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ETAPS Foreword

Welcome to the 22nd ETAPS! This is the first time that ETAPS took place in the Czech
Republic in its beautiful capital Prague.

ETAPS 2019 was the 22nd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security.

Organizing these conferences in a coherent, highly synchronized conference pro-
gram enables participation in an exciting event, offering the possibility to meet many
researchers working in different directions in the field and to easily attend talks of
different conferences. ETAPS 2019 featured a new program item: the Mentoring
Workshop. This workshop is intended to help students early in the program with advice
on research, career, and life in the fields of computing that are covered by the ETAPS
conference. On the weekend before the main conference, numerous satellite workshops
took place and attracted many researchers from all over the globe.

ETAPS 2019 received 436 submissions in total, 137 of which were accepted,
yielding an overall acceptance rate of 31.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2019 featured the unifying invited speakers Marsha Chechik (University of
Toronto) and Kathleen Fisher (Tufts University) and the conference-specific invited
speakers (FoSSaCS) Thomas Colcombet (IRIF, France) and (TACAS) Cormac
Flanagan (University of California at Santa Cruz). Invited tutorials were provided by
Dirk Beyer (Ludwig Maximilian University) on software verification and Cesare
Tinelli (University of Iowa) on SMT and its applications. On behalf of the ETAPS
2019 attendants, I thank all the speakers for their inspiring and interesting talks!

ETAPS 2019 took place in Prague, Czech Republic, and was organized by Charles
University. Charles University was founded in 1348 and was the first university in
Central Europe. It currently hosts more than 50,000 students. ETAPS 2019 was further
supported by the following associations and societies: ETAPS e.V., EATCS (European
Association for Theoretical Computer Science), EAPLS (European Association for
Programming Languages and Systems), and EASST (European Association of Soft-
ware Science and Technology). The local organization team consisted of Jan Vitek and
Jan Kofron (general chairs), Barbora Buhnova, Milan Ceska, Ryan Culpepper, Vojtech
Horky, Paley Li, Petr Maj, Artem Pelenitsyn, and David Safranek.



vi ETAPS Foreword

The ETAPS SC consists of an Executive Board, and representatives of the
individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board consists of Gilles Barthe (Madrid), Holger Hermanns
(Saarbriicken), Joost-Pieter Katoen (chair, Aachen and Twente), Gerald Liittgen
(Bamberg), Vladimiro Sassone (Southampton), Tarmo Uustalu (Reykjavik and
Tallinn), and Lenore Zuck (Chicago). Other members of the SC are: Wil van der Aalst
(Aachen), Dirk Beyer (Munich), Mikolaj Bojanczyk (Warsaw), Armin Biere (Linz),
Luis Caires (Lisbon), Jordi Cabot (Barcelona), Jean Goubault-Larrecq (Cachan),
Jurriaan Hage (Utrecht), Rainer Hihnle (Darmstadt), Reiko Heckel (Leicester),
Panagiotis Katsaros (Thessaloniki), Barbara Konig (Duisburg), Kim G. Larsen
(Aalborg), Matteo Maffei (Vienna), Tiziana Margaria (Limerick), Peter Miiller
(Zurich), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Dave Parker (Birmingham), Andrew M. Pitts (Cambridge), Dave Sands (Gothenburg),
Don Sannella (Edinburgh), Alex Simpson (Ljubljana), Gabriele Taentzer (Marburg),
Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas Vojnar (Brno), Heike Wehrheim
(Paderborn), Anton Wijs (Eindhoven), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2019. Finally, a big thanks to Jan and Jan and their local
organization team for all their enormous efforts enabling a fantastic ETAPS in Prague!

February 2019 Joost-Pieter Katoen
ETAPS SC Chair
ETAPS e.V. President



Preface

TACAS 2019 was the 25th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series.
TACAS 2019 was part of the 22nd European Joint Conferences on Theory and Practice
of Software (ETAPS 2019). The conference was held at the Orea Hotel Pyramida in
Prague, Czech Republic, during April 8-11, 2019.

Conference Description. TACAS is a forum for researchers, developers, and users
interested in rigorously based tools and algorithms for the construction and analysis of
systems. The conference aims to bridge the gaps between different communities with
this common interest and to support them in their quest to improve the utility, relia-
bility, flexibility, and efficiency of tools and algorithms for building systems. TACAS
2019 solicited four types of submissions:

— Research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation.

— Case-study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains.

— Regular tool papers, presenting a new tool, a new tool component, or novel
extensions to an existing tool, with an emphasis on design and implementation
concerns, including software architecture and core data structures, practical
applicability, and experimental evaluations.

— Tool-demonstration papers (short), focusing on the usage aspects of tools.

Paper Selection. This year, 164 papers were submitted to TACAS, among which
119 were research papers, 10 case-study papers, 24 regular tool papers, and 11 were
tool-demonstration papers. After a rigorous review process, with each paper reviewed
by at least three Program Committee members, followed by an online discussion, the
Program Committee accepted 29 research papers, 2 case-study papers, 11 regular tool
papers, and 8 tool-demonstration papers (50 papers in total).

Artifact-Evaluation Process. The main novelty of TACAS 2019 was that, for the
first time, artifact evaluation was compulsory for all regular tool papers and tool
demonstration papers. For research papers and case-study papers, artifact evaluation
was optional. The artifact evaluation process was organized as follows:

— Regular tool papers and tool demonstration papers. The authors of the 35
submitted papers of these categories of papers were required to submit an artifact
alongside their paper submission. Each artifact was evaluated independently by
three reviewers. Out of the 35 artifact submissions, 28 were successfully evaluated,
which corresponds to an acceptance rate of 80%. The AEC used a two-phase
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reviewing process: Reviewers first performed an initial check to see whether the
artifact was technically usable and whether the accompanying instructions were
consistent, followed by a full evaluation of the artifact. The main criterion for
artifact acceptance was consistency with the paper, with completeness and docu-
mentation being handled in a more lenient manner as long as the artifact was useful
overall. The reviewers were instructed to check whether results are consistent with
what is described in the paper. Inconsistencies were to be clearly pointed out and
explained by the authors. In addition to the textual reviews, reviewers also proposed
a numeric value about (potentially weak) acceptance/rejection of the artifact. After
the evaluation process, the results of the artifact evaluation were summarized and
forwarded to the discussion of the papers, so as to enable the reviewers of the papers
to take the evaluation into account. In all but three cases, tool papers whose artifacts
did not pass the evaluation were rejected.

— Research papers and case-study papers. For this category of papers, artifact
evaluation was voluntary. The authors of each of the 25 accepted papers were
invited to submit an artifact immediately after the acceptance notification. Owing to
the short time available for the process and acceptance of the artifact not being
critical for paper acceptance, there was only one round of evaluation for this
category, and every artifact was assigned to two reviewers. The artifacts were
evaluated using the same criteria as for tool papers. Out of the 18 submitted artifacts
of this phase, 15 were successfully evaluated (83% acceptance rate) and were
awarded the TACAS 2019 AEC badge, which is added to the title page of the
respective paper if desired by the authors.

TOOLympics. TOOLympics 2019 was part of the celebration of the 25th anniver-
sary of the TACAS conference. The goal of TOOLympics is to acknowledge the
achievements of the various competitions in the field of formal methods, and to
understand their commonalities and differences. A total of 2* competitions joined
TOOLympics and were presented at the event. An overview and competition reports of
11 competitions are included in the third volume of the TACAS 2019 proceedings,
which are dedicated to the 25th anniversary of TACAS. The extra volume contains a
review of the history of TACAS, the TOOLympics papers, and the papers of the annual
Competition on Software Verification.

Competition on Software Verification. TACAS 2019 also hosted the 8th Interna-
tional Competition on Software Verification (SV-COMP), chaired and organized by
Dirk Beyer. The competition again had high participation: 31 verification systems with
developers from 14 countries were submitted for the systematic comparative evalua-
tion, including three submissions from industry. The TACAS proceedings includes the
competition report and short papers describing 11 of the participating verification
systems. These papers were reviewed by a separate program committee (PC); each
of the papers was assessed by four reviewers. Two sessions in the TACAS program
(this year as part of the TOOLympics event) were reserved for the presentation of the
results: the summary by the SV-COMP chair and the participating tools by the
developer teams in the first session, and the open jury meeting in the second session.

Acknowledgments. We would like to thank everyone who helped to make TACAS
2019 successful. In particular, we would like to thank the authors for submitting their
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papers to TACAS 2019. We would also like to thank all PC members, additional
reviewers, as well as all members of the artifact evaluation committee (AEC) for their
detailed and informed reviews and, in the case of the PC and AEC members, also for
their discussions during the virtual PC and AEC meetings. We also thank the Steering
Committee for their advice. Special thanks go to the Organizing Committee of ETAPS
2019 and its general chairs, Jan Kofroni and Jan Vitek, to the chair of the ETAPS 2019
executive board, Joost-Pieter Katoen, and to the publication team at Springer.
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Abstract. We propose an automated method for computing inductive invari-
ants used to proving deadlock freedom of parametric component-based systems.
The method generalizes the approach for computing structural trap invariants
from bounded to parametric systems with general architectures. It symbolically
extracts trap invariants from interaction formulae defining the system architec-
ture. The paper presents the theoretical foundations of the method, including new
results for the first order monadic logic and proves its soundness. It also reports
on a preliminary experimental evaluation on several textbook examples.

Modern computing systems exhibit dynamic and reconfigurable behavior. To tackle the
complexity of such systems, engineers extensively use architectures that enforce, by
construction, essential properties, such as fault tolerance or mutual exclusion. Architec-
tures can be viewed as parametric operators that take as arguments instances of com-
ponents of given types and enforce a characteristic property. For instance, client-server
architectures enforce atomicity and resilience of transactions, for any numbers of clients
and servers. Similarly, token-ring architectures enforce mutual exclusion between any
number of components in the ring.

Parametric verification is an extremely relevant and challenging problem in sys-
tems engineering. In contrast to the verification of bounded systems, consisting of a
known set of components, there exist no general methods and tools succesfully applied
to parametric systems. Verification problems for very simple parametric systems, even
with finite-state components, are typically intractable [10,16]. Most work in this area
puts emphasis on limitations determined mainly by three criteria (1) the topology of the
architecture, (2) the coordination primitives, and (3) the properties to be verified.

The main decidability results reduce parametric verification to the verification of a
bounded number of instances of finite state components. Several methods try to deter-
mine a cut-off size of the system, i.e. the minimal size for which if a property holds, then
it holds for any size, e.g. Suzuki [20], Emerson and Namjoshi [15]. Other methods iden-
tify systems with well-structured transition relations, for which symbolic enumeration
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of reachable states is feasible [1] or reduce to known decidable problems, such as reach-
ability in vector addition systems [16]. Typically, these methods apply to systems with
global coordination. When theoretical decidability is not of concern, semi-algorithmic
techniques such as regular model checking [2,17], SMT-based bounded model check-
ing [3,14], abstraction [8,11] and automata learning [13] can be used to deal with more
general classes of The interested reader can find a complete survey on parameterized
model checking by Bloem et al. [10].

This paper takes a different angle of attack to the verification problem, seeking gen-
erality of the type of parametric systems and focusing on the verification of a particular
but essential property: deadlock-freedom. The aim is to come up with effective methods
for checking deadlock-freedom, by overcoming the complexity blowup stemming from
the effective generation of reachability sets. We briefly describe our approach below.

A system is the composition of a finite number of component instances of
given types, using interactions that follow the Behaviour-Interaction-Priorities (BIP)
paradigm [7]. To simplify the technical part, we assume that components and interac-
tions are finite abstractions of real-life systems. An instance is a finite-state transition
system whose edges are labeled by ports. The instances communicate synchronously
via a number of simultaneous interactions involving a set of ports each, such that no
data is exchanged during interactions. If the number of instances in the system is fixed
and known in advance, we say that the system is bounded, otherwise it is parametric.

********************************* b i}
UG e T ) " b ' £
a e IRZE 1 o) 2 a e \ \ 4 J
——0 —0—0- 00 0 0 — 0 & —0—@—
Semaphore Task, Task Semaphore Task, Task;
ORIEORILCREE =) (9)
a by by a b(1) b(i)
e n bl I 2 e ) VO] a
I'=anbiVanbyVeAfiVeAfr I'=aA3i.b(i)VeAnTi.f(i)
(a) Bounded System (b) Parametric System

Fig. 1. Mutual exclusion example

For instance, the bounded system in Fig. 1a consist of component types Semaphore,
with one instance, and Task, with two instances. A semaphore goes from the free state
r to the taken state s by an acquire action a, and viceversa from s to r by a release
action e. A task goes from waiting w to busy u by action b and viceversa, by action
f. For the bounded system in Fig. 1a, the interactions are {a, b}, {a, b,},{e, f1} and
{e, f»}, depicted with dashed lines. Since the number of instances is known in advance,
we can view an interaction as a minimal satisfying valuation of the boolean formula
I' =(anb))V(anby)V(eA fi)V(eA f>), where the port symbols are propositional vari-
ables. Because every instance has finitely many states, we can write a boolean formula
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A =[-rV-(w; Vwy)] A[-sV —(u; Vup)l, this time over propositional state variables,
which defines the configurations in which all interactions are disabled (deadlock). Prov-
ing that no deadlock configuration is reachable from the initial configuration r Aw; Awy,
requires finding an over-approximation (invariant) I of the reachable configurations,
such that the conjunction / A 4 is not satisfiable.

The basic idea of our method, supported by the D-Finper deadlock detection
tool [9] for bounded component-based systems, is to compute an invariant straight
from the interaction formula, without going through costly abstract fixpoint itera-
tions. The invariants we are looking for are in fact solutions of a system of boolean
constraints ("), of size linear in the size of I" (written in DNF). In our example,
O = Nizi2(r Vw;) < (s V u;). Finding the (minimal) solutions of this constraint
can be done, as currently implemented in D-FINDER, by exhaustive model enumeration
using a SAT solver. Here we propose a more efficient solution, which consists in writ-
ing O(I") in DNF and remove the negative literals from each minterm. In our case, this
gives the invariant I = (¥ V ) A A\jcjoWi VU A(r Vg Vup) A(sVwi Vwy)and I A4
is proved unsatisfiable using a SAT solver.

The main contribution of this paper is the generalization of this invariant generation
method to the parametric case. To understand the problem, consider the parametric
system from Fig. 1, in which a Semaphore interacts with n Tasks, where n > 0 is not
known in advance. The interactions are described by a fragment of first order logic,
in which the ports are either propositional or monadic predicate symbols, in our case
I' =an3di.b@i)Vendi. f(i). This logic, called Monadic Interaction Logic (MIL), is also
used to express the constraints @(I") and compute their solutions. In our case, we obtain
I =VHANNI. w@OVuIA[rvIi. u(@IA[sVvdi.w(i)]. Asin the bounded case, we can
give a parametric description of deadlock configurations 4 = [-r V =3i . w(i)] A [-s V
—3i . u(i)] and prove that I A 4 is unsatisfiable, using the decidability of MIL, based on
an early small model property result due to Lowenheim [19]. In practice, we avoid the
model enumeration suggested by this result and check the satisfiability of such queries
using a decidable theory of sets with cardinality constraints [18], available in the CVC4
SMT solver [4].

The paper is structured as follows: Sect. 1 presents existing results for checking
deadlock-freedom of bounded systems using invariants, Sect. 2 formalizes the approach
for computing invariants using MIL, Sect. 3 introduces cardinality constraints for invari-
ant generation, Sect. 4 presents the integration of the above results within a verification
technique for parametric systems and Sect. 5 reports on preliminary experiments carried
out with a prototype tool. Finally, Sect. 6 presents concluding remarks and future work
directions. For reasons of space, all proofs are given in [12].

1 Bounded Component-Based Systems

A component is a tuple C = (P, S, s9,4), where P = {p, g, r, ...} is a finite set of ports,
S is a finite set of states, s; € S is an initial state and 4 € S X P X S is a set of
transitions written s — s’. To simplify the technical details, we assume there are no two

. .. . . . P1 r2
different transitions with the same port, i.e. if s1 — 5,52 — s}, € 4 and s1 # s or
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s7 # ) then p; # ps. In general, this restriction can be lifted, at the cost of cluttering
the presentation.

A bounded system S = (C',...,C",I') consists of a fixed number (n) of components
Ct = (P, 8, s¢*, 4*) and an interaction formula I, describing the allowed interactions.
Since the number of components is known in advance, we write interaction formulae
using boolean logic over the set of propositional variables BVar £ Uiz (P*US). Here
we intentionally use the names of states and ports as propositional variables.

A boolean interaction formula is either a € BVar, fi A f, or =f}, where f; are
formulae, for i = 1, 2, respectively. We define the usual shorthands f; Vv f> = =(=f1 A
Ao A ECAVA A © B E (i > LA > f). Aliteral is either
a variable or its negation and a minterm is a conjunction of literals. A formula is in
disjunctive normal form (DNF) if it is written as \/{_, /\']f’z"l t;j, where ¢;; is a literal.
A formula is positive if and only if each variable occurs under an even number of
negations, or, equivalently, its DNF forms contains no negative literals. We assume

interaction formulae of bounded systems to be always positive.

A Boolean Valuation § : BVar — {T, L} maps each propositional variable to either true
(T) or false (L). We write 8 = f if and only if f = T, when replacing each boolean
variable a with B(a) in f. We say that 8 is a model of f in this case and write f = g
for [T = [gll, where [f1] & {818 E f}. Given two valuations ; and 3, we write
B1 € B if and only if Bi(a) = T implies B>(a) = T, for each variable a € BVar. We

def

write f = g for [fTI* = [gl¥, where [fT* = {B€fl| forallg' : p' CBandf #
Bonlyif 8 ¢ [f]} is the set of minimal models of f.

1.1 Execution Semantics of Bounded Systems

We use 1-safe marked Petri Nets to define the set of executions of a bounded system.
A Petri Net (PN) is a tuple N = (S, T, E), where S is a set of places, T is a set of
transitions, S NT =0,and E C S XT U T X § is a set of edges. The elements of S UT

def def

are called nodes. Foranode n,let*n = ime SUT | E(m,n)=1},n®* = me S UT |
E(n,m) = 1} and lift these definitions to sets of nodes, as usual.

A marking for a PN N = (§,T,E) is a func-
tionm : S — N. A marked Petri net is a pair
N = (N,mg), where mg is the initial marking of
N = (S, T, E). We consider that the reader is familiar
with the standard execution semantics of a marked
PN. A marking m is reachable in N if and only if
there exists a sequence of transitions leading from
my to m. We denote by R(N) the set of reachable
markings of N. A set of markings M is an invari-
ant of N = (N, my) if and only if mg € M and M
is closed under the transitions of N. A marked PN
N is l-safe if m(s) < 1, for each s € S and each
m € R(N). In the following, we consider only marked PNs that are 1-safe. In this case,
any (necessarily finite) set of reachable markings can be defined by a boolean formula,

Fig. 2. PN for mutual exclusion
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which identifies markings with the induced boolean valuations. A marking m is a dead-
lock if for no transition is enabled in m and let D(N) be the set of deadlocks of N. A
marked PN N is deadlock-free if and only if R(N) N D(N) = 0. A sufficient condition
for deadlock freedom is M N D(N) = 0, for some invariant M of N.

