. More generally, if a sub-
set of source labels S ⊂ [K] map to a target label j ∈ [K ′],
then hj(F (X)) = 1

|S|
∑
s∈S Fs(X), where |S| is the set

cardinality. Furthermore, we propose a frequency-based
label mapping scheme by matching target labels to source
labels according to the label distribution of initial predic-
tions on the target-domain data before reprogramming. We
find that it improves the accuracy over random label map-
ping. We defer the readers to Section 4 for more details and
an ablation study on multi-label mapping in Sec. 4.5.

Loss function for AR. Here we formally define the training
loss for AR. Without loss of generality, we assume the model
output is properly normalized such that

∑K
j=1 Fj(X) = 1

and Fj(X) ≥ 0 for all j ∈ [K], which can be easily sat-
isfied by applying a softmax function to the model output.
Let {yi}ni=1 with yi = [yi1, . . . , yiK′ ] ∈ {0, 1}K′

denote
the one-hot encoded label for the target domain task and let

h(F (X)) = [h1(F (X)), . . . , hK′(F (X))] be a surjective
multi-label mapping function from the model prediction
F (X) of the source domain to the target domain. For train-
ing the adversarial program P parametrized by W , we use
the focal loss (Lin et al., 2017) as empirically it can further
improve the performance of AR/BAR (see Sec. 4.5). The
focal loss (F-loss) aims to penalize the samples having low
prediction probability during training, and it includes the
conventional cross entropy loss (CE-loss) as a special case.
The focal loss of the ground-truth label {yi}ni=1 and the
transformed prediction probability {h (F (Xi + P ))}ni=1 is

−
n∑
i=1

K′∑
j=1

ωj(1− hj)γyij log hj (F (Xi + P )) , (2)

where ωj > 0 is a class balancing coefficient, γ ≥ 0 is a
focusing parameter which down-weights high-confidence
(large hj) samples. When ωj = 1 for all j and γ = 0, the
focal loss reduces to the cross entropy. In our implementa-
tion, we set ωj = 1/nj and γ = 2, where nj is the number
of samples in class j, as suggested in (Lin et al., 2017).

Note that the loss function is a function of W since from (1)
the adversarial program P is parametrized by W , and W is
the set of optimization variables to be learned for AR. The
loss function can be further generalized to the minibatch
setting for stochastic optimization.

3.2. Zeroth Order Optimization for BAR

In the white-box setting assuming complete access to the
target ML model F , optimizing the loss function in (2)
and retrieving its gradient for AR are straightforward via
back-propagation. However, when F is a black-box model
and only the model outputs F (·) are available for AR, back-
propagation throughF is infeasible since the gradient∇F (·)
is inadmissible. In our BAR framework, to optimize the
loss function in (2) and update the parameters W of the
adversarial program, we propose to use zeroth order opti-
mization to solve for W . Specifically, there are two major
components to enable BAR: (i) gradient estimation and (ii)
gradient descent with estimated gradient.

Query-efficient gradient estimation. Let f(W ) be the
Loss defined in (2) and W be the optimization variables.
To estimate the gradient ∇f(W ), we use the one-sided
averaged gradient estimator (Liu et al., 2018; Tu et al., 2019)
via q random vector perturbations, which is defined as

ḡ(W ) =
1

q

q∑
j=1

gj , (3)

where {gj}qj=1 are q independent random gradient estimates
of the form

gj = b · f(W + βUj)− f(W )

β
· Uj , (4)
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where b is a scalar balancing bias and variance trade-off
of the estimator, W ∈ Rd is the set of optimization vari-
ables in vector form, β is the smoothing parameter, and
Uj ∈ Rd is a vector that is uniformly drawn at random
from a unit Euclidean sphere. The mean squared estimation
error between ḡ(W ) and the true gradient∇f(W ) has been
characterized in (Tu et al., 2019) with mild assumptions on
f . In our experimental setup, we set b = d in order to ob-
tain an unbiased gradient estimator of a smoothed function
of ∇f (Gao et al., 2014), and we set β to be of the order
1/d (i.e., β = 0.01) following the analysis in (Liu et al.,
2018) and set Uj to be a realization of a standard normal
Gaussian random vector divided by its Euclidean norm. By
construction, for each data sampleXi, i ∈ [n], the averaged
gradient estimator takes q + 1 queries from the ML model
F . Smaller q can reduce the number of queries to the target
model but may incur larger gradient estimator error. We will
study the influence of q on the performance of BAR in the
next section.

BAR algorithm. Using the averaged gradient estimator ḡ,
our BAR algorithm is compatible with any gradient-based
training algorithm by simply replacing the inadmissible gra-
dient ∇Loss with ḡ in the gradient descent step. The cor-
responding algorithmic convergence guarantees have been
proved in recent works such as (Liu et al., 2018; 2019) in
both the convex loss and non-convex loss settings. In this
paper, we use stochastic gradient descent (SGD) with ḡ to
optimize the parameters W in BAR, which are updated by

Wt+1 = Wt − αt · ḡ(Wt), (5)

where t is the t-th iteration for updatingW with a minibatch
sampled from {Xi}ni=1 (we set the minibatch size to be 20),
αt is the step size (we use exponential decay with initial
learning rate η), and ḡ(Wt) is the gradient estimate of the
loss function at Wt using the t-th minibatch. Note that since
the loss function defined in (2) is a function of the target
ML model F ’s input and output, and the parameters W of
the adversarial program only associate with the input of F ,
the entire gradient estimation and training process for BAR
is indeed operated in a black-box manner. That is, BAR
only uses input-output responses of F and does not assume
access to the model internal details such as model type, pa-
rameters, or source-domain data. The entire training process
for BAR takes # iterations×mini batch size× (q+ 1)
queries to F . Algorithm 1 summarizes our proposed BAR
method. For the ease of description, the minibatch size is
set to be the training data size n in Algorithm 1.

4. Experiments
This section presents the following experiments for perfor-
mance evaluation and comparison.

1. Reprogramming three pretrained black-box Ima-

Algorithm 1 Training algorithm of black-box adversar-
ial reprogramming (BAR)

Input: black-box ML model F , AR loss function Loss(·),
target domain training data {Di, yi}ni=1, maximum
number of iterations T , number of random vectors for
gradient estimation q, multi-label mapping function
h(·), step size {αt}Tt=1

Output: Optimal adversarial program parameters W
1: Randomly initialize W ; set t = 1
2: Embed {Di}ni=1 with mask M to create {Xi}ni=1

3: while t ≤ T do
4: # Generate adversarial program

P = tanh(W �M)
# Generate q perturbed adversarial programs
P̃j = tanh((W + Uj)�M) for all j ∈ [q]
{Uj}qj=1 are random vectors defined in (4)

5: # Function evaluation for gradient estimation
Evaluate Loss in (2) with W and {Xi + P}ni=1

Evaluate Loss in (2) withW +Uj and {Xi+P̃j}ni=1

for all j ∈ [q]
6: # Optimize adversarial program’s parameters:

Use Step 5 and (3) to obtain estimated gradient ḡ(W )
W ←W − αt · ḡ(W )
t← t+ 1

7: end while

geNet classifiers (1000-object recognition task) from
(N.Silberman & S.Guadarrama, 2016), including
ResNet 50 (He et al., 2016), Inception V3 (Szegedy
et al., 2016) and DenseNet 121 (Iandola et al., 2014),
for three medical imaging classification tasks, includ-
ing Autism Spectrum Disorder (ASD) classification
(2-classes), Diabetic Retinopathy (DR) detection (5-
classes) and Melanoma detection (7-classes).

2. Reprogramming two online Machine Learning-as-a-
Service (MLaaS) toolsets, including Clarifai.com1 and
Microsoft Custom Vision2, for medical imaging tasks
and reporting the expenses.