In the rest of this section, we fix a bounded system S = (C',...,C",I'), where C* =
(P*, S, s50*, 4%, for all k € [1,n] and I" is a positive boolean formula, over propositional
variables denoting ports. The set of executions of S is given by the 1-safe marked PN
Ns = (N,mp), where N = (UL, S', T, E), mo(s) = 1 if and only if 5 € {s¢' | i € [1,n]}
and T, E are as follows. For each minimal model 8 € [I']“, we have a transition t; € T
and edges (s;,1g), (g, 57) € E, for all i € [1,n] such that s; KN s € A and B(p;) = T.
Moreover, nothing else is in 7 or E.

For example, the marked PN from Fig.2 describes the set of executions of the
bounded system from Fig. la. Note that each transition of the PN corresponds to a
minimal model of the interaction formula I' = aAbyVaAbyVeA fiVeAf,or
equivalently, to the set of (necessarily positive) literals of some minterm in the DNF
of I'.

1.2 Proving Deadlock Freedom of Bounded Systems

A bounded system S is deadlock-free if and only if its corresponding marked PN N
is deadlock-free. In the following, we prove deadlock-freedom of a bounded system,
by defining a class of invariants that are particularly useful for excluding unreachable
deadlock markings.

Given a Petri Net N = (S, T, E), a set of places W C S is called a trap if and only if
We C*W. Atrap W of N is a marked trap of the marked PN N = (N, my) if and only if
mg(s) = T for some s € W. A minimal marked trap is a marked trap such that none of
its strict subsets is a marked trap. A marked trap defines an invariant of the PN because
some place in the trap will always be marked, no matter which transition is fired. The
trap invariant of N is the least set of markings that mark each trap of N. Clearly, the
trap invariant of V subsumes the set of reachable markings of N, because the latter is
the least invariant of N and invariants are closed under intersection'.

Lemma 1. Given a bounded system S, the boolean formula:
Trap(Ns) E A{\/f?:1 si | {s1,..., s} is a marked trap of Ns}
defines an invariant of Ns.

Next, we describe a method of computing trap invariants that does not explicitly
enumerate all the marked traps of a marked PN. First, we consider a trap constraint
O(I), derived from the interaction formula I, in linear time. By slight abuse of notation,

we define, for a given port p € P’ of the component C’, for some i € [1, n], the pre- and

. : def def 14 . . . .
post-state of pin C' as *p = s and p* = s’, where s — s’ is the unique rule? involving

! The intersection of two or more invariants is again an invariant.
2 We have assumed that each port is associated a unique transition rule.
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pind,and *p = p°® £ 1| if there is no such rule. Assuming that the interaction formula
is written in DNF as I" = \/kN:I /\Zk1 Pre, we define the trap constraint:

o) E N (V25 *pee) = (V2 pac®)

It is not hard to show? that any satisfying valuation of @(I") defines a trap of Ns and,
moreover, any such trap is defined in this way. We also consider the formula Init(S) <
V<1 So* defining the set of initially marked places of S, and prove the following:

Lemma 2. Let S be a bounded system with interaction formula I' and 8 be a boolean
valuation. Then B € [O(I)AInit(S)] iff {s | B(s) = T} is a marked trap of Ns. Moreover,
B e [0 A Init(S)I* iff {s | B(s) = T} is a minimal marked trap of Ns.

Because @(I') and Init(S) are boolean formulae, it is, in principle, possible to com-
pute the trap invariant Trap(Ns) by enumerating the (minimal) models of @(I") A Init(S)
and applying the definition from Lemma 1. However, model enumeration is inefficient
and, moreover, does not admit generalization for the parametric case, in which the size
of the system is unknown. For these reasons, we prefer a computation of the trap invari-
ant, based on two symbolic transformations of boolean formulae, described next.

For a formula f we denote by f* the positive formula obtained by deleting all
negative literals from the DNF of f. We shall call this operation positivation. Second,

for a positive boolean formula f, we define the dual formula (f)~ recursively on the
def def def

structure of f, as follows: (fiA ) = i VA L,(AV A = i Afpi anda™ = a,
for any a € BVar. Note that f~ is equivalent to the negation of the formula obtained
from f by substituting each variable a with —a in f.

The following theorem gives the main result of this section, the symbolic computa-
tion of the trap invariant of a bounded system, directly from its interaction formula.

Theorem 1. For any bounded system S, with interaction formula I', we have:
Trap(Ns) = ([O() A Init(S)]7)”

Intuitively, any satisfying valuation of @(I") AInit(S) defines an initially marked trap
of Ns and a minimal such valuation defines a minimal such trap (Lemma 2). Instead of
computing the minimal satisfying valuations by model enumeration, we directly cast
the above formula in DNF and remove the negative literals. This is essentially because
the negative literals do not occur in the propositional definition of a set of places*.
Then the dualization of this positive formula yields the trap invariants in CNF, as a
conjunction over disjunctions of propositional variables corresponding to the places
inside a minimal initially marked trap.

Just as any invariants, trap invariants can be used to prove absence of deadlocks in
a bounded system. Assuming, as before, that the interaction formula is given in DNF

3 See [5] for a proof.

4 If the DNFis (p A q) V (p A =), the dualization would give (p V g) A (p V —r). The first clause
corresponds to the trap {p, g} (either p or g is marked), but the second does not directly define
a trap. However, by first removing the negative literals, we obtain the traps {p, ¢} and {r}.
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as ' = \/,{N=1 /\?i*l pre, we define the set of deadlock markings of Ng by the formula

A £ /\2/:1 Zkl =(* pre)- This is the set of configurations in which all interactions are
disabled. With this definition, proving deadlock freedom amounts to proving unsatisfi-

ability of a boolean formula.

Corollary 1. A bounded system S with interaction formula I' is deadlock-free if the
boolean formula ([&(I') A Init(S)17)~ A A(T') is unsatisfiable.

2 Parametric Component-Based Systems

From now on we shall focus on parametric systems, consisting of a fixed set of com-
ponent types C', ..., C", such that the number of instances of each type is not known in
advance. These numbers are given by a function M : [1,n] — N, where M(k) denotes
the number of components of type C* that are active in the system. To simplify the tech-
nical presentation of the results, we assume that all instances of a component type are
created at once, before the system is started®. For the rest of this section, we fix a para-
metric system S = (C',...,C",M, I'), where each component type C* = (P, S, s¢*, 4*)
has the same definition as a component in a bounded system and " is an interaction
formula, written in the fragment of first order logic, defined next.

2.1 Monadic Interaction Logic

For each component type C*, where k € [1,n], we assume a set of index variables Var*

and a set of predicate symbols Pred* = Pt U S Similar to the bounded case, we use

state and ports names as monadic (unary) predicate symbols. We also define the sets
def def

Var = |J;_, Var* and Pred = | J;_, Pred‘. Moreover, we consider that Var‘ N Var = 0
and Pred* N Pred’ = 0, for all 1 < k < ¢ < n. For simplicity’s sake, we assume that all
predicate symbols in Pred are of arity one. For component types C*, such that M(k) = 1
and predicate symbols pr € Pred®, we shall write pr instead of pr(1), as in the interaction
formula of the system from Fig. 1b. The syntax of the monadic interaction logic (MIL)
is given below:

i, j € Var index variables

G:=i=jIpr@ | d1 A2 |1 | Ti.
where, for each predicate atom pr(i), if pr € Pred* and i € Var then k = £. We use

def

the shorthands Vi . ¢, ERER —¢1) and distinct(iy, . .., in) = Ai<jceem 7ij = i%. A
sentence is a formula in which all variables are in the scope of a quantifier. A formula
is positive if each predicate symbol occurs under an even number of negations. The
semantics of MIL is given in terms of structures 7 = (1, v,¢), where:

—_uE [1, max]_, M(k)] is the universe of instances, over which variables range,

3 This is not a limitation, since dynamic instance creation can be simulated by considering that
all instances are initially in a waiting state, which is left as result of an interaction involving a
designated “spawn” port.

¢ Throughout this paper, we consider that A;;; ¢; = T if I = 0.
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— v : Var — Wis a valuation mapping variables to elements of the universe,
— ¢ : Pred — 2% is an interpretation of predicates as subsets of the universe.

For a structure 7 = (U, v,¢) and a formula ¢, the satisfaction relation 7 | ¢ is defined
as:

I E 1 & never TEi=] evi)=v))
ITEpiHeviedp) 1 E Ji.p o Qvli—ml) E ¢ forsomem € [1,M(k)]
provided that i € Var*

where v[i « m] is the valuation that acts as v, except for i, which is assigned to m.
Whenever I | ¢, we say that 7 is a model of ¢. It is known that, if a MIL formula has
a model, then it has a model with universe of cardinality at most exponential in the size
(number of symbols) of the formula [19]. This result, due to Lowenheim, is among the
first decidability results for a fragment of first order logic.

Structures are partially ordered by pointwise inclusion, i.e. for 7; = (&, v;,(;), for
i=1,2,wewrite 7| C I, iff 1(p) C va(p), forall pe Predand 7, c I, iff I, C I,
and 7| # I,. As before, we define the sets [¢]] = {Z | I E ¢} and [¢]* = {I €
(o]l | VI . I" ¢ T — I' ¢ [[¢]l} of models and minimal models of a MIL formula,
respectively. Given formulae ¢, and ¢,, we write ¢; = ¢, for [¢1]] = [#.]] and ¢; =+ ¢»
for [¢11# = [g21".

2.2 Execution Semantics of Parametric Systems

We consider the interaction formulae of parametric systems to be finite disjunctions of
formulae of the form below:

Fiv. . Fie Ao ANy P AN Vi g — pidi)) (1)

where @, Y41, ..., Y are conjunctions of equalities and disequalities involving index
variables. Intuitively, the formulae (1) state that there are at most £ component instances
that engage in a multiparty rendez-vous interaction on ports p(iy), ..., p¢(i¢), together
with a broadcast to the ports peyi(igs1), - - Pe+m(ic+m) Of the instances that fulfill the
constraints Y., ..., Yeem. Observe that, if m = 0, the above formula corresponds to a
multiparty (generalized) rendez-vous interaction Jiy ... Jig Ap A Af-:l p;(i;). An exam-
ple of peer-to-peer rendez-vous is the parametric system from Fig. 1. Another example
of broadcast is given below.

Example 1. Consider the parametric system obtained from an arbitrary number of
Worker components (Fig.3), where C' = Worker, Var' = {i,i, i, j} and Pred' =
{a,b, f,u,w}. Any pair of instances can jointly execute the b (begin) action provided
all others are taking the a (await) action. Any instance can also execute alone the f
(finish) action.

The execution semantics of a parametric system S is the marked PN Ns = (N, my),
where N = (Uj_; S'%X[1,M(®)]1,T, E), mo((so*, 1)) = 1,forallk € [1,n] and i € [1, M(k)],
and the sets of transitions 7 and edges E are defined next. For each minimal model 7 =
(U,v,0) € [I'T¥, we have a transition t; € T and the edges ((s;, k), 1), (t7,(s},k)) € E
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bir)_alir) bin)_ alin) b(j) _a(j)
Worker(iy) a(iy Worker(iy) alin Worker( j) a(j)
b(iy) b(iz) b(j)

fGn) [f(i2) §i0)] @

| —— @

f@n) f(2) fQ)

F=[3i13ir . iy #is Ab() Ab()AYj. j#i1 A j#ir— a(j)] V Ji.f(i)

Fig. 3. Parametric system with broadcast

for all i € [1,n] such that s; R s; € A" and k € «(p;). Moreover, nothing else is in T
or E.

As a remark, unlike in the case of bounded systems, the size of the marked PN Ng,
that describes the execution semantics of a parametric system S, depends on the maxi-
mum number of instances of each component type. The definition of the trap invariant
Trap(N3s) is the same as in the bounded case, except that, in this case, the size of the
boolean formula depends on the (unbounded) number of instances in the system. The
challenge, addressed in the following, is to define trap invariants using MIL formulae of
a fixed size.

2.3 Computing Parametric Trap Invariants

To start with, we define the trap constraint of an interaction formula I” consisting of a
finite disjunction of (1) formulae, as a finite conjunction of formulae of the form below:

Vir .. Mie o A (Vs *piip) v VR, By A *pip)| -
[V pitp v VAR Fis i A pit ()]

where, for a port p € P* of some component type C*, *p(i) and p(i)* denote the unique

predicate atoms s(i) and s’(7), such that s L ¢ € A is the (unique) transition involving
pin T%, or L if there is no such rule.

Example 2. For example, the trap constraint for the parametric (rendez-vous) system in
Fig. Ibis Vi.[r V w(i)] — [s V u(@)] A Vil[sV u@)] — [r V u(i)]. Analogously, the trap
constraint for the parametric (broadcast) system in Fig. 3 is:

Vi in. [iy % i A OW(i) V w(in) V 3j.G £ it A j % in Aw()))] —
i1 # i2 A(u(iy) Vu(iz) V(£ A J# i Aw())))]
A Vi u(i) — wii)

We define a translation of MIL formulae into boolean formulae of unbounded size.
Given a function M : [1,n] — N, the unfolding of a MIL sentence ¢ is the boolean
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formula By (¢) obtained by replacing each existential [universal] quantifier Ji . (i)
[Vi . ()], for i € Var', by a finite disjunction [conjunction] \/}'* w[¢/i] [AN} wl¢/ill,
where the substitution of the constant £ € M(k) for the variable i is defined recursively
as usual, except for pr(i)[£/i] = (pr, £), which is a propositional variable. Further,
we relate structures to boolean valuations of unbounded sizes. For a structure 7 =
(U, v,¢) we define the boolean valuation Sr((pr,£)) = T if and only if £ € «(pr), for
each predicate symbol pr and each integer constant £. Conversely, for each valuation

B of the propositional variables (pr, £), there exists a structure g = (2L, v,¢) such that
def

wpr) = {€ | B(pr,£)) = T}, for each pr € Pred. The following lemma relates the
semantics of MIL formulae with that of their boolean unfoldings:

Lemma 3. Given a MIL sentence ¢ and a function M : [1,n] — N, the following hold:

1. for each structure I € [¢]l, we have B € [Bm (@) 1| and conversely, for each valua-
tion B € [Bm (@) 1, we have 15 € [#]l.

2. for each structure I € [[¢]I¥, we have B € [Bm(¢) ¥ and conversely, for each
valuation 8 € [Bu (¢) ¥, we have Iz € [¢]".

Considering the MIL formula Init(S) = Viey ik - so*(ix), that defines the set of
initial configurations of a parametric system S, the following lemma formalizes the
intuition behind the definition of parametric trap constraints:

Lemma 4. Let S be a parametric system with interaction formula I’ and I be a struc-
ture. Then I = O(I') A Init(S) iff {(s,k) | k € «(s)} is a marked trap of Ns. Moreover,
I e [[6N) A Init(S)V iff {(s, k) | k € «(s)} is a minimal marked trap of Ns.

We are currently left with the task of computing a MIL formula which
defines the trap invariant Trap(Ns) of a parametric component-based system & =
(C',...,C",M, I'). The difficulty lies in the fact that the size of N5 and thus, that of the
boolean formula Trap(Ns) depends on the number M(k) of instances of each compo-
nent type k € [1, n]. As we aim at computing an invariant able to prove safety properties,
such as deadlock freedom, independently of how many components are present in the
system, we must define the trap invariant using a formula depending exclusively on I,
i.e. not on M.

Observe first that Trap(Ns) can be equivalently defined using only the minimal
marked traps of Ng, which, by Lemma4, are exactly the sets {(s, k) | k € i«(s)}, defined
by some structure (,v,¢) € [OI) A Init(S)]]¥. Assuming that the set of structures
[O) A Init(S)], or an over-approximation of it, can be defined by a positive MIL
formula, the trap invariant is defined using a generalization of boolean dualisation to
predicate logic, defined recursively, as follows:

d

(=) E-i=j GVe) T Ag™ Qi.d)” EVi.g~  pd)” = pli)
Ci=)) Fi=j @A) EeTVe (Viig)T =g

The crux of the method is the ability of defining, given an arbitrary MIL formula ¢, a
positive MIL formula ¢® that preserve its minimal models, formally ¢ = ¢®. Because
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of quantification over unbounded domains, a MIL formula ¢ does not have a disjunc-
tive normal form and thus one cannot define ¢® by simply deleting the negative literals
in DNF, as was done for the definition of the positivation operation (.)*, in the propo-
sitional case. For now we assume that the transformation (.)® of monadic predicate
formulae into positive formulae preserving minimal models is defined (a detailed pre-
sentation of this step is given next in Sect. 3) and close this section with a parametric
counterpart of Theorem 1.

Theorem 2. For any parametric system S = (C',...,C",M, '), we have

Trap(Nss) = Bu (((O() A Init($))°))

3 Cardinality Constraints

This section is concerned with the definition of a positivation operator (.)® for MIL sen-
tences, whose only requirements are that ¢® is positive and ¢ =+ ¢®. For this purpose,
we use a logic of quantifier-free boolean cardinality constraints [4,18] as an interme-
diate language, on which the positive formulae are defined. The translation of MIL into
cardinality constraints is done by an equivalence-preserving quantifier elimination pro-
cedure, described in Sect. 3.1. As a byproduct, since the satisfiability of quantifier-free
cardinality constraints is NP-complete [18] and integrated with SMT [4], we obtain a
practical decision procedure for MIL that does not use model enumeration, as suggested
by the small model property [19]. Finally, the definition of a positive MIL formula from
a boolean combination of quantifier-free cardinality constraints is given in Sect. 3.2.

We start by giving the definition of cardinality constraints. Given the set of monadic
predicate symbols Pred, a boolean term is generated by the syntax:

t:=prePred |-t |t AL |HHV ]

When there is no risk of confusion, we borrow the terminology of propositional logic
and say that a term is in DNF if it is a disjunction of conjunctions (minterms). We also
write t; — t if and only if the implication is valid when #; and ¢, are interpreted as
boolean formulae, with each predicate symbol viewed as a propositional variable. Two
boolean terms #; and t, are said to be compatible if and only if #; A, is satisfiable, when
viewed as a boolean formula.

For a boolean term ¢ and a first-order variable i € Var, we define the shorthand #(7)
recursively, as (=11)(Q) = =11(), (t; A)@) = 1) An() and (17 V 6)(0) = 76) V 10).
Given a positive integer n € N and ¢ a boolean term, we define the following cardinality
constraints, by MIL formulae:

del

= n = 3y ... i, . distinct(iy, ..., i,) A N 1)) l<nZ=(]>n+1)

We shall further use cardinality constraints with n = oo, by defining [f| > co = 1 and
lf| < co = T. The intuitive semantics of cardinality constraints is formally defined in
terms of structures 7 = (1, v,¢) by the semantics of monadic predicate logic, given in
the previous. For instance, |p A g| > 1 means that the intersection of the sets p and ¢ is
not empty, whereas |—p| < 0 means that p contains all elements from the universe.
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3.1 Quantifier Elimination

Given a sentence ¢, written in MIL, we build an equivalent boolean combination of car-
dinality constraints ge(¢), using quantifier elimination. We describe the elimination of
a single existential quantifier and the generalization to several existential or universal
quantifiers is immediate. Assume that ¢ = 3ij . \/eg i (i, . . ., i), where K is a finite
set of indices and, for each k € K, y; is a quantifier-free conjunction of atomic propo-
sitions of the form i; = i,, pr(i;) and their negations, for some j, £ € [1,m]. We write,
equivalently, ¢ = \/jex @x A iy . 6c(iy, ..., in), Where ¢, does not contain occurrences
of i; and 6y is a conjunction of literals of the form pr(i;), —pr(i1), i1 = i; and —i; = i,
for some j € [2, m]. For each k € K, we distinguish the following cases:

1. if iy = i is a consequence of 6, for some j > 1, let qe(Ji; . 6x) £ Oklij/ir].
2. else, 6, = /\jejk =iy = ij A t(iy) for some Ji C [2,m] and boolean term f;, and let:

qe(@ir . ) = Ayey, [distinet({ij)jes) A Ajes )] = It 2 1711 + 1
(@) = Viex o1 A qe(@iy - )

Universal quantification is dealt with using the duality qe(Vi; . y) = —qe(3di; . ). For
a prenex formula ¢ = Q,i, ... 01 . ¥, where Q1,..., 0, € {3,V} and ¢ is quantifier-
free, we define, recursively qe(¢) S qe(Oniy - qe(Qp-1in-1 - - . Q111 . ¥)). It is easy to
see that, if ¢ is a sentence, qe(¢) is a boolean combination of cardinality constraints.
The correctness of the construction is a consequence of the following lemma:

Lemma 5. Given a MIL formula ¢ = Q,i, ... Q;i . ¥, where Qy,...,Q, € {V¥,3} and
Y is a quantifier-free conjunction of equality and predicate atoms, we have ¢ = qe(¢).

Example 3. (contd. from Example 2) Below we show the results of quantifier elimina-
tion applied to the conjunction O(I") A Init(S) for the system in Fig. 1b:

(=rA=sAWA-uU <OAluA-w<O0OALL W)V
(rAWA-U SOA|-WSOATLSW)VEADVEAIAW SOATL W)V
(=sA|muU SOAJuA=-WSOATS W)V (—u <OA|=w <O0A 1L w).

Similarly, for the system in Fig. 3, we obtain the following cardinality constraints:

B WAluUA-W<SOVERIWAWA-U<TAluA-W<0)V
(~ul S TA|-u A=W SOAUA-WSOALTSW)V(IWA-u <OAluA-W <OAT|W).

3.2 Building Positive Formulae that Preserve Minimal Models

Let ¢ be a MIL formula, not necessarily positive. We shall build a positive formula
¢®, such that ¢ =" ¢®. By the result of the last section, ¢ is equivalent to a boolean
combination of cardinality constraints ge(¢), obtained by quantifier elimination. Thus
we assume w.l.o.g. that the DNF of ¢ is a disjunction of conjunctions of the form
Nierltil = & A N jey |tj| < uj, for some sets of indices L, U and some positive inte-
gers {€;}icr and {u;} jey.
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For a boolean combination of cardinality constraints ¢, we denote by P(y) the set
of predicate symbols that occur in a boolean term of ¢ and by P*(y) (P~(¢)) the set of
predicate symbols that occur under an even (odd) number of negations in ¢. The follow-
ing proposition allows to restrict the form of ¢ even further, without losing generality:

Proposition 1. Given MIL formulae ¢ and ¢,, for any positivation operator (.)®, the
following hold:

1 (1 V $2)® = ¢1®V %,
2. (¢1 A 2)® = 1% A 2%, provided that P(¢1) N P(¢h) = 0.

From now on, we assume that ¢ is a conjunction of cardinality constraints that cannot
be split as ¢ = ¢; A ¢,, such that P(¢;) N P(¢,) = 0.
Let us consider a cardinality constraint [¢| ¢ that occurs in ¢. Given a set P

2
of predicate symbols, for a set of predicates S C %, the complete boolean minterm
corresponding to S with respect to P is 15 £ Apes P A Apeprs =p- Moreover, let

def

S, = {S € P(¢) | ts — t} be the set of sets S of predicate symbols for which the
complete minterm fg implies ¢. Finally, each cardinality constraint || > ¢ is replaced
by the equivalent disjunction’, in which each boolean term is complete with respect to

P(¢):

== V{ /\ |t§“’”| > {5 | for some constants {€s € N}gcs, such that Z ls = f}
SeS,; SeS,

Note that because any two complete minterms tg and t7, for S # T, are incompatible,
then necessarily |ts V tr| = |ts| + |tr|. Thus |tg V7| > € if and only if there exist
{1,0, € Nsuch that £, + £, = € and |ts| > €y, |t7]| > (>, respectively.

Notice that, restricting the sets of predicates in S; to subsets of P(¢), instead of
the entire set of predicates, allows to apply Proposition 1 and reduce the number of
complete minterm to be considered. That is, whenever possible, we write each minterm
Nier ltil 2 G AN jeu |tj| < ujinthe DNF of ¢ as y; A... Ay, such that P(y;) N\P(y;) = 0
forall 1 <i < j < k. In practice, this optimisation turns out to be quite effective, as
shown by the small execution times of our test cases, reported in Sect. 5.

The second step is building, for each conjunction C = A{ls < |t;<“”| A |z§‘“’) | < ug |
S C P(¢)}8, as above, a positive formula C®, that preserves its set of minimal models
[CT¥. The generalization to arbitrary boolean combinations of cardinality constraints
is a direct consequence of Proposition 1. Let L*(¢) (resp. £ (¢)) be the set of positive
boolean combinations of predicate symbols p € P*(¢) (resp. —p, where p € P~ (¢)).
Further, for a complete minterm #¢, we write £ * (#5™) for the conjunction of the positive
(negative) literals in tg’. Then, we define:

C® E A il 2 Spor b5 1T € LD ANITI< g us [ 7€ L)

It is not hard to see that C® is a positive MIL formula, because:

7 The constraints |f| < u are dealt with as =(jf| > u + 1).
8 Missing lower bounds £5 are replaced with 0 and missing upper bounds us with co.
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— foreach T € L*(¢), we have |r| > k = 3i; ... iy . distinct(@y, ..., i) A /\'j‘-:1 7(j) and
— for each 7 € L7(¢), we have |r| < k = Vij... Vi . distinct(iy, ..., iy1) —
i1 (i)

The following lemma proves that the above definition meets the second requirement of
positivation operators, concerning the preservation of minimal models.

Lemma 6. Given P a finite set of monadic predicate symbols, {€s € N}gcp and {us €
NU {oo}}scp sets of constants, for any conjunction C = N{s < |t§|/\|t’s’| <ug|S CP,
we have C =+ C®.

Example 4 (contd. from Example 3).

Consider the first minterm of the DNF of the cardinality constraint obtained by
quantifier elimination in Example 3, from the system in Fig. 1b. The result of positiva-
tion for this minterm is given below:

(~rA=sAWA=U SOAJUA-W<OAT<W)®=1<|uAw

Intuitively, the negative literals —r and —s may safely disappear, because no minimal
model will assign r or s to true. Further, the constraints [w A —u| < 0 and [u A =w| < 0
are equivalent to the fact that, in any structure 7 = (21, v,t), we must have ¢«(u) = «(w).
Finally, because |w| > 1, then necessarily |u A w| > 1.

Similarly, the result of positivation applied to the second conjunct of the DNF car-
dinality constraint corresponding to the system in Fig. 3 is given below:

Q<WAWA=u <TAuA-W<0)®=2<|wAl<uAw

Here, the number of elements in w is at least 2 and, in any structure 7 = (U, v,1),
we must have ((#) C «(w) and at most one element in ¢«(w) \ t(u#). Consequently, the
intersection of the sets ¢(«) and ((w) must contain at least one element, i.e. lu A w| > 1.

4 Proving Deadlock Freedom of Parametric Systems

We have gathered all the ingredients necessary for checking deadlock freedom of para-
metric systems, using our method based on trap invariant generation (Fig.4). In par-
ticular, we derive a trap constraint @(I") directly from the interaction formula I', both
of which are written in MIL. Second, we compute a positive formula that preserves the
set of minimal models of @(I") A Init(S), by first converting the MIL formula into a
quantifier-free cardinality constraint, using quantifier elimination, and deriving a posi-
tive MIL formula from the latter.

The conjunction between the dual of this positive formula and the formula A(I") that
defines the deadlock states is then checked for satisfiability. Formally, given a paramet-
ric system S, with an interaction formula I" written in the form (1), the MIL formula
characterizing the deadlock states of the system is the following:

def

AT) E iy Mig o [V =pili) v VR iy gy A=)

We state a sufficient verification condition for deadlock freedom in the parametric case:
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Monadic Interaction Logic Cardinality Constraints

= o) Anit(S) }i% O(I) A Init(S)

(trap constraints)

positivation

‘ [O) A Init(S)1? ‘

‘9 dual

‘ (16t A i $)1%)”

(trap invariant)

L] AD) }i»‘ AD)

(deadlock states) (deadlock-freedom condition)

unsat /
smt-checking| deadlock-free

(CVC4)

sat /
potential deadlock

Fig. 4. Verification of parametric component-based systems

Corollary 2. A parametric system S =(C',...,C",M, I') is deadlock-free if
(O A Mit(S)®) A AT) - L

The satisfiability check is carried out using the conversion to cardinality constraints
via quantifier elimination Sect.3.1 and an effective set theory solver for cardinality
constraints, implemented in the CVC4 SMT solver [6].

5 Experimental Results

To assess our method for proving deadlock freedom of parametric component-based
system, we ran a number of experiments on systems with a small numbers of rather
simple component types, but with nontrivial interaction patterns, given by MIL for-
mulae. The task-sem i/n examples, i = 1,2, 3, are generalizations of the parametric
Task-Semaphore example depicted in Fig. 1b, in which n Tasks synchronize using n
Semaphores, such that i Tasks interact with a single Semaphore at once, in a multiparty
rendez-vous. In a similar vein, the broadcast i/n examples, i = 2, 3 are generalizations
of the system in Fig. 3, in which i out of n Workers engage in rendez-vous on the b
port, whereas all the other stay idle—here idling is modeled as a broadcast on the a
ports. Finally, in the sync i/n examples, i = 1,2, 3, we consider systems composed of n
Workers (Fig. 1b) such that either i out of n instances simultaneously interact on the b
ports, or all interact on the f ports. Notice that, for i = 2, 3, these systems have a dead-
lock if and only if n # O mod i. This is because, if n = m mod i, for some 0 < m < i,
there will be be m instances that cannot synchronize on their b port, in order to move
from w to u, in order to engage in the f broadcast.

All experiments were carried out on a Intel(R) Xeon(R) CPU @ 2.00 GHz virtual
machine with 4 GB of RAM. Table I shows separately the times needed to generate
the proof obligations (trap invariants and deadlock states) from the interaction formulae
and the times needed by CVC4 1.7 to show unsatisfiabilty or come up with a model. All
systems considered, for which deadlock freedom could not be shown using our method,
have a real deadlock scenario that manifests only under certain modulo constraints on
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Table 1. Benchmarks

example interaction formula t-gen | t-smt |result
task-sem 1/n |Aidji. a(@)) A b(j1) V Fidjr. e(D) A f(1) 22 ms |20 ms | unsat
task-sem 2/n |3idjija. j1 # jo Aa(i) Ab(j1) Ab(j2) V 34 ms |40 ms| unsat

Aidj1dja. j1 # ja Ael@) A fG1) A f(G2)
task-sem 3/n |3idj13jr3 3. distinct(jy, jo, j3) A a(@) A b(j1) A b(j2) AD(j3) 73 ms |40 ms | unsat
didj13j23 3. distinct(ji, ja, j3) A e(@) A f(j1) A f(2) A f(j3)

broadcast 2/n|di;diz.iy # i2 A b(iy) A b(ix) A 14 ms |20 ms | unsat
Vjj#itAj#i —a(j) VIi.fQG)
broadcast 3/n|3i; Air dis.distinct(iy, in, i3) A b(i1) A b(iy) A b(iz) A 409 ms |20 ms | unsat
Vjij#EiuANj#ELANj#EIZ—a(j) V ifG)
sync 1/n Fi.b(Q) \V Vi f() Sms |20 ms|unsat
sync 2/n i1 Tip. iy #ix A1) AD(i2) V Vi.f(i) 7ms |50ms| sat
sync 3/n iy Fip i3 distinct(iy, iz, i3) A b(i1) A b(ix) A b(i3) \/ Yi.f(i) 11 ms |[40ms| sat

the number n of instances. These constraints cannot be captured by MIL formulae, or,
equivalently by cardinality constraints, and would require cardinality constraints of the
form |tf| = n mod m, for some constants n,m € N.

6 Conclusions

This work is part of a lasting research program on BIP linking two work directions:
(1) recent work on modeling architectures using interaction logics, and (2) older work
on verification by using invariants. Its rationale is to overcome as much as possible
complexity and undecidability issues by proposing methods which are adequate for the
verification of essential system properties.

The presented results are applicable to a large class of architectures characterized
by the MIL. A key technical result is the translation of MIL formulas into cardinality
constraints. This allows on the one hand the computation of the MIL formula character-
izing the minimal trap invariant. On the other hand, it provides a decision procedure for
MIL, that leverages from recent advances in SMT, implemented in the CVC4 solver [6].
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Abstract. Reasoning about the correctness of parallel and distributed
systems requires automated tools. By now, the mCRL2 toolset and lan-
guage have been developed over a course of more than fifteen years. In
this paper, we report on the progress and advancements over the past six
years. Firstly, the mCRL2 language has been extended to support the
modelling of probabilistic behaviour. Furthermore, the usability has been
improved with the addition of refinement checking, counterexample gen-
eration and a user-friendly GUI. Finally, several performance improve-
ments have been made in the treatment of behavioural equivalences.
Besides the changes to the toolset itself, we cover recent applications
of mCRL2 in software product line engineering and the use of domain
specific languages (DSLs).

1 Introduction

Parallel programs and distributed systems become increasingly common. This is
driven by the fact that Dennard’s scaling theory [17], stating that every new pro-
cessor core is expected to provide a performance gain over older cores, does not
hold any more, and instead performance is to be gained from exploiting multiple
cores. Consequently, distributed system paradigms such as cloud computing have
grown popular. However, designing parallel and distributed systems correctly is
notoriously difficult. Unfortunately, it is all too common to observe flaws such
as data loss and hanging systems. Although these may be acceptable for many
non-critical applications, the occasional hiccup may be impermissible for critical
applications, e.g., when giving rise to increased safety risks or financial loss.
The mCRL2 toolset is designed to reason about concurrent and distributed
systems. Its language [27] is based on a rich, ACP-style process algebra and
has an axiomatic view on processes. The data theory is rooted in the theory of
abstract data types (ADTs). The toolset consists of over sixty tools supporting
visualisation, simulation, minimisation and model checking of complex systems.

© The Author(s) 2019
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In this paper, we present an overview of the mCRL2 toolset in general,
focussing on the developments from the past six years. We first present a cursory
overview of the mCRL2 language, and discuss the recent addition of support for
modelling and analysing probabilistic processes.

Behavioural equivalences such as strong and branching bisimulation are used
to reduce and compare state spaces of complex systems. Recently, the complex-
ity of branching bisimulation has been significantly improved from O(mn) to
O(m(log|Act| + logn)), where m is the number of transitions, n the number
of states, and Act the set of actions. This was achieved by implementing the
new algorithm by Groote et al. [24]. Additionally, support for checking (weak)
failures refinement and failures divergence refinement has been added.

Model checking in mCRL2 is based on parameterised boolean equation sys-
tems (PBES) [33] that combine information from a given mCRL2 specification
and a property in the modal p-calculus. Solving the PBES answers the encoded
model checking problem. Recent developments include improved static analysis
of PBESs using liveness analysis, and solving PBESs for infinite-state systems
using symbolic quotienting algorithms and abstraction. One of the major features
recently introduced is the ability to generate comprehensive counterexamples in
the form of a subgraph of the original system.

To aid novice users of mCRL2, an alternative graphical user-interface (GUI),
mcrl2ide, has been added, that contains a text editor to create mCRL2 specifica-
tions, and provides access to the core functionality of mCRL2 without requiring
the user to know the interface of each of the sixty tools. The use of the language
and tools is illustrated by means of a selection of case studies conducted with
mCRL2. We focus on the application of the tools as a verification back-end for
domain specific languages (DSLs), and the verification of software product lines.

The mCRL2 toolset can be downloaded from the website www.mcrl2.org.
This includes binaries as well as source code packages'. To promote external
contributions, the source code of mCRL2 and the corresponding issue tracker
have been moved to GitHub.? The mCRL2 toolset is open source under the
permissive Boost license, that allows free use for any purpose. Technical docu-
mentation and a user manual of the mCRL2 toolset, including a tutorial, can be
found on the website. An extensive introduction to the mCRL2 language can be
found in the textbook Modeling and analysis of communicating systems [27].

The rest of the paper is structured as follows. Section 2 introduces the basics
of the mCRL2 language and Sect. 3 its probabilistic extension. In Sect. 4, we dis-
cuss several new and improved tools for various behavioural relations. Section 5
gives an overview of novel analysis techniques for PBESs, while Sect. 6 introduces
mCRL2’s improved GUI and Sect. 7 discusses a number of applications. Related
work is discussed in Sects. 8 and 9 presents a conclusion and future plans.

! The source code is also archived on https://doi.org/10.5281/zenodo.2555054.
2 https://github.com/mCRIL2org/mCRL2.
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2 The mCRL2 Language and Workflow

The behavioural specification language mCRL2 [27] is the successor of pCRL
(micro Common Representation Language [28]) that was in turn a response to
a language called CRL (Common Representation Language) that became so
complex that it would not serve a useful purpose.

sort Content = struct bad_data | data, | datas ;
act read, deliver, get, put, pass_on : Content ;

proc Filter =
D e Content 9€t(c)-(c = bad_data — Filter o put(c) - Filter) ;
Queue(q : List(Content)) =
> eiContens. T€0A(C) - Queue(c> q) +
q % [] — deliver(rhead(q)) - Queue(rtail(q));

init v{get,delwe’r‘,pass,on} (F{put|7'ead~>pass,un} (Fllter H Q’LLG’LL@(H))) )

Fig. 1. A filter process communicating with an infinite queue in mCRL2.

The languages pCRL and mCRL2 are quite similar combinations of process
algebra in the style of ACP [8] together with equational abstract data types [19].
A typical example illustrating most of the language features of mCRL2 is given
in Fig. 1, which shows a filter process (Filter) that iteratively reads data via an
action get and forwards it to a queue using the action put if the data is not
bad. The queue (Queue) is infinitely sized, reading data via the action read and
delivering data via the action deliver. The processes are put in parallel using the
parallel operator ||. The actions put and read are forced to synchronise into the
action pass_on using the communication operator I' and the allow operator V.

The language mCRL2 only contains a minimal set of primitives to express
behaviour, but this set is well chosen such that behaviour of communicating sys-
tems can be easily expressed. Both pCRL and mCRL2 allow to express systems
with time, using positive real time tags to indicate when an action takes place.
Recently the possibility has been added to express probabilistic behaviour in
mCRL2, which will be explained in Sect. 3.

The differences between pCRL and mCRL2 are minor but significant. In
mCRL2 the if-then-else is written as ¢c—p o g (was p<crq). mCRL2 allows for
multi-actions, e.g., a|b|c expresses that the actions a, b and ¢ happen at the
same time. mCRL2 does not allow multiple actions with the same time tag
to happen consecutively (uCRL does, as do most other process specification
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formalisms with time). Finally, mCRL2 has built-in standard datatypes, mecha-
nisms to allow to specify datatypes far more compactly, and it allows for function
datatypes, including lambda expressions, as well as arbitrary sets and bags.