3. Sensitivity analysis on the influence of number of ran-
dom vectors q and multi-label mapping (MLM) size
m for BAR, and ablation studies in terms of different
loss functions (CE-loss v.s. F-loss) and label mapping
methods (random mapping v.s. frequency mapping).

For implementing BAR and AR, we use the focal loss in
(2) and frequency-based MLM derived from the initial pre-
dictions of the target-domain data before reprogramming.
Their ablation studies will be discussed in Section 4.5. We
also highlight the results of BAR in boldface.

Baselines. To benchmark the performance of BAR, we
compare it with three baselines. For fair comparisons, all
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methods use the same training/testing data and we do not
use any data augmentation nor model ensemble techniques.

• Vanilla adversarial reprogramming (white-box AR):
It assumes white-box access to the target ML model
and optimizes the AR training loss in (2) using the
ADAM optimizer (Kingma & Ba, 2015). Its accuracy
serves as an upper bound of BAR as BAR only assumes
black-box access.

• Transfer learning: We finetune the same pretrained
models following the implementation in tensorflow tu-
torial3. The details are given in the supplementary ma-
terial. We also implement another baseline that trains
the model from scratch. Ideally, in the limited data
setting training from scratch serves as a lower bound
on BAR’s accuracy due to insufficient data. We use the
original target-domain data (without zero padding) for
these two transfer learning baselines because the result-
ing performance is better than that with zero padding.

• State-of-the-art (SOTA): For each task, we implement
the SOTA methods in the literature but disable any data
augmentation or model ensemble techniques.

4.1. Autism Spectrum Disorder Classification

Classifying Autism Spectrum Disorder (ASD) is a challeng-
ing task. ASD is a complex developmental disorder that in-
volves persistent challenges in social interaction, speech and
nonverbal communication, and restricted/repetitive behav-
iors. It affects about 1% of the global population. Currently,
the only clinical method for diagnosing ASD are standard-
ized ASD tests, which require prolonged diagnostic time
and considerable medical costs. Therefore, ML can play an
important role in providing cost-effective means of detecting
ASD. We use the dataset from the Autism Brain Imaging
Data Exchange (ABIDE) database (Craddock et al., 2013).
The preprocessed dataset4 is split into 10 folds and con-
tains 503 individuals suffering from ASD and 531 non-ASD
samples. The data sample is a 200 × 200 brain-regional
correlation graph of fMRI measurements, which is embed-
ded in each color channel of ImageNet-sized inputs. In this
task, we assign 5 separate ImageNet labels to each ASD
label (i.e., ASD/non-ASD) for MLM and set the parameters
η = 0.05 and q = 25. Table 1 reports the 10-fold cross
validation test accuracy, where the averaged test data size is
104. The accuracy of BAR is comparable to white-box AR,
and their accuracy outperforms the SOTA performance as
reported in (Heinsfeld et al., 2018; Eslami et al., 2019). The
performance of finetuing and training from scratch is merely

3https://www.tensorflow.org/tutorials/
images/transfer_learning

4http://preprocessed-connectomes-project.
org/abide

Table 1. Performance comparison (10-fold averaged test accuracy)
on autism spectrum disorder classification task.

Model Accuracy Sensitivity Specificity
ResNet 50 (BAR) 70.33% 69.94% 72.71%
ResNet 50 (AR) 72.99% 73.03% 72.13%

Train from scratch 51.55% 51.17% 53.56%
Transfer Learning (finetuned) 52.88% 54.13% 54.70%

Incept. V3 (BAR) 70.10% 69.40% 70.00%
Incept. V3 (AR) 72.30% 71.94% 74.71%

Train from scratch 50.20% 51.43% 52.67%
Transfer Learning (finetuned) 52.10% 52.65% 54.42%

SOTA 1. (Heinsfeld et al., 2018) 65.40% 69.30% 61.10%
SOTA 2. (Eslami et al., 2019) 69.40% 66.40% 71.30%

Table 2. Test accuracy on diabetic retinopathy detection task. The
notation ∗ denotes the network used in SOTA method.