The initial purpose of yCRL was to have a mathematical language to model
realistic protocols and distributed systems of which the correctness could be
proven manually using process algebraic axioms and rules, as well as the equa-
tions for the equational data types. The result of this is that mCRL2 is equipped
with a nice fundamental theory as well as highly effective proof methods [29,30],
which have been used, for instance, to provide a concise, computer checked proof
of the correctness of Tanenbaum’s most complex sliding window protocol [1].

When the language nCRL began to be used for specifying actual systems [20],
it became obvious that such behavioural specifications are too large to analyse by
hand and tools were required, a toolset was developed. It also became clear that
specifications of actual systems are hard to give without flaws, and verification
is needed to eliminate those flaws. In the early days verification had the form of
proving that an implementation and a specification were (branching) bisimilar.

Often it is more convenient to prove properties about aspects of the
behaviour. For this purpose mCRL2 was extended with a modal logic, in the
form of the modal p-calculus with data and time. A typical example of a for-
mula in modal logic is the following:

vX (n:N = 0).Vm : N.[enter(m)] X (n+m)A
Vm : N.[extract(m)](m < n A X(n—m))

which says that the amount extracted using actions eztract can never exceed
the cumulative amount entered via the action enter. The modal p-calculus with
data is far more expressive than languages such as LTL and CTL*, which can
be mapped into it [13].

ltsconvert
state space generation

ltscompare

1ps2lt 3
linearisation pesite yes/no
mcrl22lps
1ps2pbes
pbessolve es/no
PBES bt
L= (+evidence LPS)

| p~calculus formula

Fig. 2. The mCRL2 model checking workflow

Verification of modal formulae is performed through transformations to lin-
ear process specifications (LPSs) and parameterised boolean equation systems
(PBESs) [25,33]. See Fig.2 for the typical model checking workflow. An LPS
is a process in normal form, where all state behaviour is translated into data
parameters. An LPS essentially consists of a set of condition-action-effect rules
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saying which action can be done in which state, and as such is a symbolic rep-
resentation of a state space. A PBES is constructed using a modal formula and
a linear process. It consists of a parameterised sequence of boolean fixed point
equations. A PBES can be solved to obtain an answer to the question whether the
mCRL2 specification satisfies the supplied formula. For more details on PBESs
and the generation of evidence, refer to Sect. 5.

Whereas an LPS is a symbolic description of the behaviour of a system, a
labelled transition system (LTS), makes this behaviour explicit. An LTS can be
defined in the context of a set of action labels. The LTS itself consists of a set
of states, an initial state, and a transition relation between states where each
transition is labelled by an action. The mCRL2 toolset contains the 1ps21lts
tool to obtain the LTS from a given LPS by means of state space exploration.
The resulting LTS contains all reachable states of this LPS and the transition
relation defining the possible actions in each state. The mCRL2 toolset provides
tools for visualising and reducing LTSs and also for comparing LTSs in a pairwise
manner. For more details on reducing and comparing LTSs, refer to Sect. 4.

3 Probabilistic Extensions to mCRL2

A recent addition to the mCRL2 language is the possibility to specify proba-
bilistic processes using the construct dist x:D|[dist(z)].p(x) which behaves as
the process p(x) with probability dist(z). The distribution dist may be discrete
or continuous. For example, a process describing a light bulb that fails according
to a negative exponential distribution of rate A is described as

dist rR.[if (r>0, Ae ", 0)]. fail<r

where fail<r is the notation for the action fail that takes place at time r.

The modelling of probabilistic behaviour with the probabilistic extension of
mCRL2 can be rather insightful as advocated in [32]. There it is illustrated for
the Monty Hall problem and the so-called “problem of the lost boarding pass”
how strong probabilistic bisimulation and reduction modulo probabilistic weak
trace equivalence can be applied to visualise the probabilistic LTS (PLTS) of the
underlying probabilistic process as well as to establish the probability of reaching
a target state (or set of states). We illustrate this by providing the description
and state space of the Monty Hall problem here.

In the Monty Hall problem, there are three doors, one of which is hiding a
prize. A player can select a door. Then one of the remaining doors that does not
hide the prize is opened. The player can then decide to select the other door.
If he does so, he will get the prize with probability % The action prize(true)
indicates that a prize is won. The action prize(false) is an indication that no
prize is obtained. A possible model in mCRL2 is given below. In this model the
player switches doors. So, the prize is won if the initially selected door was not
the door with the prize.
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prize(false) prize(true)

Fig. 3. The non-reduced and reduced state space of the Monty Hall problem. At the
left the label v* abbreviates prize(true) and x stands for prize(false)

sort Doors = struct doory | doors | doors;
init dist door_with_prize : Doors [1/3].
dist initially_selected_door : Doors[1/3].
prize(initially _selected _door % door_with_prize)-§;

The generated state space for this model is given in Fig.3 at the left. From
probabilistic mCRL2 processes probabilistic transition systems can be generated,
which can be reduced modulo strong probabilistic bisimulation [26] (see the next
section). The reduced transition system is provided at the right, and clearly
shows that the prize is won with probability %

Moreover, modal mu-calculus formulae yielding a probability, i.e. a real num-
ber, can be evaluated invoking probabilistic counterparts of the central tools in
the toolset. For the Monty Hall model the modal formula (prize(true))true
will evaluate to the probability % The tool that verified this modal formula is
presented in [10]. Although the initial results are promising, the semantic and
axiomatic underpinning of the process theory for probabilities is demanding.

4 Behavioural Relations

Given two LTSs, the 1tscompare tool can check whether they are related accord-
ing to one of a number of equivalence and refinement relations. Additionally, the
ltsconvert tool can reduce a given LTS modulo an equivalence relation. In the
following subsections the recently added implementations of several equivalence
and refinement relations are described.

4.1 Equivalences

The 1tscompare tool can check simulation equivalence, and (weak) trace equiv-
alence between LTSs. In the latest release an algorithm for checking ready sim-
ulation was implemented and integrated into the toolset [23]. Regarding bisimu-
lations, the tool can furthermore check strong, branching and weak bisimulation
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between LTSs. The latter two are sensitive to so-called internal behaviour, rep-
resented by the action 7. Divergence-preserving variants of these bisimulations
are supported, which take the ability to perform infinite sequences of internal
behaviour into account. The above mentioned equivalences can also be used by
the 1tsconvert tool.

Recently, the Groote/Jansen/Keiren/Wijs algorithm (GJKW) for branching
bisimulation [24], with complexity O(m(log|Act| + logn)), was implemented.
When tested in practice, it frequently demonstrates performance improvements
by a factor of 10, and occasionally by a factor of 100 over the previous algorithm
by Groote and Vaandrager [31].

The improved complexity is the result of combining the process the smaller
half principle [35] with the key observations made by Groote and Vaandrager
regarding internal transitions [31]. GJKW uses partition refinement to identify
all classes of equivalent states. Repeatedly, one class (or block) B is selected to
be the so-called splitter, and each block B’ is checked for the reachability of B,
where internal behaviour should be skipped over. In case B is reachable from
some states in B’ but not from others, B’ needs to be split into two subblocks,
separating the states from which B can and cannot be reached. Whenever a
fixed-point is reached, the obtained partition defines the equivalence relation.

GJKW applies process the smaller half in two ways. First of all, it is ensured
that each time a state s is part of a splitter B, the size of B, in terms of number
of states, is at most half the size of the previous splitter in which s resided. To do
this, blocks are partitioned in constellations. A block is selected as splitter iff its
size is at most half the number of states in the constellation in which it resides.
When a splitter is selected, it is moved into its own, new, constellation, and
when a block is split, the resulting subblocks remain in the same constellation.

Second of all, it has to be ensured that splitting a block B’ takes time pro-
portional to the smallest resulting subblock. To achieve this, two state selection
procedures are executed in lockstep, one identifying the states in B’ that can
reach the splitter, and one detecting the other states. Once one of these proce-
dures has identified all its states, those states can be split off from B’.

Reachability checking is performed efficiently by using the notion of bottom
state [31], which is a state that has no outgoing internal transitions leading to
a state in the same block. It suffices to check whether any bottom state in B’
can reach B. Hence, it is crucial that for each block, the set of bottom states is
maintained during execution of the algorithm.

GJKW is very complicated due to the amount of book keeping needed to
achieve the complexity. Among others, a data structure by Valmari, called refin-
able partition [46] is used, together with three copies of all transitions, structured
in different ways to allow fast retrieval in the various stages of the algorithm.

Besides checking for branching bisimulation, GJKW is used as a basis for
checking strong bisimulation (in which case it corresponds to the Paige-Tarjan
algorithm [41]) and as a preprocessing step for checking weak bisimulation.

For the support of the analysis of probabilistic systems, a number of prelim-
inary extensions have been made to the mCRL2 toolset. In particular, a new
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algorithm has been added to reduce PLTSs — containing both non-deterministic
and probabilistic choice [44] — modulo strong probabilistic bisimulation. This
new Paige-Tarjan style algorithm, called GRV [26] and implemented in the tool
ltspbisim, improves upon the complexity of the best known algorithm so far
by Baier et al. [2]. The GRV algorithm was inspired by work on lumping of
Markov Chains by Valmari and Franceschinis [47] to limit the number of times a
probabilistic transition needs to be sorted. Under the assumption of a bounded
fan-out for probabilistic states, the time complexity of GRV is O(n, logn,) with
np equal to the number of probabilistic transitions and n, being the number of
non-deterministic states in a PLTS.

4.2 Refinement

In model checking there is typically a single model on which properties, defined in
another language, are verified. An alternative approach that can be employed is
refinement checking. Here, the correctness of the model is verified by establishing
a refinement relation between an implementation LTS and a specification LTS.
The chosen refinement relation must be strong enough to preserve the desired
properties of the model, but also weak enough to allow many valid implementa-
tions.

For refinement relations the 1tscompare tool can check the asymmetric vari-
ants of simulation, ready simulation and (weak) trace equivalence between LT'Ss.
In the latest release, several algorithms have been added to check (weak) trace,
(weak) failures and failures-divergences refinement relations based on the algo-
rithms introduced in [48]. We remark that weak failures refinement is known
as stable failures refinement in the literature. Several improvements have been
made to the reference algorithms and the resulting implementation has been
successfully used in practice, as described in Sect. 7.1.

The newly introduced algorithms are based on the notion of antichains. These
algorithms try to find a witness to show that no refinement relation exists. The
antichain data structure keeps track of the explored part of the state space and
assists in pruning other parts based on an ordering. If no refinement relation
exists, the tool provides a counterexample trace to a violating state. To further
speed up refinement checking, the tool applies divergence-preserving branching
bisimulation reduction as a preprocessing step.

5 Model Checking

Behavioural properties can be specified in a first-order extension of the modal
p-calculus. The problem of deciding whether a p-calculus property holds for a
given mCRL2 specification is converted to a problem of (partially) solving a
PBES. Such an equation system consists of a sequence of parameterised fix-
point equations of the form (0X(di:D1,...,d,:Dy,) = ¢), where o is either a
least (u) or greatest (v) fixpoint, X is an n-ary typed second-order recursion
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variable, each d; is a parameter of type D; and ¢ is a predicate formula (tech-
nically, a first-order formula with second-order recursion variables). The entire
translation is syntax-driven, i.e., linear in the size of the linear process speci-
fication and the property. We remark that mCRL2 also comes with tools that
encode decision problems for behavioural equivalences as equation system solv-
ing problems; moreover, mCRL2 offers similar translations operating on labelled
transition systems instead of linear process specifications.

5.1 Improved Static Analysis of Equation Systems

The parameters occurring in an equation system are derived from the parameters
present in process specifications and first-order variables present in p-calculus
formulae. Such parameters typically determine the set of second-order variables
on which another second-order variable in an equation system depends. Most
equation system solving techniques rely on explicitly computing these depen-
dencies. Obviously, such techniques fail when the set of dependencies is infinite.
Consider, for instance the equation system depicted below:

vX (i, kEN)=(i#A1VX(1,k+1))AVm:N. Y(2,k+m)
pY (i, k:N)=(k<10Vi=2)A(i #2VY(1,1))

Observe that the solution to X (1,1), which is true, depends on the solution to
X(1,2), but also on the solution to Y (2,1 4+ m) for all m, see Fig.4. Conse-
quently, techniques that rely on explicitly computing the dependencies will fail
to compute the solution to X(1,1).

Y (1,1)

Fig. 4. Dependencies of second-order recursion variables on other second-order recur-
sion variables in an equation system.

Not all parameters are ‘used’ equally in an equation system: some parameters
may only influence the truth-value of a second-order variable, whereas others
may also influence whether an equation depends on second-order variables. For
instance, in our example, the parameter ¢ of X determines when there is a
dependency of X on X, and in the equation for Y, parameter ¢ determines when
there is a dependency of Y on Y. The value for parameter k, however, is only of
interest in the equation for Y, where it immediately determines its solution when
i # 2: it will be true when k < 10 and false otherwise. For ¢ = 2, the value of k
is immaterial. As suggested by the dependency graph in Fig. 4, for X (1, 1), the
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only dependency that is ultimately of consequence is the dependency on Y'(1,1),
i.e., k = 1; other values for k& cannot be reached.

The techniques implemented in the pbesstategraph tool, and which are
described in [37], perform a liveness analysis for data variables, such as k in
our example, and reset these values to default values when their actual value
no longer matters. To this end, a static analysis determines a set of control
flow parameters in an equation system. Intuitively, a control flow parameter
is a parameter in an equation for which we can statically detect that it can
assume only a finite number of distinct values, and that its values determine
which occurrences of recursion variables in an equation are relevant. Such control
flow parameters are subsequently used to approximate the dependencies of an
equation system, and compute the set of data variables that are still live. As
soon as a data variable switches from live to not live, it can be set to a default,
pre-determined value.

In our example, parameter i in equations X and Y is a control flow parameter
that can take on value 1 or 2. Based on a liveness analysis one can conclude that
the second argument in both occurrences of the recursion variable X in the
equation for X can be reset, leading to an equation system that has the same
solution as the original one:

vX(i,k:N) = (i #1V X(1,1)) A¥m:N. Y(2,1)
pY (i, k:N) = (k< 10Vi=2) A (i £ 2VY(1,1))

Observe that there are only a finite number of dependencies in the above equation
system, as the universally quantified variable m no longer induces an infinite
set of dependencies. Consequently, it can be solved using techniques that rely
on computing the dependencies in an equation system. The experiments in [37]
show that pbesstategraph in general speeds up solving when it is able to reduce
the underlying set of dependencies in an equation system, and when it is not
able to do so, the overhead caused by the analysis is typically small.

5.2 Infinite-State Model Checking

Two new experimental tools, pbessymbolicbisim [40] and pbesabsinthe [16],
support model checking of infinite-state systems. These are two of the few sym-
bolic tools in the toolset. Regular PBES solving techniques, such as those imple-
mented in pbessolve, store each state explicitly, which prohibits the analysis of
infinite-state systems. In pbessymbolicbisim, (infinite) sets of states are repre-
sented using first-order logic expressions. Instead of straightforward exploration,
it performs symbolic partition refinement based on the information about the
underlying state space that is contained in the PBES. The approximation of the
state space is iteratively refined, until it equals the bisimulation quotient of that
state space. Moreover, since the only goal of this tool is to solve a PBES i.e. give
the answer true or false, additional abstraction techniques can be very coarse.
As a result, the tool often terminates before the bisimulation quotient has been
fully computed.
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The second tool, pbesabsinthe, requires the user to specify an abstraction
mapping manually. If the abstraction mapping satisfies certain criteria, it will
be used to generate a finite underlying graph structure. By solving the graph
structure, the tool obtains a solution to the PBES under consideration.

The theoretical foundations of pbessymbolicbisim and pbesabsinthe are
similar: pbessymbolicbisim computes an abstraction based on an equiva-
lence relation and pbesabsinthe works with preorder-based abstractions. Both
approaches have their own strengths and weaknesses: pbesabsinthe requires
the user to specify an abstraction manually, whereas pbessymbolicbisim runs
fully automatically. However, the analysis of pbessymbolicbisim can be very
costly for larger models. A prime application of pbessymbolicbisim and
pbesabsinthe is the verification of real-time systems.

5.3 Evidence Extraction

One of the major new features of the mCRL2 toolset that, until recently, was
lacking is the ability to generate informative counterexamples (resp. witnesses)
from a failed (resp. successful) verification. The theory of evidence generation
that is implemented is based on that of [15], which explains how to extract diag-
nostic evidence for p-calculus formulae via the Least Fized-Point (LFP) logic.
The diagnostic evidence that is extracted is a subgraph of the original labelled
transition system that permits to reconstruct the same proof of a failing (or suc-
cessful) verification. Note that since the input language for properties can encode
branching-time and linear-time properties, diagnostic evidence cannot always be
presented in terms of traces or lassos; for linear-time properties, however, the
theory permits to generate trace- and lasso-shaped evidence.

A straightforward implementation of the ideas of [15] in the setting of equa-
tion systems is, however, hampered by the fact that the original evidence theory
builds on a notion of proof graph that is different from the one developed in [14]
for equation systems. In [49], we show that these differences can be overcome by
modifying the translation of the model checking problem as an equation system
solving problem. This new translation is invoked by passing the flag ‘-¢’ to the
tool 1ps2pbes. The new equation system solver pbessolve can be directed to
extract and store the diagnostic evidence from an equation system by passing
the linear process specification along with this equation system; the resulting
evidence, which is stored as a linear process specification, can subsequently be
simulated, minimised or visualised for further inspection.

Figure 5, taken from [49], gives an impression of the shape of diagnostic evi-
dence that can be generated using the new tooling. The labelled transition sys-
tem that is depicted presents the counterexample to a formula for the CERN job
storage management system [43] that states that invariantly, each task that is
terminated is inevitably removed. Note that this counterexample is obtained by
minimising the original 142-state large evidence produced by our tools modulo
branching bisimulation.
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Fig. 5. Counterexamples for the requirement that each task in a terminating state is
eventually removed for the Storage Management Systems. We omitted all edge labels,
and the dashed line indicates a lengthy path through a number of other states (not
depicted), whereas the dotted transitions are 3D artefacts.

6 User-Friendly GUI

The techniques explained in this paper may not be easily accessible to users that
are new to the mCRL2 toolset. This is because the toolset is mostly intended
for scientific purposes; at least initially, not much attention had been spent on
user friendliness. As the toolset started to get used in workshops and academic
courses however, the need for this user friendliness increased. This gave rise to
the tools mcrl2-gui, a graphical alternative to the command line usage of the
toolset, and mcrl2xi, an editor for mCRL2 specifications. However, to use the
functionality of the toolset it was still required to know about the individual
tools. For instance, to visualise the state space of an mCRL2 specification, one
needed to manually run the tools mcr1221ps, 1ps21lts and ltsgraph.

As an alternative, the tool mcrl2ide has been added to the mCRL2 toolset.
This tool provides a graphical user interface with a text editor to create and edit
mCRL2 specifications and it provides the core functionality of the toolset such
as visualising the (reduced) state space and verifying properties. The tools that
correspond to this functionality are abstracted away from the user; only one or
a few button clicks are needed.

See Fig.6 for an instance of mcrl2ide with an open project, consisting of
an mCRL2 specification and a number of properties. The UI consists of an
editor for mCRL2 specifications, a toolbar at the top, a dock listing defined
properties on the right and a dock with console output at the bottom. The
toolbar contains buttons for creating, opening and saving a project and buttons
for running tools. The properties dock allows verifying each single property on
the given mCRL2 specification, editing/removing properties and showing the
witness/counterexample after verification.

7 Applications

The mCRL2 toolset and its capabilities have not gone unnoticed. Over the years
numerous initiatives and collaborations have sprouted to apply its functionality.

7.1 mCRL2 as a Verification Back-End

The mCRL2 toolset enjoys a sustained application in industry, often in the con-
text of case studies carried out by MSc or PhD students. Moreover, the mCRL2
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14 s2,r2,c2:
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16 r1_inf_often_enabled_taken c , m
17
18
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I read_then_eventually_send | | | [
21
22 proc
23 s (b:Bool) = sum d:D. rl(d).T(d,b);
24 T(d:D,b:Bool) = s2(d,b). (x6(b).S(!b)+(x6(!b)+x6(e)).T(d,E));
25
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27 (sum d:D.x3(d, !b)+r3(e)).s5(!b) .R(b);
28
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32
33 init
34 allow(irl,s4,c2,c3,c5,c6,1},
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37 )
38 ) | 6 >
Console & x

Parsing Simulation State Space Generation Verification

Saving result in pbes format... ~
##### SOLVING PBES #3###

Generating parity game...

Number of vertices in the structure graph: 593
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The property rl_inf_often_enabled taken on this specification evaluates to false

Fig. 6. An instance of mcrl2ide in Windows 10 with an mCRL2 specification of the
alternating bit protocol. The properties in the dock on the right are (from top to
bottom) true, false and not checked yet.

toolset is increasingly used as a back-end aiming at verification of higher-level
languages. Some of these applications are built on academic languages; e.g.,
in [22] the Algebra for Wireless Networks is translated to mCRL2, enabling
the verification of protocols for Mobile Ad hoc Networks and Wireless Mesh
Networks. Models written in the state-machine based Simple Language of Com-
municating Objects (SLCO) are translated to mCRL2 to verify shared-memory
concurrent systems and reason about the sequential consistency of automatically
generated multi-threaded software [42]. Others are targeting more broadly used
languages; e.g., in [39], Go programs are translated to mCRL2 and the mCRL2
toolset is used for model checking Go programs.

The use of mCRL2 in industry is furthermore driven by the current Formal
Model-Driven Engineering (FMDE) trend. In the FMDE paradigm, programs
written in a Domain-Specific Language (DSL) are used to generate both exe-
cutable code and verifiable models. A recent example is the commercial FMDE
toolset Dezyne developed by Verum, see [9], which uses mCRL2 to check for
livelocks and deadlocks, and which relies on mCRL2’s facilities to check for
refinement relations (see Sect.4.2) to check for interface compliance. Similar
languages and methodologies are under development at other companies. For
instance, ASML, one of the world’s leading manufacturers of chip-making equip-
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ment, is developing the Alias language, and Océ, a global leading company in
digital imaging, industrial printing and collaborative business services, is devel-
oping the OIL language. Both FMDE solutions build on mCRL2.

We believe the FMDE trend will continue in the coming years and that it
will influence the development of the toolset. For example, the use of refinement
checking in the Dezyne back-end has forced us to implement several optimisa-
tions (c¢f. Sect.4.2). Furthermore, machine-generated specifications are typically
longer and more verbose than handwritten specifications. This will require a
more efficient implementation of the lineariser — as implemented in mcr1221ps
— in the coming years.

7.2 Software Product Lines

A software product line (SPL) is a collection of systems, individually called prod-
ucts, sharing a common core. However, at specific points the products may show
slightly different behaviour dependent on the presence or absence of so-called
features. The overall system can be concisely represented as a featured transi-
tion system (FTS), an LTS with both actions and boolean expressions over a set
of features decorating the transitions (see [12]). If a product, given its features,
fulfils the boolean expression guarding the transition the transition may be taken
by the product. Basically, there are two ways to analyse SPLs: product-based
and family-based. In product-based analysis each product is verified separately;
in family-based model checking one seeks to verify a property for a group of
products, referred to as a family, as a whole.

Traditionally, dedicated model checkers are exploited for the verification of
SPLs. Examples of such SPL model checkers are SNIP and ProVeLines by the
team of [12] that are derived from SPIN. However, the mCRL2 toolset as-is,
without specific modifications, has also been used to compare product-based
vs. family-based model checking [3,5,7]. For this, the extension of the modal
p-calculus for the analysis of FTSes proposed in [4], that combines actions
and feature expressions for its modalities, was translated into the first-order
p-calculus [25], the property language of the mCRL2 toolset. As a result, verifi-
cation of SPLs can be done using the standard workflow for mCRL2, achieving
family-based model checking without a family-based model checker [18], with
running times slightly worse than, but comparable to those of dedicated tools.

8 Related Work

Among the many model checkers available, the CADP toolset [21] is the clos-
est related to mCRL2. In CADP, specifications are written in the LoTos NT
language, which has been derived from the E-LoTo0s ISO standard. Similar to
mCRL2, CADP relies on action-based semantics, i.e., state spaces are stored as
an LTS. Furthermore, the verification engine in CADP takes a p-calculus formula
as input and encodes it in a BES or PBES. However, CADP has limited sup-
port for p-calculus formulae with fixpoint alternation and, unlike mCRL2, does
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not support arbitrary nesting of fixpoints. Whereas the probabilistic analysis
tools for mCRIL2 are still in their infancy, CADP offers more advanced analy-
sis techniques for Markovian probabilistic systems. The user-license of CADP
is restrictive: CADP is not open source and a free license is only available for
academic use.

Another toolset that is based on process algebra is PAT [45]. This toolset has
native support for the verification of real-time specifications and implements on-
the-fly reduction techniques, in particular partial-order reduction and symmetry
reduction. PAT can perform model checking of LTL properties.

The toolset LTSMIN [36] has a unique architecture in the sense that it is
language-independent. One of the supported input languages is mCRL2. Thus,
the state space of an mCRL2 specification can also be generated using LTSMIN’s
high-performance multi-core and symbolic back-ends.

Well-known tools that have less in common with mCRL2 are SPIN [34],
NUSMYV [11], PRISM [38] and UPPAAL [6]. Each of these tools has its own
strengths. First of all, SPIN is an explicit-state model checker that incorporates
advanced techniques to reduce the size of the state space (partial-order reduction
and symmetry reduction) or the amount of memory required (bit hashing). SPIN
supports the checking of assertions and LTL formulae. Secondly, NUSMYV is a
powerful symbolic model checker that offers model checking algorithms such
as bounded model checking and counterexample guided abstraction refinement
(CEGAR). The tools PRISM and UPPAAL focus on quantitative aspects of
model checking. The main goal of PRISM is to analyse probabilistic systems,
whereas UPPA AL focusses on systems that involve real-time behaviour.

9 Conclusion

In the past six years many additions and changes have been made to the mCRL2
toolset and language to improve its expressivity, usability and performance.
Firstly, the mCRL2 language has been extended to enable modelling of prob-
abilistic behaviour. Secondly, by adding the ability to check refinement and to
do infinite-state model checking the mCRL2 toolset has become applicable in
a wider range of situations. Also, the introduction of the generation of coun-
terexamples and witnesses for model checking problems and the introduction of
an enhanced GUI has improved the experience of users of the mCRL2 toolset.
Lastly, refinements to underlying algorithms, such as those for equivalence reduc-
tions and static analyses of PBESs, have resulted in lowered running times when
applying the corresponding tools.

For the future, we aim to further strengthen several basic building blocks of
the toolset, in particular the term library and the rewriter. The term library is
responsible for storage and retrieval of terms that underlie mCRL2 data expres-
sions. The rewriter manipulates data expressions based on rewrite rules speci-
fied by the user. Currently, these two components have evolved over time but
are rather limitedly documented. It has proven to be difficult to revitalise the
current implementation or to make amendments to experiment with new ideas.
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For this, one of the aims is to investigate the benefits of multi-core algorithms,
expecting a subsequent speed-up for many other algorithms in the toolset.
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Abstract. Many transaction systems distribute, partition, and repli-
cate their data for scalability, availability, and fault tolerance. However,
observing and maintaining strong consistency of distributed and partially
replicated data leads to high transaction latencies. Since different appli-
cations require different consistency guarantees, there is a plethora of
consistency properties—f{rom weak ones such as read atomicity through
various forms of snapshot isolation to stronger serializability properties—
and distributed transaction systems (DTSs) guaranteeing such proper-
ties. This paper presents a general framework for formally specifying a
DTS in Maude, and formalizes in Maude nine common consistency prop-
erties for DTSs so defined. Furthermore, we provide a fully automated
method for analyzing whether the DTS satisfies the desired property for
all initial states up to given bounds on system parameters. This is based
on automatically recording relevant history during a Maude run and
defining the consistency properties on such histories. To the best of our
knowledge, this is the first time that model checking of all these proper-
ties in a unified, systematic manner is investigated. We have implemented
a tool that automates our method, and use it to model check state-of-
the-art DTSs such as P-Store, RAMP, Walter, Jessy, and ROLA.

1 Introduction

Applications handling large amounts of data need to partition their data for scal-
ability and elasticity, and need to replicate their data across widely distributed
sites for high availability and fault and disaster tolerance. However, guaran-
teeing strong consistency properties for transactions over partially replicated
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distributed data requires lot of costly coordination that results in long transac-
tion delays. Different applications require different consistency guarantees, and
balancing well the trade-off between performance and consistency guarantees is
key to designing distributed transaction systems (DTSs). There is therefore a
plethora of consistency properties for DT'Ss over partially replicated data—from
weak properties such as read atomicity through various forms of snapshot isola-
tion to strong serializability guarantees—and DTSs providing such guarantees.

DTSs and their consistency guarantees are typically specified informally and
validated only by testing; there is very little work on their automated formal
analysis (see Section 8). We have previously formally modeled and analyzed sin-
gle state-of-the-art industrial and academic DTSs, such as Google’s Megastore,
Apache Cassandra, Walter, P-Store, Jessy, ROLA, and RAMP, in Maude [14].

In this paper we present a generic framework for formalizing both DTSs and
their consistency properties in Maude. The modeling framework is very general
and should allow us to naturally model most DTSs. We formalize nine popular
consistency models in this framework and provide a fully automated method—
and a tool which automates this method—for analyzing whether a DTS specified
in our framework satisfies the desired consistency property for all initial states
with the user-given number of transactions, data items, sites, and so on.

In particular, we show how one can automatically add a monitoring mech-
anism which records relevant history during a run of a DTS specified in our
framework, and we define the consistency properties on such histories so that
the DTS can be directly model checked in Maude. We have implemented a tool
that uses Maude’s meta-programming features to automatically add the moni-
toring mechanism, that automatically generates all the desired initial states, and
that performs the Maude model checking. We have applied our tool to model
check state-of-the-art DTSs such as variants of RAMP, P-Store, ROLA, Walter,
and Jessy. To the best of our knowledge, this is the first time that model checking
of all these properties in a unified, systematic manner is investigated.

This paper is organized as follows. Section 2 provides background on rewrit-
ing and Maude. Section 3 gives an overview of the consistency properties that
we formalize. Section 4 presents our framework for modeling DTSs in Maude,
and Section 5 explains how to record the history in such models. Section 6 for-
mally defines consistency models as Maude functions on such recorded histories.
Section 7 briefly introduces our tool which automates the entire process. Finally,
Section 8 discusses related work and Section 9 gives some concluding remarks.

2 Rewriting Logic and Maude

Maude [14] is a rewriting-logic-based executable formal specification language
and high-performance analysis tool for object-based distributed systems.
A Maude module specifies a rewrite theory (X, E U A, R), where:

— XY is an algebraic signature; i.e., a set of sorts, subsorts, and function symbols.
— (X, EUA) is a membership equational logic theory [14], with E a set of possibly
conditional equations and membership axioms, and A a set of equational
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axioms such as associativity, commutativity, and identity, so that equational
deduction is performed modulo the axioms A. The theory (X, EU A) specifies
the system’s states as members of an algebraic data type.

— R is a collection of labeled conditional rewrite rules [I] : t — t' if cond,
specifying the system’s local transitions.

Equations and rewrite rules are introduced with, respectively, keywords eq,
or ceq for conditional equations, and rl and crl. The mathematical variables
in such statements are declared with the keywords var and vars, or can have
the form var:sort and be introduced on the fly. An equation f(t1,...,t,) =t
with the owise (“otherwise”) attribute can be applied to a subterm f(...) only
if no other equation with left-hand side f(us,...,u,) can be applied. Maude
also provides standard parameterized data types (sets, maps, etc.) that can
be instantiated (and renamed); for example, pr SET{Nat} * (sort Set{Nat} to
Nats) defines a sort Nats of sets of natural numbers.

A class declaration class C | att; : $1, ..., att, : s, declares a class
C of objects with attributes att, to att, of sorts s; to s,. An object instance of
class C' is represented as a term <O : C | atty : valy,..., att, : val, >, where

O, of sort 0id, is the object’s identifier, and where valy to val, are the current
values of the attributes att; to att,. A message is a term of sort Msg. A system
state is modeled as a term of the sort Configuration, and has the structure of
a multiset made up of objects and messages.

The dynamic behavior of a system is axiomatized by specifying each of its
transition patterns by a rewrite rule. For example, the rule (with label 1)

rl [1] : m(0,w)
<0:C| al : x, a2 : 0°, a3 : z >
=>
<0:Cl|lal:x+w,a2:0, a3 : z>
m’ (0’°,x)

defines a family of transitions in which a message m(0, w) is read and consumed
by an object 0 of class C, whose attribute al is changed to x + w, and a new
message m’ (0’ ,x) is generated. Attributes whose values do not change and do
not affect the next state, such as a3 and a2, need not be mentioned in a rule.
Maude also supports metaprogramming in the sense that a Maude specifi-
cation M can be represented as a term M (of sort Module), so that a module
transformation can be defined as a Maude function f : Module — Module.

Reachability Analysis in Maude. Maude provides a number of analysis methods,
including rewriting for simulation purposes, reachability analysis, and linear tem-
poral logic (LTL) model checking. In this paper, we use reachability analysis.
Given an initial state init, a state pattern pattern and an (optional) condition
cond, Maude’s search command searches the reachable state space from init in
a breadth-first manner for states that match pattern such that cond holds:

search [bound] init =>! pattern such that cond .
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where bound is an upper bound on the number of solutions to look for. The arrow
=>1 means that Maude only searches for final states (i.e., states that cannot be
further rewritten) that match pattern and satisfies cond. If the arrow is instead
=>* then Maude searches for all reachable states satisfying the search condition.

3

Transactional Consistency

Different applications require different consistency guarantees. There are there-
fore many consistency properties for DTSs on partially replicated distributed
data stores. This paper focuses on the following nine, which span a spectrum
from weak consistency such as read committed to strong consistency like serial-
izability:

1

Read committed (RC) [6] disallows a transaction! from seeing any uncom-
mitted or aborted data.

Cursor stability (CS) [16], widely implemented by commercial SQL systems
(e.g., IBM DB2 [1]) and academic prototypes (e.g., MDCC [21]), guarantees
RC and in addition prevents the lost update anomaly.

Read atomicity (RA) [5] guarantees that either all or none of a (distributed)
transaction’s updates are visible to other transactions. For example, if Alice
and Bob become friends on social media, then Charlie should not see that
Alice is a friend of Bob’s, and that Bob is not a friend of Alice’s.

Update atomicity (UA) [12,25] guarantees read atomicity and prevents the
lost update anomaly.

Snapshot isolation (SI) [6] requires a multi-partition transaction to read from
a snapshot of a distributed data store that reflects a single commit order of
transactions across sites, even if they are independent of each other: Alice
sees Charlie’s post before seeing David’s post if and only if Bob sees the two
posts in the same order. Charlie and David must therefore coordinate the
order of committing their posts even if they do not know each other.
Parallel snapshot isolation (PSI) [36] weakens SI by allowing different com-
mit orders at different sites, while guaranteeing that a transaction reads the
most recent version committed at the transaction execution site, as of the
time when the transaction begins. For example, Alice may see Charlie’s post
before seeing David’s post, even though Bob sees David’s post before Char-
lie’s post, as long as the two posts are independent of each other. Charlie and
David can therefore commit their posts without waiting for each other.
Non-monotonic snapshot isolation (NMSI) [4] weakens PSI by allowing a
transaction to read a version committed after the transaction begins: Alice
may see Bob’s post that committed after her transaction started executing.
Serializability (SER) [33] ensures that the execution of concurrent transac-
tions is equivalent to one where the transactions are run one at a time.
Strict Serializability (SSER) strengthens SER by enforcing the serial order
to follow real time.

A transaction is a user application request, typically consisting of a sequence of read

and/or write operations on data items, that is submitted to a (distributed) database.
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4 Modeling Distributed Transaction Systems in Maude

This section presents a framework for modeling in Maude DTSs that satisfy the
following general assumptions:

— We can identify and record “when”? a transaction starts executing at its
server /proxy and “when” the transaction is committed and aborted at the
different sites involved in its validation.

— The transactions record their read and write sets.

If a such a DTS is modeled in this framework, our tool can automatically model
check whether it satisfies the above consistency properties, as long as it can detect
the read and write sets and the above events: start of transaction execution, and
abort/commit of a transaction at a certain site. This section explains how the
system should be modeled so that our tool automatically discovers these events.
We make the following additional assumptions about the DTSs we target:

— The database is distributed across of a number of sites, or servers or replicas,
that communicate by asynchronous message passing. Data are partially repli-
cated across these sites: a data item may be replicated/stored at more than
one site. The sites replicating a data item are called that item’s replicas.

— Systems evolve by message passing or local computations. Servers communi-
cate by asynchronous message passing with arbitrary but finite delays.

— A client forwards a transaction to be executed to some server (called the
transaction’s executing server or prozy), which executes the transaction.

— Transaction execution should terminate in commit or abort.

4.1 Modeling DTSs in Maude

A DTS is modeled in an object-oriented style, where the state consists of a num-
ber of replica objects, each modeling a local database/server /site, and a number
of messages traveling between the replica objects. A transaction is modeled as
an object which resides inside the replica object executing the transaction.

Basic Data Types. There are user-defined sorts Key for data items (or keys) and
Version for versions of data items, with a partial order < on versions, with v <v’
denoting that v’ is a later version of v in <. We then define key-version pairs
<key ,version> and sets of such pairs, that model a transaction’s read and write
sets, as follows:

sorts Key Version KeyVersion .
op <_,_> : Key Version -> KeyVersion .
pr SET{KeyVersion} * (sort Set{KeyVersion} to KeyVersions)

2 Since we do not necessarily deal with real-time systems, this “when” may not denote
the real time, but when the event takes place relative to other events.
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To track the status of a transaction (on non-proxies, or remote servers) we
define a sort TxnStatus consisting of some transaction’s identifier and its status;
this is used to indicate whether a remote transaction (one executed on another
server) is committed on this server:

op [_,_] : 0id Bool -> TxnStatus [ctor]
pr SET{TxnStatus} * (sort Set{TxnStatus} to TxnStatusSet)

Modeling Replicas. A replica (or site) stores parts of the database, executes the
transactions for which it is the proxy, helps validating other transactions, and is
formalized as an object instance of a subclass of the following class Replica:

class Replica | executing: Configuration, committed : Configuration,
aborted : Configuration, decided : TxnStatusSet .

The attributes executing, committed, and aborted contain, respectively, trans-
actions that are being executed, and have been committed or aborted on the exe-
cuting server; decided is the status of transactions executed on other servers.

To model a system-specific replica a user should specify it as an object
instance of a subclass of the class Replica with new attributes.