Model From Scratch Finetuning AR BAR
ResNet 50* 73.44% 76.63% 80.48% 79.33%
Incept. V3 72.10% 74.20% 76.42% 74.33%

DenseNet 121 67.22% 71.29% 75.22% 72.33%

close to random guessing due to limited data, and BAR’s
accuracy is 17%-18% better than that of transfer learning.

4.2. Diabetic Retinopathy Detection

The task of Diabetic Retinopathy (DR) detection is to clas-
sify high-resolution retina imaging data collected from a
Kaggle challenge5. The goal is to predict different scales
ranging from 0 to 4 corresponding to the rating of presence
of DR. Note that collecting labeled data for diagnosing DR
is a costly and time-consuming process, as it requires ex-
perienced and well-trained clinicians to make annotations
on the digital retina images. The collected dataset contains
5400 data samples and we hold 2400 data samples as the
test set. In this task, we set the parameters η = 0.05, q = 55
and use 10 labels per target class for MLM. Table 2 shows
the test accuracy of reprogramming different pretrained clas-
sifiers, including ResNet 50, Inception V3 and DenseNet
121. BAR can achieve 79.33% accuracy, which is 2.7%
better than SOTA and nearly the same as white-box AR
(80.48%). We note that even without complicated tech-
niques such as data augmentation and model emsemble, the
performance of AR/BAR is close to the current best reported
accuracy (81.36%) in the literature (Sarki et al., 2019) using
single model without ensemble approach, which requires
specifically designed data augmentation with fine-tuning on
ResNet 50.

4.3. Melanoma Detection

Skin cancer is the most common type disease, with over 5
million newly diagnosed cases in the United States every
year. However, visual inspection of the skin and differenti-

5https://www.kaggle.com/c/
diabetic-retinopathy-detection

https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/tutorials/images/transfer_learning
http://preprocessed-connectomes-project.org/abide
http://preprocessed-connectomes-project.org/abide
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection
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Table 3. Test accuracy on melanoma detection task. The notation
∗ denotes the network used in SOTA method.

Model From Stratch Finetuning AR BAR
ResNet 50 72.10% 76.90% 82.05% 81.71%
Incept. V3 70.91% 68.63% 82.01% 80.20%

DenseNet 121* 70.22% 68.88% 80.76% 78.33%

ating the type of skin diseases still remains as a challenging
problem. ML-based approaches have been actively studied
to address this challenge. Here the target-domain dataset
is extracted from the International Skin Imaging Collabo-
ration (ISIC) (Codella et al., 2019; Tschandl et al., 2018)
dataset, containing 10015 images of 7 types of skin cancer.
The average image size is 450×600 pixels. We resize these
data samples to be 64×64 pixels and embed them in the
center of ImageNet-sized inputs. Since the data distribution
is imbalanced (70% data samples belong to one class), we
perform re-sampling on the training data to ensure the same
sample size for each class. Finally, the training/testing data
samples are 7800/780. In this task, we assign 10 separate
ImageNet labels to each target-domain label for MLM and
set the parameters η = 0.05 and q = 65. Table 3 reports the
test accuracy of different methods. Consistent with previous
findings, BAR attains similar accuracy as AR. More impor-
tantly, their accuracy significantly increases the accuracy
of finetuning by a significant margin (5-10%), especially
for Inception V3 and DenseNet 121 models. Training from
scratch again suffers from insufficient data samples and
hence has low accuracy. The performance of BAR/AR even
outperforms the best reported accuracy (78.65%) in the lit-
erature, which uses specifically designed data augmentation
with finetuning on DenseNet (Li & Li, 2018).