Ezample 1. A replica in our Maude model of Walter [26] is modeled as an object
instance of the following subclass Walter-Replica of class Replica that adds
14 new attributes (only 4 shown below):

class Walter-Replica | store: Datastore, sqn : Nat,
locked : Locks, votes : Vote,
subclass Walter-Replica < Replica .

Modeling Transactions. A transaction should be modeled as an object of a sub-
class of the following class Txn:

class Txn | readSet : KeyVersions, writeSet : KeyVersions .

where readSet and writeSet denote the key/version pairs read and written by
the transaction, respectively.

Ezample 2. Walter transactions can be modeled as object instances of the sub-
class Walter-Txn with four new attributes:

class Walter-Txn | operations : OperationList, localVars : LocalVars,
startVTS : VectorTimestamp, txnSQN : Nat .
subclass Walter-Txn < Txn .

Modeling System Dynamics. We describe how the rewrite rules defining the start
of a transaction execution and aborts and commits at different sites should be
defined so that our tool can detect these events.
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The start of a transaction execution must be modeled by a rewrite rule where
the transaction object appears in the proxy server’s executing attribute in
the right-hand side, but not in the left-hand side, of the rewrite rule.

Example 3. A Walter replica starts executing a transaction TID by moving
TID in gotTxns (buffering transactions from clients) to executing:?

rl [start-tzn]
< RID : Walter-Replica | executing : TRANSES, committedVTS : VTS,
gotTxns : < TID : Ten | startVIS : empty > ;; TXNS >

< RID : Walter-Replica | gotTxns : TXNS,
ezecuting : TRANSES < TID : Tzn | startVIS : VIS > > .

When a transaction is committed on the executing server, the transaction
object must appear in the committed attribute in the right-hand side—but
not in the left-hand side—of the rewrite rule. Furthermore, the readSet and
writeSet attributes must be explicitly given in the transaction object.

Ezample 4. In Walter, when all operations of an executing read-only trans-
action have been performed, the proxy commits the transaction directly:

rl [commit-read-only-txn]
< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES
< TID:Tzn | operations:nil, writeSet:empty, readSet :RS > >
=>
< RID : Walter-Replica | committed : (TRANSES’ < TID : Tzn [ >),
executing : TRANSES > .

When a transaction is aborted by the executing server, the transaction object
must appear in the aborted attribute in the right-hand side, but not in the
left-hand side, of a rewrite rule. Again, the transaction should present its
attributes writeSet and readSet (to be able to record relevant history). See
our longer report [27] for an example of such a rule.

A rewrite rule that models when a transaction’s status is decided remotely
(i.e., not on the executing server) must contain in the right-hand side (only)
the transaction’s identifier and its status in the replica’s decided attribute.

These requirements are not very strict. The Maude models of the DTSs RAMP
[29], Faster [24], Walter [26], ROLA [25], Jessy [28], and P-Store [32] can all
be seen as instantiations of our modeling framework, with very small syntactic
changes, such as defining transaction and replica objects as subclasses of Txn
and Replica, changing the names of the attributes and sorts, etc. The Apache
Cassandra NoSQL key-value store can be seen as a transaction system where

ea

ch transaction is a single operation; the Maude model of Cassandra in [30] can

also be easily modified to fit within our modeling framework.

3

We do not give variable declarations, but follow the convention that variables are

written in (all) capital letters.
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5 Adding Execution Logs

To formalize and analyze consistency properties of distributed transaction sys-
tems we add an “execution log” that records the history of relevant events during
a system execution. This section explains how this history recording can be added
automatically to a model of a DTS that is specified as explained in Section 4.

5.1 Execution Log

To capture the total order of relevant events in a run, we use a “logical global
clock” to order all key events (i.e., transaction starts, commits, and aborts). This
clock is incremented by one each time such an event takes place.

A transaction in a replicated DTS is typically committed both locally (at
its executing server) and remotely at different times. To capture this, we define
a “time vector” using Maude’s map data type that maps replica identifiers (of
sort 0id) to (typically “logical”) clock values (of sort Time, which here are the
natural numbers: subsort Nat < Time):

pr MAP{0id,Time} * (sort Map{0id,Time} to VectorTime)

where each element in the mapping has the form replica-id |-> time.

An execution log (of sort Log) maps each transaction (identifier) to a record
<proxy, issueTime, finishTime, committed, reads, writes>, with prozy its proxy
server, issueTime the starting time at its proxy server, finishTime the com-
mit/abort times at each relevant server, committed a flag indicating whether the
transaction is committed at its proxy, reads the key-version pairs read by the
transaction, and writes the key-version pairs written:

sort Record .
op <_,_,_5_5_,_> : 0id Time VectorTime

Bool KeyVersions KeyVersions -> Record.
pr MAP{0id,Record} * (sort Map{0id,Record} to Log)

5.2 Logging Execution History

We show how the relevant history of an execution can be recorded during a run
of our Maude model by transforming the original Maude model into one which
also records this history.

First, we add to the state a Monitor object that stores the current logical
global time in the clock attribute and the current log in the log attribute:

< M : Monitor | clock : Time, log : Log >.

The log is updated each time an interesting event (see Section 4.1) happens.
Our tool identifies those events and automatically transforms the corresponding
rewrite rules by adding and updating the monitor object.
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EXECUTING. A transaction starts executing when the transaction object appears
in a Replica’s executing attribute in the right-hand side, but not in the left-
hand side, of a rewrite rule. The monitor then adds a record for this transaction,
with the proxy and start time, to the log, and increments the logical global clock.

Ezxample 5. The rewrite rule in Example 3 where a Walter replica is served a
transaction is modified by adding and updating the monitor object (in blue):

rl [start-txn]
< 0@M : Monitor | clock : GT@M, log : LOGEM >
< RID : Walter-Replica | executing : TRANSES, committedVTS : VTS,
gotTxns : < TID : Txn | startVTS : empty > ;; TXNS >
=>
< 0@M : Monitor | clock : GT@M + 1, log : LOG@M,
(TID |-> < RID, GTQM, empty, false, empty, empty >) >
< RID : Walter-Replica | gotTxns : TXNS,
executing : TRANSES < TID : Txn | startVTS : VIS > > .

where the monitor 06M adds a new record for the transaction TID in the log, with
starting time (i.e., the current logical global time) GT@M at its executing server
RID, finish time (empty), flag (false), read set (empty), and write set (empty).
The monitor also increments the global clock by one.

CoMMIT. A transaction commits at its proxy when the transaction object
appears in the proxy’s committed attribute in the right-hand side, but not in
the left-hand side, of a rewrite rule. The record for that transaction is updated
with commit status, versions read and written, and commit time, and the global
logical clock is incremented.

Ezample 6. The monitor object is added to the rewrite rule in Example 4 for
committing a read-only transaction:

rl [commit-read-only-txn]
< 0@M : Momitor | clock : GT@M, log : LOGGM ,
(TID |-> < RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >
< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES
< TID: Txn | operations:nil, writeSet : empty, readSet:RS > >

< 0@M : Monmitor | clock : GT@M + 1, log : LOG@M ,
(TID |-> < RID, T@M, insert (RID,GT@M,VTSCM), true, RS, empty >)
< RID : Walter-Replica | committed : (TRANSES’ < TID : Txn | >),
executing : TRANSES > .

The monitor updates the log for the transaction TID by setting its finish time
at the executing server RID to GT@M (insert(RID,GT@M,VTS@M)), setting the
committed flag to true, setting the read set to RS and write set to empty (this
is a read-only transaction), and increments the global clock.
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ABORT. Abort is treated as commit, but the commit flag remains false.

DEcCIDED. When a transaction’s status is decided remotely, the record for that
transaction’s decision time at the remote replica is updated with the current
global time. See [27] for an example.

We have formalized /implemented the transformation from a Maude specifi-
cation of a DTS into one with a monitor as a meta-level function monitorRules
: Module -> Module in Maude. See our longer report [27] for details.

6 Formalizing Consistency Models in Maude

This section formalizes the consistency properties in Section 3 as functions on
the “history log” of a completed run. The entire Maude specification of these
functions is available at https://github.com/siliunobi/cat. Due to space restric-
tions, we only show the formalization of four of the consistency models, and refer
to our report [27] for the formalization of the other properties.

Read Committed (RC). (A transaction cannot read any writes by uncommit-
ted transactions.) Note that standard definitions for single-version databases
disallow reading versions that are not committed at the time of the read. We
follow the definition for multi-versioned systems by Adya, summarized by Bailis
et al. [5], that defines the RC property as follows: (i) a committed transaction
cannot read a version that was written by an aborted transaction; and (ii) a
transaction cannot read intermediate values: that is, if T writes two versions
<X,V>and <X,V’> with V < V’, then no 7" # T can read <X,V>.

The first equation defining the function rc, specifying when RC holds, checks
whether some (committed) transaction TID1 read version V of key X (i.e., <X,V>
is in TID’s read set <X,V >, RS, where RS matches the rest of TID’s read set), and
this version V was written by some transaction TID2 that was never committed
(i.e., TID2’s commit flag is false, and its write set is <X,V>, WS?). The second
equation checks whether there was an intermediate read of a version <X,V > that
was overwritten by the same transaction TID2 that wrote the version:*

op rc : Log -> Bool .

eq rc(TID1 |-> <0, T, VT, true, (<X,V>,RS), WS>,

TID2 |-> <0’,T’,VT’, false,RS’, (<X,V>,WS’)>, LOG) = false.
eq rc(TID1 |-> <0, T, VT, true, (<X,V>,RS), WS>,

TID2 |-> <0’,T’,VI’, true,RS’, (KX,V>, <X,V’>,WS’) >,

LOG) = false if V<V
eq rc(LOG) = true [owise]

4 The configuration union and the union operator *,’ for maps and sets are declared
associative and commutative. The first equation therefore matches any log where
some committed transaction read a key-version pair written by some aborted
transaction.


https://github.com/siliunobi/cat

50 S. Liu et al.

Read Atomicity (RA). A system guarantees RA if it prevents fractured reads and
prevents transactions from reading uncommitted or aborted data. A transaction
T} exhibits fractured reads if transaction T; writes versions x,, and y,, T; reads
version &, and version yi, and k < n [5]. The function fracRead checks whether
there are fractured reads in the log. There is a fractured read if a transaction
TID2 reads X and Y, transaction TID1 writes X and Y, TID2 reads the version VX
of X written by TID1, and reads a version VY’ of Y written before VY (VY’ <VY):

op fracRead : Log -> Bool .
ceq fracRead(TID1 |-> <0, T, VT, true, (<X,VX>,<Y,VY’ >, RS), WS>,
TID2 |-> <0’,T’,VT’, true,RS’, (<X,VX>,<Y,V¥Y>, WS’) >, LOG)
= true if VY’ < VY .
eq fracRead(LOG) = false [owisel]

We define RA as the combination of RC and no fractured reads:

op ra : Log -> Bool .
eq ra(LOG) = rc(LOG) and not fracRead(LOG)

Parallel snapshot isolation (PSI) is given by three properties [36]:

— PSI-1 (site snapshot read): All operations read the most recent committed
version at the transaction’s site as of time when the transaction began.

— PSI-2 (no write-write conflicts): The write sets of each pair of committed
somewhere-concurrent® transactions must be disjoint.

— PSI-3 (commit causality across sites): If a transaction 77 commits at a site
S before a transaction Ty starts at site S, then 7T} cannot commit after 75 at
any site.

The function notSiteSnapshotRead checks whether the system log satisfies
PSI-1 by returning true if there is a transaction that did not read the most
recent committed version at its executing site when it began:

op notSiteSnapshotRead : Log -> Bool .

ceq notSiteSnapshotRead(
TID1 |-> <RID1, T, VT1, true, (<X,V>,RS1), WSl >,
TID2 |-> < RID2,T’, (RID1 |-> T2, VT2), true, RS2, (<X,V>,WS2) >,
TID3 |-> < RID3,T’’, (RID1 |-> T3,VT3), true, RS3, (<X,V’ >, WS3) >,
LOG) = true if V=/=V’ /\ T3 < T /\ T3 > T2 .

ceq notSiteSnapshotRead(
TID1 |-> <RID1,T, VT1, true, (<X,V>,RS1),WS1 >,
TID2 |-> <RID2,T’, (RID1 |-> T2,VT2), true, RS2, (<X,V>,WS2) >,
LOG) = true if T < T2 .

eq notSiteSnapshotRead(LOG) = false [owise]

5 Two transactions are somewhere-concurrent if they are concurrent at one of their

sites.
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In the first equation, the transaction TID1, hosted at site RID1, has in its read set
a version <X, V> written by TID2. Some transaction TID3 wrote version <X,V’ >
and was committed at RID1 after TID2 was committed at RID1 (T3 > T2) and
before TID1 started executing (T3 < T). Hence, the version read by TID1 was
stale. The second equation checks if TID1 read some version that was committed
at RID1 after TID1 started (T < T2).

The function someWhereConflict checks whether PSI-2 holds by looking
for a write-write conflict between any pair of committed somewhere-concurrent
transactions in the system log:

op someWhereConflict : Log -> Bool .

ceq someWhereConflict(
TID1 |-> <RID1,T, (RID1 |-> T1,VT1), true, RS, (<X,V>,WS) >,
TID2 |-> <RID2,T’, (RID1 |-> T2, VT2), true,RS’, (KX,V’>,WS’) >,
L0G) = true if T2 > T /\ T2 < T1 .

eq someWhereConflict(LOG) = false [owise]

The above function checks whether the transactions with the write conflict are
concurrent at the transaction TID1’s proxy RID1. Here, TID2 commits at RID1 at
time T2, which is between TID1’s start time T and its commit time T1 at RID1.

The function notCausality analyzes PSI-3 by checking whether there was
a “bad situation” in which a transaction TID1 committed at site RID2 before a
transaction TID2 started at site RID2 (T1 < T2), while TID1 committed at site
RID after TID2 committed at site RID (T3 > T4):

op notCausality : Log -> Bool .

ceq notCausality(
TID1 |-> <RID1, T, (RID2 |-> T1,RID |-> T3,VT2), true, RS, WS >,
TID2 |-> <RID2,T2, (RID |-> T4, VT4), true,RS’, WS’ >,
LOG) = true if T1 < T2 /\ T3 > T4 .

eq notCausality(LOG) = false [owisel]

PSI can then be defined by combining the above three properties:

op psi : Log -> Bool .
eq psi(LOG) = not notSiteSnapshotRead(L0OG) and
not someWhereConflict(LOG) and not notCausality(LOG)

Non-monotonic snapshot isolation (NMSI) is the same as PSI except that a
transaction may read a version committed even after the transaction begins [3].
NMSI can therefore be defined as the conjunction of PSI-2 and PSI-3:

op nmsi : Log -> Bool .
eq nmsi(LOG) = not someWhereConflict(LOG) and not notCausality(LOG)



52 S. Liu et al.

Serializability (SER) means that the concurrent execution of transactions is
equivalent to executing them in some (non-overlapping in time) sequence [33].

A formal definition of SER is based on direct serialization graphs (DSGs):
an execution is serializable if and only if the corresponding DSG is acyclic. Each
node in a DSG corresponds to a committed transaction, and directed edges in a
DSG correspond to the following types of direct dependencies [2]:

— Read dependency: Transaction Tj directly read-depends on transaction T; if
T; writes some version x; and T} reads that version x;.

— Write dependency: Transaction T} directly write-depends on transaction T; if
T; writes some version z; and T; writes ’s next version after x; in the version
order.

— Antidependency: Transaction T} directly antidepends on transaction T; if T;
reads some version x;, and T; writes z’s next version after xj.

There is a directed edge from a node 7; to another node T if transaction 7}
directly read-/write-/antidepends on transaction T;.
The dependencies/edges can easily be extracted from the our log as follows:

— If there is a key-version pair <X, V> both in T2’s read set and in T1’s write
set, then T2 read-depends on T1.

— If T1 writes <X, V1> and T2 writes <X, V2>, and V1 < V2, and there no
version <X, V> with V1 < V < V2, then T2 write-depends on T1.

— T2 antidepends on T1 if <X, V1> is in T1’s read set, <X, V2> is in T2’s write
set with V1 < V2 and there is no version <X, V> such that V1 < V < V2.

We have defined a data type Dsg for DSGs, a function dsg : Log —> Dsg that
constructs the DSG from a log, and a function cycle : Dsg -> Bool that checks
whether a DSG has cycles. We refer to [27] for their definition in Maude.

SER then holds if there is no cycle in the constructed DSG:

op ser : Log -> Bool .
eq ser(LOG) = not cycle(dsg(L0G))

7 Formal Analysis of Consistency Properties of DTSs

We have implemented the Consistency Analysis Tool (CAT) that automates the
method in this paper. CAT takes as input:

— A Maude model of the DTS specified as explained in Section 4.

— The number of each of the following parameters: read-only, write-only, and
read-write transactions; operations for each type of transaction; keys; replicas
per key; clients; and servers. The tool analyzes the desired property for all
initial states with the number of each of these parameters.

— The consistency property to be analyzed.
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Given these inputs, CAT performs the following steps:

1. adds the monitoring mechanism to the user-provided system model;

2. generates all possible initial states with the user-provided number of the dif-
ferent parameters; and

3. executes the following command to search, from all generated initial states,
for one reachable final state where the consistency property does not hold:

search [1] init =>! C:Configuration
< M:0id : Monitor [ log: LOG:Log clock: N:Nat >
such that not consistency-property(LOG:Log) .

where the underlined functions are parametric, and are instantiated by the
user inputs; e.g., consistency-property is replaced by the corresponding func-
tion rc, psi, nmsi, ..., or ser, depending on which property to analyze.

CAT outputs either “No solution,” meaning that all runs from all the given
initial states satisfy the desired consistency property, or a counterexample (in
Maude at the moment) showing a behavior that violates the property.

Table 1. Model checking results w.r.t. consistency properties. “v’”, “x” and “” refer
to satisfying and violating the property, and “not applicable,” respectively.

Maude Model | LOC Consistency Property
RC|RA | CS|UA | NMSI PSI|SI|SER |SSER
RAMP-F [29]| 330 | v | v | x | x - - x| x X
Faster [24] 300 | v | x| x| x - - x| ox X
ROLA [25] 410 | v |V |V |V - - x| x X
Jessy [28] 490 | v | vV |V |V v X | X | X X
Walter [26] 830 | v | v |V |V v Vo x ] ox X
P-Store [32] | 440 | v | vV |V |V v v IV v X

We have applied our tool to 14 Maude models of state-of-the-art academic
DTSs (different variants of RAMP and Walter, ROLA, Jessy, and P-Store)
against all nine properties. Table1 only shows six case studies due to space
limitations. All model checking results are as expected. It is worth remarking
that our automatic analysis found all the violations of properties that the respec-
tive systems should violate. There are also some cases where model checking is
not applicable (“-” in Table 1): some system models do not include a mechanism
for committing a transaction on remote servers (i.e., no commit time on any
remote server is recorded by the monitor). Thus, model checking NMSI or PSI
is not applicable.

We have performed our analysis with different initial states, with up to 4
transactions, 4 operations per transaction, 2 clients, 2 servers, 2 keys, and 2
replicas per key. Each analysis command took about 15 minutes (worst case) to
execute on a 2.9 GHz Intel 4-Core i7-3520M CPU with 3.6 GB memory.
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8 Related Work

Formalizing Consistency Properties in a Single Framework. Adya [2] uses
dependencies between reads and writes to define different isolation models in
database systems. Bailis et al. [5] adopts this model to define read atomicity.
Burckhardt et al. [11] and Cerone et al. [12] propose axiomatic specifications of
consistency models for transaction systems using visibility and arbitration rela-
tionships. Shapiro et al. [35] propose a classification along three dimensions (total
order, visibility, and transaction composition) for transactional consistency mod-
els. Crooks et al. [15] formalizes transactional consistency properties in terms of
observable states from a client’s perspective. On the non-transactional side, Bur-
ckhardt [10] focuses on session and eventual consistency models. Viotti et al. [38]
expands his work by covering more than 50 non-transactional consistency prop-
erties. Szekeres et al. [37] propose a unified model based on result visibility to
formalize both transactional and non-transactional consistency properties.

All of these studies propose semantic models of consistency properties suit-
able for theoretical analysis. In contrast, we aim at algorithmic methods for auto-
matically verifying consistency properties based on executable specifications of
both the systems and their consistency models. Furthermore, none of the studies
covered all of the transactional consistency models considered in this paper.

Model Checking Distributed Transaction Systems. There is very little work on
model checking state-of-the-art DTSs, maybe because the complexity of these
systems requires expressive formalisms. Engineers at Amazon Web Services suc-
cessfully used TLA+ to model check key algorithms in Amazon’s Simple Storage
Systems and DynamoDB database [31]; however, they do not state which consis-
tency properties, if any, were model checked. The designers of the TAPIR trans-
action protocol have specified and model checked correctness properties of their
design using TLA+ [41]. The IronFleet framework [20] combines TLA+ analy-
sis and Floyd-Hoare-style imperative verification to reason about protocol-level
concurrency and implementation complexities, respectively. Their methodology
requires “considerable assistance from the developer” to perform the proofs.

Distributed model checkers [22,40] are used to model check implementations
of distributed systems such as Cassandra, ZooKeeper, the BerkeleyDB database
and a replication protocol implementation.

Our previous work [8,18,19,24-26, 28,29, 32] specifies and model checks single
DTSs and consistency properties in different ways, as opposed to in a single
framework that, furthermore, automates the “monitoring” and analysis process.

Other Formal Reasoning about Distributed Database Systems. Cerone et al. [13]
develop a new characterization of SI and apply it to the static analysis of DTSs.
Bernardi et al. [7] propose criteria for checking the robustness of transactional
programs against consistency models. Bouajjani et al. [9] propose a formal def-
inition of eventual consistency, and reduce the problem of checking eventual
consistency to reachability and model checking problems. Gotsman et al. [17]
propose a proof rule for reasoning about non-transactional consistency choices.
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There is also work [23,34,39] that focuses on specifying, implementing and
verifying distributed systems using the Coq proof assistant. Their executable Coq
“implementations” can be seen as executable high-level formal specifications, but
the theorem proving requires nontrivial user interaction.

9 Concluding Remarks

In this paper we have provided an object-based framework for formally model-
ing distributed transaction systems (DTSs) in Maude, have explained how such
models can be automatically instrumented to record relevant events during a
run, and have formally defined a wide range of consistency properties on such
histories of events. We have implemented a tool which automates the entire
instrumentation and model checking process. Our framework is very general:
we could easily adapt previous Maude models of state-of-the-art DTSs such as
Apache Cassandra, P-Store, RAMP, Walter, Jessy, and ROLA to our framework.

We then model checked the DTSs w.r.t. all the consistency properties for all
initial states with 4 transactions, 2 sites, and so on. This analysis was sufficient
to differentiate the DTSs according to which consistency properties they satisfy.

In future work we should formally relate our definitions of the consistency
properties to other (non-executable) formalizations of consistency properties. We
should also extend our work to formalizing and model checking non-transactional
consistency properties for key-value stores such as Cassandra.
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Abstract. Saturation is an efficient exploration order for computing the
set of reachable states symbolically. Attempts to parallelize saturation
have so far resulted in limited speedup. We demonstrate for the first time
that on-the-fly symbolic saturation can be successfully parallelized at a
large scale. To this end, we implemented saturation in Sylvan’s multi-
core decision diagrams used by the LTSmin model checker.

We report extensive experiments, measuring the speedup of paral-
lel symbolic saturation on a 48-core machine, and compare it with the
speedup of parallel symbolic BFS and chaining. We find that the parallel
scalability varies from quite modest to excellent. We also compared the
speedup of on-the-fly saturation and saturation for pre-learned transition
relations. Finally, we compared our implementation of saturation with
the existing sequential implementation based on Meddly.

The empirical evaluation uses Petri nets from the model checking
contest, but thanks to the architecture of LTSmin, parallel on-the-fly
saturation is now available to multiple specification languages. Data or
code related to this paper is available at: [34].

1 Introduction

Model checking is an exhaustive algorithm to verify that a finite model of a
concurrent system satisfies certain temporal properties. The main challenge is
to handle the large state space, resulting from the combination of parallel com-
ponents. Symbolic model checking exploits regularities in the set of reachable
states, by storing this set concisely in a decision diagram. In asynchronous sys-
tems, transitions have locality, i.e. they affect only a small part of the state
vector. This locality is exploited in the saturation strategy, which is probably
the most efficient strategy to compute the set of reachable states.
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In this paper, we investigate the efficiency and speedup of a new parallel
implementation of saturation, aiming at a multi-core, shared-memory imple-
mentation. The implementation is carried out in the parallel decision diagram
framework Sylvan [16], in the language-independent model checker LTSmin [22].
We empirically evaluate the speedup of parallel saturation on Petri nets from
the Model Checking Contest [24], running the algorithm on up to 48 cores.

1.1 Related Work

The saturation strategy has been developed and improved by Ciardo et al. We
refer to [13] for an extensive description of the algorithm. Saturation derives
its efficiency from firing all local transitions that apply at a certain level of the
decision diagram, before proceeding to the next higher level. An important step
in the development of the saturation algorithm allows on-the-fly generation of
the transition relations, without knowing the cardinality of the state variable
domains in advance [12]. This is essential to implement saturation in LTSMIN,
which is based on the PINS interface to discover transitions on-the-fly.

Since saturation obtains its efficiency from a restrictive firing order, it seems
inherently sequential. Yet the problem of parallelising saturation has been stud-
ied intensively. The first attempt, Saturation NOW [9], used a network of
PCs. This version could exploit the collective memory of all PCs, but due to
the sequential procedure, no speedup was achieved. By firing local transitions
speculatively (but with care to avoid memory waste), some speedup has been
achieved [10]. More relevant to our work is the parallelisation of saturation for
a shared memory architecture [20]. The authors used CILK to schedule par-
allel work originating from firing multiple transitions at the same level. They
reported some speedup on a dual-core machine, at the expense of a serious
memory increase. Their method also required to precompute the transition rela-
tion. An improvement of the parallel synchronisation mechanism was provided
n [31]. They reported a parallel speedup of 2x on 4 CPUs. Moreover, their
implementation supports learning the transition relation on-the-fly. Still, the
successful parallelisation of saturation remained widely open, as indicated by
Ciardo [14]: “Parallel symbolic state-space exploration is difficult, but what is
the alternative?”

For an extensive overview of parallel decision diagrams on various hardware
architectures, see [15]. Here we mention some other approaches to parallel sym-
bolic model checking, different from saturation for reachability analysis. First,
Grumberg and her team [21] designed a parallel BDD package based on ver-
tical partitioning. Each worker maintains its own sub-BDD. Workers exchange
BDD nodes over the network. They reported some speedup on 32 PCs for BDD
based model checking under the BFS strategy. The Sylvan [16] multi-core deci-
sion diagram package supports symbolic on-the-fly reachability analysis, as well
as bisimulation minimisation [17]. Oortwijn [28] experimented with a heteroge-
neous distributed/multi-core architecture, by porting Sylvan’s architecture to
RDMA over MPI, running symbolic reachability on 480 cores spread over 32
PCs and reporting speedups of BFS symbolic reachability up to 50. Finally,
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we mention some applications of saturation beyond reachability, such as model
checking CTL [32] and detecting strongly connected components to detect fair
cycles [33].

1.2 Contribution

Here we show that implementing saturation on top of the multi-core decision
diagram framework Sylvan [16] yields a considerable speedup in a shared-memory
setting of up to 32.5x on 48 cores with pre-learned transition relations, and 52.2 x
with on-the-fly transition learning.

By design decision, our implementation reuses several features provided by
Sylvan, such as: its own fine-grained, work-stealing framework Lace [18], its
implementation of both BDDs (Binary Decision Diagrams) and LDDs (a List-
implementation of Multiway Decision Diagrams), its concurrent unique table and
operations cache, and finally, its parallel operations like set union and relational
product. As a consequence, the pseudocode of the algorithm and additional
code for saturation is quite small, and orthogonal to other BDD features. To
improve orthogonality with the existing decision diagrams, we deviated from
the standard presentation of saturation [13]: we never update BDD nodes in
situ, and we eliminated the mutual recursion between saturation and the BDD
operations for relational product to fire transitions.

The implementation is available in the open-source high-performance model
checking tool LTSMIN [22], with its language-agnostic interface, Partitioned
Next-State Interface (PINS) [5,22,25]. Here, a specification basically provides a
next-state function equipped with dependency information, from which LTSMIN
can derive locality information. We fully support the flexible method of learning
the transition relation on-the-fly during saturation [12]. As a consequence, our
contribution extends the tool LTSmin with saturation for various specification
languages, like Promela, DVE, Petri nets, mCRL2, and languages supported by
the ProB model checker. See Sect. 4 on how to use saturation in LTSmin.

The experiments with saturation in Sylvan are carried out in LTSmin as
well. We used Petri nets from the MCC competition. Our experimental design
has been carefully set up in order to facilitate fair comparisons. Besides learning
the transition relation on-the-fly, we also pre-learned them in order to measure
the overhead of learning, and eliminating its effect in comparisons. It is well
known that the variable ordering has a large effect on the BDD sizes [29]. Hence,
our experiments are based on two of the best static variable orderings known,
Sloan [26] and Force [1]. In particular, our experiments measure and compare:

— The performance of our parallel algorithm with one worker, compared to a
state-of-the art sequential implementation of saturation in Meddly [4].

— The parallel speedup of our algorithm on 16 cores, and for specific examples
up to 48 cores.

— The efficiency and speedup of saturation compared to the BFS and chaining
strategies for reachability analysis.

— The effect of choosing Binary Decision Diagrams or List Decision Diagrams.

— The effect of choosing Sloan or Force to compute static variable orders.
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2 Preliminaries

This paper proposes an algorithm for decision diagrams to perform the fixed
point application of multiple transition relations according to the satura-
tion strategy, combined with on-the-fly transition learning as implemented in
LTSMIN. We briefly review these concepts in the following.

2.1 Partitioned Transition Systems

A transition system (TS) is a tuple (S, —,s"), where S is a set of states, —C
S x S is a transition relation and s° € S is the initial state. We define —*
to be the reflexive and transitive closure of —. The set of reachable states is
R ={s eS| s" —=* s}. The goal of this work is to compute R via a novel
multi-core saturation strategy.

In this paper, we evaluate multi-core saturation using Petri nets. Figure 1
shows an example of a (safe) Petri net. We show its initial marking, which is
the initial state. A Petri net transition can fire if there is a token in each of its
source places. On firing, these tokens are consumed and tokens in each target
place are generated. For example, t; will produce one token in both py and ps,
if there is a token in p4. Transition tg requires a token in both p3 and p; to
fire. The markings of this Petri net form the states of the corresponding TS, so
here |S| = 25 = 32. From the initial marking shown, four more markings are
reachable, connected by 10 enabled transition firings. This means |R| = 5, and
|—| = 10.

Notice that transitions in Petri nets are quite local; transitions consume
from, and produce into relatively few places. The firing of a Petri net transition
is called an event and the number of involved places is known as the degree of
event locality. This notion is easily defined for other asynchronous specification
languages and can be computed by a simple control flow graph analysis.

Ly

Fig. 1. Example Petri net
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To exploit event locality, saturation requires a disjunctive partitioning of the
transition relation —, giving rise to a Partitioned Transition System (PTS). In
a PTS, states are vectors of length N, and — is partitioned as a union of M
transition groups. A natural way to partition a Petri net is by viewing each
transition as a transition group. For Fig.1 this means we have N = 5 and
M = 6. After disjunctive partitioning, each transition group depends on very
few entries of the state vector. This allows for efficiently computing the reachable
state space for the large class of asynchronous specification languages. LTSMIN
supports commonly used specification languages, like DVE, mCRL2, Promela,
PNML for Petri nets, and languages supported by ProB.

T1
Lof2]a] [o]1]
x2
(a) LDD as array (b) Same LDD, internal linked-list representation

Fig. 2. LDD for {(0, 0),(0, 2),(0,4),(1, 0),(1, 2),(1,4),(3,2),(3,4),(5,0),(5,1),(6,1) }.

2.2 Decision Diagrams

Binary decision diagrams (BDDs) are a concise and canonical representation of
Boolean functions BY — B [7]. A BDD is a rooted directed acyclic graph with
leaves 0 and 1. Each internal node v has a variable label z;, denoted by var(v),
and two outgoing edges labeled 0 and 1, denoted by low(v) and high(v). The
efficiency of reduced, ordered BDDs is achieved by minimizing the structure with
some invariants: The BDD may neither contain equivalent nodes, with the same
var(v), low(v) and high(v), nor redundant nodes, with low(v) = high(v). Also,
the variables must occur according to a fixed ordering along each path.

Multi-valued or multiway decision diagrams (MDDs) generalize BDDs to
finite domains (N — B). Each internal MDD node with variable x; now has
n; outgoing edges, labeled 0 to n; — 1. We use quasi-reduced MDDs with sparse
nodes. In the sparse representation, values with edges to leaf 0 are skipped
from MDD nodes, so outgoing edges must be explicitly labeled with remaining
domain values. Contrary to BDDs, MDDs are usually “quasi-reduced”, meaning
that variables are never skipped. In that case, the variable z; can be derived
from the depth of the MDD, so it is not stored.

A variation of MDDs are list decision diagrams (LDDs) [5,16], where sparse
MDD nodes are represented as a linked list. See Fig.2 for two visual represen-
tations of the same LDD. Each LDD node contains a value, a “down” edge for
the corresponding child, and a “right” edge pointing to the next element in the
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list. Each list ends with the leaf 0 and each path from the root downwards ends
with the leaf 1. The values in an LDD are strictly ordered, i.e., the values must
increase to the “right”.

LDD nodes have the advantage that common suffixes can be shared: The
MDD for Fig. 2a requires two more nodes, one for [2,4] and one for [1], because
edges can only point to an entire MDD node. LDDs suffer from an increased
memory footprint and inferior memory locality, but their memory management
is simpler, since each LDD node has a fixed small size.

p1r p2 P3 Pa Ps P2 p3 P4 Ps P1
t7/0 1 0 1 1 t2f1 1 0 0 O
t2f 0 1 1 0 O ts3{1 1 0 0 O
ts{ 0 1 1 0 O t7/1 0 1 1 O
t4#01 0 0 0 1 ts{ 0 1 1 0 1
ts{1 0 0 0 1 t4f 0 0 0 1 1
tsf1 0 1 1 O ts{0 0 0 1 1

(a) Natural order (b) Optimized order

Fig. 3. Dependency matrices of Fig. 1.

2.3 Variable Orders and Event Locality

Good variable orders are crucial for efficient operations on decision diagrams.
The syntactic variable order from the specification is often inadequate for the
saturation algorithm to perform well. Hence, finding a good variable order is
necessary. Variable reordering algorithms use heuristics based on event locality.
The locality of events can be illustrated with dependency matrices. The size of
those matrices is M x N, where M is the number of transition groups, and N
is the length of the state vector. The order of columns in dependency matrices
determines the order of variables in the DD. Figure 3a shows the natural order
on places in Fig. 1. A measure of event locality is called event span [29]. Lower
event span is correlated to a lower number of nodes in decision diagrams. This
can be seen in LDDs in Figs. 4a and b that are ordered according to columns in
Figs. 3a and b respectively.

Event span is defined as the sum over all rows of the distance from the
leftmost non-zero column to the rightmost non-zero column. The event span of
Fig.3ais 22 (= 4+2+42+5+5+4); the event span of Fig. 3b is 16, which is better.
Optimizing the event span and thus variable order of DDs is NP-complete [6], yet
there are heuristic approaches that run in subquadratic time and provide good
enough orders. Commonly used algorithms are Noack [27], Force [1] and Sloan
[30]. Noack creates a permutation of variables by iteratively minimizing some
objective function. The Force algorithm acts as if there are springs in between
nonzeros in the dependency matrix, and tries to minimize the average tension
among them. Sloan tries to minimize the profile of matrices. In short, profile is
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L] [l

(a) Natural order (b) Optimized order

Fig. 4. Reachable states as LDDs with different orders on places

the symmetric counterpart to event span. For a more detailed overview of these
algorithms see [3]. In our empirical evaluation we use both Sloan and Force,
because these have been shown to give the best results [2,26].

2.4 The Saturation Strategy

The saturation strategy for reachability analysis, i.e., the transitive closure of
transition relations applied to some set of states, was first proposed by Cia-
rdo et al. See for an overview [11,13]. Saturation was combined with on-the-fly
transition learning in [12]. Besides reachability, saturation has also been applied
to CTL model checking [32] and in checking fairness constraints with strongly
connected components [33].

Saturation is well-studied. The core idea is to always fire enabled transitions
at the lower levels in the decision diagram, before proceeding to the next level.
This tends to keep the intermediate BDD sizes much smaller than for instance the
breadth-first exploration strategy. This is in particular the case for asynchronous
systems, where transitions exhibit locality. There is also a major influence from
the variable reordering: if the variables involved in a transition are grouped
together, then this transition only affects adjacent levels in the decision diagram.

We refer to [13] for a precise description of saturation. Our implementation
deviates from the standard presentation in three ways. First, we implemented
saturation for LDDs and BDDs, instead of MDDs. Next, we never update nodes
in the LDD forest in situ; instead, we always create new nodes. Finally, the
standard representation has a mutual recursion between saturation and firing
transitions. Instead, we fire transition using the existing function for relational
product, which is called from our saturation algorithm. As a consequence, the
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extension with saturation becomes more orthogonal to the specific decision dia-
gram implementation. We refer to Sect. 3 for a detailed description of our algo-
rithm. We show in Sect.5 that these design decisions do not introduce compu-
tational overhead.

3 Multi-core Saturation Algorithm

To access the three elements of an LDD node z, Sylvan [16] provides the functions
value(x), down(z), right(z). To create or retrieve a unique LDD node using the
hash table, Sylvan provides LookupLDDNode(value, down, right).

Furthermore, Sylvan provides several operations on LDDs that we use to
implement reachability algorithms, such as union(A, B) to compute the set union
AU B and minus(A, B) to compute the set difference A\ B. For transition rela-
tions, Sylvan provides an operation relprod(S, R) to compute the successors of
S with transition relation R, and an operation relprodunion(S, R) that com-
putes union(S, relprod(S, R)), i.e., computing the successors and adding them
to the given set of states, in one operation. All these operations are internally
parallelized, as described in [16].