4.4. Reprogramming Real-life Prediction APIs

To further demonstrate the practicality of BAR in repro-
gramming access-limited (black-box) ML models, we use
two real-life online ML-as-a-Service (MLaaS) toolkits pro-
vided by Clarifai.com and Microsoft Custom Vision. For
Clarifai.com, a regular user on an MLaaS platform can pro-
vide any data input (of the specified format) and observe a
model’s prediction via Prediction API but has no informa-
tion about the model and training data used. For Microsoft
Custom Vision, it allows users to upload labeled datasets
and trains a ML model for prediction, but the trained model
is unknown to users. We aim to show how BAR can “un-
lock” the inference power of these unknown ML models and
reprogram them for Autism spectrum disorder classification
or Diabetic retinopathy detection tasks. Note that white-box
AR and current transfer learning methods are inapplicable
in this setting as acquiring input gradients or modifying the
target model is inadmissible via prediction APIs.

Clarifai Moderation API. This API can recognize whether

Table 4. Performance of BAR on Clarifai.com APIs.
Orig. Task to New Task q # of query Accuracy Cost

NSFW to ASD 15 12.8k 64.04% $14.24
25 24k 65.70% $23.2

Moderation to ASD 15 11.9k 65.14% $13.52
25 23.8k 67.32% $23.04

Moderation to DR 15 15.2k 71.03% $18.24
25 26.4k 72.75% $31.68

Table 5. Performance of BAR on Microsoft Custom Vision API.
Orig. Task to New Task q # of query Accuracy Cost
Traffic sign classification

to
ASD

1 1.86k 48.15% $3.72
5 5.58k 62.34% $11.16
10 10.23k 67.80% $20.46

images or videos have contents such as “gore”, “drugs”, “ex-
plicit nudity”, or “suggestive nudity”. It also has a class
called “safe”, meaning it does not contain the aforemen-
tioned four moderation categories. Therefore, in total there
are 5 output class labels for this API.

Clarifai Not Safe For Work (NSFW) API. This API can
recognize images or videos with inappropriate contents (e.g.,
“porn”, “sex”, or “nudity”). It provides the prediction of two
output labels “NSFW” and “SFW”.

Here, we separate the ASD dataset into 930/104 and the DR
dataset into 1500/2400 for training and testing, and in BAR
we use random label mapping instead of frequency mapping
to avoid extra query cost. The test accuracy, total number
of queries and the expenses of reprogramming Clarifai.com
are reported in Table 4. For instance, to achieve 67.32%
accuracy for ASD task and 72.75% for DR task, BAR only
costs $23.04 US dollars and $31.68 for reprogramming the
Clarifai Moderation API. Setting a larger q value for a more
accurate gradient estimation can indeed improve the accu-
racy but at the price of increased query and expense costs.
We expect the accuracy of BAR can be further enhanced if
we use frequency-based multi-label mapping or reprogram
prediction APIs with more source labels.

Microsoft Custom Vision API. We use this API to obtain
a black-box traffic sign image recognition model (with 43
classes) trained with GTSRB dataset (Stallkamp et al., 2012).
We then apply BAR with different number of random vec-
tors q (1/5/10) and a fixed number of random label mapping
m = 6 to reprogram it for ASD task. As shown in Table 5,
the test accuracy achieves 69.15% when q is set to 10 and
the overall query cost is $20.46 US dollars.

4.5. Ablation Study and Sensitivity Analysis

Number of random vectors (q) and mapping size (m). In
our BAR method, we use the one-sided averaged gradient
estimator in (3) via q random vector perturbations. Here,
we empirically investigate the sensitivity of q and m on
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Figure 2. Sensitivity analysis of BAR on the number of random vectors q for gradient estimation and the frequency-based multi-label
mapping size m. The white-box AR is shown as a reference. The accuracy of BAR improves as q or m increases.

Figure 3. Ablation study on random and frequency multi-label
mapping for AR and BAR. With frequency mapping, the accuracy
and training performance of AR and BAR can be further improved.
Left: training loss over epochs for ASD task. Right: Test accuracy
upon convergence for each task.

the accuracy of BAR when reprogramming the pretrained
Resnet 50 ImageNet model to perform ASD classification,
DR detection, and Melanoma detection with different q
and m values. As shown in Figure 2, the test accuracy
of BAR is low when q = 15, suggesting that insufficient
gradient estimation will undermine the performance. On the
other hand, the accuracy indeed increases with q and then
saturates for different mapping sizes. For a fixed q number,
we can conclude that increasing the label mapping size m
for each target-domain label can improve the accuracy.

Random and frequency multi-label mapping. We per-
form an ablation study on two multiple-label mapping
schemes – random mapping and frequency mapping – for
both AR and BAR on Resnet 50 with the three medical imag-
ing learning tasks. For random mapping, for each target-
domain class we randomly assign m separate labels from
the source domain. For frequency mapping, in each task,
we first obtain the source-label prediction distribution of the
target-domain data before reprogramming. Based on the
distribution, we then sequentially assign the most frequent
source-label to the corresponding dominating target-label
until each target-label has been assigned with m source-

Figure 4. Analysis on cross entropy (CE-loss) and focal loss (F-
loss) for AR and BAR in each task. By using F-loss, the loss
converges faster than using CE-loss for both AR and BAR meth-
ods. Using F-loss, the performance of BAR can be significantly
improved in each task.

labels. Figure 3 shows the training loss over training epochs
(left diagram) on ASD and the resulting test accuracy (right
diagram) upon convergence for all tasks. Comparing to
random mapping, we find that frequency mapping leads
to faster and better convergence results for both AR and
BAR, thereby yielding roughly 3% to 5% gain in test accu-
racy. Similar trends in convergence are observed in DR and
Melanoma detection tasks.

Cross entropy loss (CE-loss) and focal loss (F-loss). Here
we compare the performance of AR and BAR using CE-loss
and F-loss. As shown in Figure 4 (left diagram), on ASD
we find that using F-loss can converge faster and better than
using CE-loss for both AR and BAR. Similar observations
are made for DR and Melanoma tasks. The performance
gain when using F-loss can be explained by the fact that it
is designed for improving dense object detection, with the
capability of better differentiating foreground-background
variances, which well maps to our AR setting (foreground
being the embedded target-domain data and background
being the learned universal adversarial program). Compar-
ing the test accuracy on different tasks (right diagram), we
find that F-loss greatly improves the accuracy of BAR by
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Figure 5. Comparison of t-SNE embedding plots using ResNet 50 and the training data of Melanoma Detection task. Colors represent 7
different class labels. Adversarial reprogramming indeed learns better data representations for solving the target-domain task.

3%-5%, while the gain in AR’s accuracy can be marginal.

Representation analysis. To validate that AR/BAR indeed
learns useful data representations for transfer learning, in
Figure 5 we visualize the data representations of before/after
AR and finetuning using t-distributed stochastic neighbor
embedding (t-SNE), where the melanoma training data rep-
resentations are extracted from the ResNet 50 feature maps
of the pre-logit layer. We can observe that before AR, the
data representations are non-separable, whereas after AR
they become highly clustered and well separated, leading
to high predictability. In contrast, finetuning has worse
representation learning performance relative to AR. The t-
SNE plots of other datasets are shown in the supplementary
material.

5. Conclusion
In this paper, we proposed BAR, a novel approach to ad-
versarial reprogramming of black-box ML models via ze-
roth order optimization and multi-label mapping techniques.
Comparing to the vanilla AR method assuming complete
knowledge of the target ML model, our BAR method only
required input-output model responses, enabling black-box
transfer learning of access-limited ML models. Evaluated
on three data-scarce medical ML tasks, BAR showed com-
parable performance to the vanilla white-box AR method
and outperformed the respective state-of-the-art methods
as well as the widely used finetuning approach. We also
demonstrated the practicality and effectiveness of BAR in
reprogramming real-life online image classification APIs
with affordable expenses, and performed in-depth ablation
studies and sensitivity analysis. Our results provide a new
perspective and an effective approach for transfer learning
without knowing or modifying the pre-trained model.
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