We implement multi-core saturation as in Algorithm 1. We have a transition
relation disjunctively partitioned into M relations Ry ... Ra—1. These relations
are sorted by the level (depth) of the decision diagram where they are applied,
which is the first level touched by the relation. We say that relation R; is applied

global: M transition relations Ry ... Ry—1 starting at depths do...dn—1
1 def saturate(S, k, d):

2 if S=0vS=1:return S

3 if k=M : return S

4 if result «— cache[(S, k,d)] : return result

5 if d=dj :

6 k' « next relation k < k' < M where djs # d, or M
7 while S changes :

8 S « saturate(S, K, d)

9 for i € [k,k') : S « relprodunion(S, R;)
10 result «— S
11 else:
12 do in parallel:
13 right < saturate(right(S), k, d)
14 down « saturate(down(S), k, d+ 1)
15 result «— LookupLDDNode (value(S), down, right)
16 cache[(S, k, d)] < result
17 return result

Algorithm 1: The multi-core saturation algorithm, which, given a set of states
S and next transition relation k£ and current decision diagram depth d, exhaus-
tively applies all transition relations Ry ... Rjs—1 using the saturation strategy.
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at depth d;. We identify the current next relation with a number k, 0 < k < M,
where k = M denotes “no next relation”. Decision diagram levels are sequentially
numbered with 0 for the root level.

The saturate algorithm is given the initial set of states S and the initial
next transition relation k£ = 0 and the initial decision diagram level d = 0. The
algorithm is a straightforward implementation of saturation. First we check the
easy cases where we reach either the end of an LDD list, where S = 0, or the
bottom of the decision diagram, where S = 1. If there are no more transition
relations to apply, then k = M and we can simply return .S. When we arrive at
line 4, the operation is not trivial and we consult the operation cache.

If the result of this operation was not already in the cache, then we check
whether we have relations at the current level. Since the relations are sorted by
the level where they must be applied, we compare the current level d with the
level dj, of the next relation k. If we have relations at the current level, then we
perform the fixed point computation where we first saturate S for the remaining
relations, starting at relation k’, which is the first relation that must be applied
on a deeper level than d, and then apply the relations of the current level, that
is, all R; where k < i < k’. If no relations match the current level, then we
compute in parallel the results of the suboperations for the LDD of successor
“right” and for the LDD of successor “down”. After obtaining these sub results,
we use LookupLDDNode to compute the final result for this LDD node. Finally,
we store this result in the operation cache and return it.

The do in parallel keyword is implemented with the work-stealing frame-
work Lace [18], which is embedded in Sylvan [16] and offers the primitives spawn
and sync to create subtasks and wait for their completion. The implementation
using spawn and sync of lines 12-14 is as follows.

12 spawn(saturate(right(S), k, d))
13 down « saturate(down(S), k, d+ 1)
14 right < sync()

The implementation of multi-core saturation for BDDs is identical, except
that we parallelize on the “then” and “else” successors of a BDD node, instead
of on the “down” and “right” successors of an LDD node.

To add on-the-fly transition relation learning to this algorithm, we simply
modify the loop at line 9 as follows:

9 for i€ [k, k') :
10 learn-transitions (S, i, d)
11 S « relprodunion(S, R;)

The learn-transitions function provided by LTSMIN updates relation i
given a set of states S. The function first restricts S to so-called short states S,
which is the projection of S on the state variables that are touched by relation i.
Then it calls the next-state function of the PINS interface for each new short
state and it updates R; with the new transitions.

Updating transition relations from multiple threads is not completely trivial.
LTSMIN solves this using lock-free programming with the compare-and-swap
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operation. After collecting all new transitions, LTSMIN computes the union with
the known transitions and uses compare-and-swap to update the global relation;
if this fails, the union is repeated with the new known transitions.

4 Contributed Tools

We present several new tools and extensions to existing tools produced in this
work. The new tools support experiments and comparisons between various DD
formats. The extension to Sylvan and LTSMIN provides end-users with multi-
core saturation for reachability analysis.

4.1 Tools for Experimental Purposes

For the empirical evaluation, we need to isolate the reachability analysis of a
given LDD (or BDD or MDD). To that end, we implemented three small tools
that only compute the set of reachable states, namely lddmc for LDDs, bddmc
for BDDs and medmc for MDDs using the library Meddly. These tools are given
an input file representing the model, compute the set of reachable states, and
report the number of states and the required time to compute all reachable
states. Additionally we provide the tools 1dd2bdd and 1dd2meddly that convert
an LDD file to a BDD file and to an MDD file. The LDD input files are generated
using LTSMIN (see below). These tools can all be found online®.

4.2 Tools for On-The-Fly Multi-core Saturation

On-the-fly multi-core saturation is implemented in the LTSMIN toolset, which can
be found online?. The examples in this section are also online®. On-the-fly multi-
core saturation for Petri nets is available in LTSMIN’s tool pnml2lts-sym. This
tool computes all reachable markings with parallel saturation. The command line
to run it on Fig. 1 is pnml2lts-sym pnml/example.pnml --saturation=sat. The
tool reports: pnml2lts-sym: state space has 5 states, 16 nodes. Additionally, it
appears the final LDD has 16 nodes.

Here the syntactic variable order of the places in pnml/example.pnml
is used. To use a better variable order, the option -r is added to the
command line. For instance adding -rf runs Force, while -rbs runs Sloan’s
algorithm (as implemented in the well-known Boost library). Running
pnml2lts-sym pnml/example.pnml --saturation=sat -rf reports that the final
LDD has only 12 nodes.

The naming convention of LTSMIN’s binaries follows the Partitioned Next-
State Interface (PINS) architecture [5,22,25]. PINS forms a bridge between
several language front-ends and algorithmic back-ends. Consequently, besides

! https://github.com/trolando/sylvan.
2 https://github.com/utwente-fmt /ltsmin.
3 https://github.com/trolando/ParallelSaturationExperiments.
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pnml2lts-sym, LTSMIN also provides {pnml,dve,prom}2lts-{dist,mc,sym} and
several other combinations. These binaries generate the state space for the lan-
guages PNML, DVE and Promela, by means of distributed explicit-state, multi-
core explicit-state and multi-core symbolic algorithms, respectively. Additionally,
LTSMIN supports checking for deadlocks and invariants, and verifying LTL prop-
erties and p-calculus formulas. In this work we focus on state space generation
with the symbolic back-end only.

We now demonstrate multi-core saturation for Promela models. Consider the
file Promela/garp-1b2a.prm which is an implementation of the GARP proto-
col [23]. To compute the reachable state space with the proposed algorithm and
Force order, run: prom?2lts-sym --saturation=sat Promela/garp_1b2a.prm -rf.
On a consumer laptop with 8 hardware threads, LT SMIN reports 385,000,995,634
reachable states within 1min. To run the example with a single worker, run
prom?2lts-sym —saturation=sat Promela/garp_lb2a.prm -rf --lace-workers=1.
On the same laptop, the algorithm runs in 4 min with 1 worker. We thus have a
speedup of 4x with 8 workers for symbolic saturation on a Promela model.

5 Empirical Evaluation

Our goal with the empirical study is five-fold. First, we compare our parallel
implementation with only 1 core to the purely sequential implementation of the
MDD library Meddly [4], in order to determine whether our implementation is
competitive with the state-of-the-art. Second, we study parallel scalability up to
16 cores for all models and up to 48 cores with a small selection of models.
Third, we compare parallel saturation with LDDs to parallel saturation with
ordinary BDDs, to see if we get similar results with BDDs. Fourth, we compare
parallel saturation without on-the-fly transition learning to on-the-fly parallel
saturation, to see the effects of on-the-fly transition learning on the performance
of the algorithm. Fifth, we compare parallel saturation with other reachability
strategies, namely chaining and BFS, to confirm whether saturation is indeed a
better strategy than chaining and BFS.

To perform this evaluation, we use the P/T Petri net benchmarks obtained
from the Model Checking Contest 2016 [24]. These are 491 models in total, stored
in PNML files. We use parallel on-the-fly saturation (in LTSMIN) with a generous
timeout of 1 hour to obtain LDD files of the models, using the Force variable
ordering and using the Sloan variable ordering. In total, 413 of potentially 982
LDD files were generated. These LDD files simply store the list decision diagrams
of the initial states and of all transition relations. We convert the LDD files to
BDD files (binary decision diagrams) with an optimal number of binary variables.
We also convert the LDD files to MDD files for the experiments using Meddly.
This ensures that all solvers have the same input model with the same variable
order.
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Table 1. The six solving methods that we use in the empirical evaluation. Five methods
are parallelized and one method is on-the-fly.

Method Tool Description Input Parallel OTF
otf-ldd-sat  pnml2lts-sym saturation PNML v v
ldd-sat 1lddmc saturation LDD Vv
ldd-chaining 1ddmc chaining LDD Vv

1dd-bfs lddmc BFS LDD Vv

bdd-sat bddmc saturation BDD Vv

mdd-sat medmc saturation in Meddly MDD

Table 2. Number of benchmarks (out of 413) solved within 20 min with each method
with the given number of workers.

Method Number of solved models with # workers
1 2 4 8 16 Any
otf-ldd-sat 387 397 399 404 407 408
ldd-sat 388 393 399 402 402 404
ldd-chaining | 351 354 360 367 371 371
1dd-bfs 325 331 347 360 362 362
bdd-sat 395 396 401 402 403 405
mdd-sat 375 — - - - 375

See Tablel for the list of solving methods. As described in Sect.4, we
implement the tools 1ddmc, bddmc and medmc to isolate reachability com-
putation for the purposes of this comparison, using respectively the LDDs
and BDDs of Sylvan and the MDDs of Meddly. The on-the-fly parallel sat-
uration using LDDs is performed with the pnml21lts-sym tool of LTSMIN.
We use the command line pnml21ts-sym ORDER --lace-workers=WORKERS
--saturation=sat FILE, where ORDER is -rf for Force and -rbs for Sloan and
WORKERS is a number from the set {1,2,4,8,16}.

All experimental scripts, input files and log files are available online (see
footnote 3). The experiments are performed on a cluster of Dell PowerEdge M610
servers with two Xeon E5520 processors and 24 GB internal memory each. The
tools are compiled with gee 5.4.0 on Ubuntu 16.04. The experiments for up to 48
cores are performed on a single computer with 4 AMD Opteron 6168 processors
with 12 cores each and 128 GB internal memory.

When reporting on parallel executions, we use the number of workers for how
many hardware threads (cores) were used.

Overview. After running all experiments, we obtain the results for 413 models
in total, of which 196 models with the Force variable ordering and 217 models
with the Sloan variable ordering. In the remainder of this section, we study these
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Table 3. Cumulative time and parallel speedups for each method-#workers combina-
tion on the models where all methods solved the model in time. These are 301 models
in total: 151 models with Force, 150 models with Sloan.

Method Order | Total time (sec) with # workers | Total speedup

1 2 4 8 16 2 4 8 16
otf-ldd-sat  Sloan | 1850 1546 698 398 313 1.2 2.7 46 5.9
Idd-sat Sloan | 932 609 311 194 151 1.5 3.0 4.8 6.2
ldd-chaining Sloan | 4156 3019 1916 1121 863 1.4 2.2 3.7 4.8
1dd-bfs Sloan | 9030 5585 2990 1652 1219 1.6 3.0 5.5 7.4
bdd-sat Sloan | 708 419 212 139 115 1.7 3.3 5.1 6.1

mdd-sat Sloan | 572 — — - - -
otf-ldd-sat  Force | 2704 1162 712 401 343 2.3 3.8 6.8 7.9

Idd-sat Force | 856 602 348 216 180 1.4 2.5 4.0 4.7
ldd-chaining Force | 3149 2560 1835 1160 1024 1.2 1.7 2.7 3.1
1dd-bfs Force | 4696 2951 1556 859 633 1.6 3.0 55 74
bdd-sat Force | 1041 733 384 253 206 1.4 2.7 4.1 5.1

mdd-sat Force | 1738 — - — - - -

413 benchmarks. See Table 2, which shows the number of models for which each
method could compute the set of reachable states within 20 min.

To correctly compare all runtimes, we restrict the set of models to those where
all methods finish within 20 min with any number of workers. We retain in total
301 models where no solver hit the timeout. See Table 3 for the cumulative times
for each method and number of workers and the parallel speedup. Notice that
this is the speedup for the entire set of 301 models and not for individual models.

Comparing LDD saturation with Meddly’s saturation. We evaluate how ldd-sat
with just 1 worker compares to the sequential saturation of Meddly. The goal
is not to directly measure whether there is a parallel overhead from using par-
allelism in Sylvan, as the algorithm in 1ddmc is fundamentally different because
it uses LDDs instead of MDDs and the algorithm does not in-place saturate
nodes, as also explained in Sect.3. The low parallel overheads of Sylvan are
already demonstrated elsewhere [15,16,18]. Rather, the goal is to see how our
version of saturation compares to the state-of-the-art.

Table 2 shows that Meddly’s implementation (mdd-sat) and our implementa-
tion (ldd-sat 1) are quite similar in the number of solved models. Meddly solves
375 benchmarks and our implementation solves 388 within 20 min.

See Table 3 for a comparison of runtimes. Meddly solves the 150 models with
Sloan almost 2x as fast as our implementation in Sylvan, but is slower than our
implementation for the 151 models with Force. We observe for individual models
that the difference between the two solvers is within an order of magnitude for
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Table 4. Parallel speedup for a selection of benchmarks on the 48-core machine (only
top 5 shown)

Model (with ldd-sat) Order Time (sec) Speedup
1 24 48 24 48

Dekker-PT-015 Sloan 773 47 24 163 325
PhilosophersDyn-PT-10 Force 273.8 16.8 12.4 16.3 22.1
Angiogenesis-PT-10 Sloan 333.2 285 16.5 11.7 20.2
SwimmingPool-PT-02 Force 25.0 2.1 1.4 11.6 17.8
BridgeAndVehicles-PT-V20P10N20 Force 1035.8 101.8 60.7 10.2 17.1
Model (with otf-ldd-sat)

Dekker-PT-015 Sloan 1745 74 3.3 23.6 52.2
SwimmingPool-PT-07 Sloan 1008.0 69.2 42.0 14.6 24.0
SmallOperatingSystem-PT-MT0256DC0064 Sloan 957.3 52.9 40.0 18.1 23.9
Kanban-PT-0050 Sloan 940.6 78.7 48.9 11.9 19.2
TCPcondis-PT-10 Force 684 57 3.8 119 178

most models, although there are some exceptions. Our implementation quickly
overtakes Meddly with additional workers.

Parallel Scalability. As shown in Table 3, using 16 workers, we obtain a modest
parallel speedup for saturation of 6.2x (with Sloan) and 4.7x (with Force). On
individual models, the differences are large. The average speedup of the individ-
ual benchmarks is only 1.8x with 16 workers, but there are many slowdowns
for models that take less than a second with 1 worker. We take an arbitrary
selection of models with a high parallel speedup and run these on a dedicated
48-core machine. Table 4 shows that even up to 48 cores, parallel speedup keeps
improving. We even see a speedup of 52.2x. For this superlinear speedup we have
two possible explanations. One is that there is some nondeterminism inherent in
any parallel computation; another is already noted in [20] and is related to the
“chaining” in saturation, see further [20].

Comparing LDD saturation with BDD saturation. As Table 3 shows, the 1dd-sat
and bdd-sat method have a similar performance and similar parallel speedups.

On-the-fly LDD saturation. Comparing the performance of offline saturation
with on-the-fly saturation, we observe the same scalability with the Sloan vari-
able order, but on-the-fly saturation requires roughly 2x as much time. With
the Force variable order, on-the-fly saturation is slower but has a higher parallel
speedup of 7.9x.

Comparing saturation, chaining and BFS. We also compare the saturation algo-
rithm with other popular strategies to compute the set of reachable states,
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global: N transition relations Rg ... Ra—1

1 def bfs(S): 1 def chaining(S):
2 U+ S 2 U—S
3 while U #£ 0 : 3 while U # 0 :
4 U « par-next (U, 0, M) 4 for i€ [0,M) :
5 U «— minus(U, S) 5 U « relprodunion(U, R;)
6 S «— union(U, S) 6 U «— minus(U, S)
7 return S 7 S < union(U, S)
8 def par-next(S, i, k): 8 return §
9 if k=1 : return relprod(S, R;)
10 do in parallel:
11 left «— par-next (S, i, k/2)
12 right < par-next(S, i+ k/2, k — k/2)
13 return union (left, right)

Fig. 5. Algorithms bfs and chaining implement the Parallel BFS and Chaining strate-
gies for reachability.

namely standard (parallelized) BFS and chaining, given in Fig.5. As Tables2
and 3 show, chaining is significantly faster than BFS and saturation is again
significantly faster than chaining. In terms of parallel scalability, we see that
parallelized BF'S scales better than the others, because it can already parallelize
in the main loop by computing successors for all relations in parallel, which
chaining and saturation cannot do. For the entire set of benchmarks, saturation
is the superior method, however there are individual differences and for some
models, saturation is not the fastest method.

6 Conclusion

We presented a multi-core implementation of saturation for the efficient com-
putation of the set of reachable states. Based on Sylvan’s multi-core decision
diagram framework, the design of the saturation algorithm is mostly orthogo-
nal to the type of decision diagram. We showed the implementation for BDDs
and LDDs; the translation relation can be learned on-the-fly. The functionality
is accessible through the LT'Smin high-performance model checker. This makes
parallel saturation available for a whole collection of asynchronous specification
languages. We demonstrated multi-core saturation for Promela and for Petri
nets in PNML representation.

We carried out extensive experiments on a benchmark of Petri nets from the
Model Checking Contest. The total speedup of on-the-fly saturation is 5.9x on 16
cores with the Sloan variable ordering and 7.9x with the Force variable ordering.
However, there are many small models (computed in less than a second) in this
benchmark. For some larger models we showed an impressive 52x speedup on a
48-core machine. From our measurements, we further conclude that the efficiency
and parallel speedup for the BDD variant is just as good as the speedup for
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LDDs. We compared efficiency and speedup of saturation versus other popular
exploration strategies, BFS and chaining. As expected, saturation is significantly
faster than chaining, which is faster than BFS; this trend is maintained in the
parallel setting. Our measurements show that the variable ordering (Sloan versus
Force), and the model representation (pre-computed transition relations versus
learned on-the-fly) do have an impact on efficiency and speedup. Parallel speedup
should not come at the price of reduced efficiency. To this end, we compared our
parallel saturation algorithm for one worker to saturation in Meddly. Meddly
solves fewer models within the timeout, but is slightly faster in other cases, but
parallel saturation quickly overtakes Meddly with multiple workers.

Future work could include the study of parallel saturation on exciting new
BDD types, like tagged BDDs and chained BDDs [8,19]. The results on tagged
BDDs showed a significant speedup compared to ordinary BDDs on experiments
in LTSmin with the BEEM benchmark database. Another direction would be to
investigate the efficiency and speedup of parallel saturation in other applications,
like CTL model checking, SCC decomposition, and bisimulation reduction.
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Abstract. An appealing feature of Signal Temporal Logic (STL) is the
existence of efficient monitoring algorithms both for Boolean and real-
valued robustness semantics, which are based on computing an aggregate
function (conjunction, disjunction, min, or max) over a sliding window.
On the other hand, there are properties that can be monitored with the
same algorithms, but that cannot be directly expressed in STL due to
syntactic restrictions. In this paper, we define a new specification lan-
guage that extends STL with the ability to produce and manipulate
real-valued output signals and with a new form of until operator. The
new language still admits efficient offline monitoring, but also allows to
express some properties that in the past motivated researchers to extend
STL with existential quantification, freeze quantification, and other fea-
tures that increase the complexity of monitoring.

1 Introduction

Signal Temporal Logic (STL [16,17]) is a temporal logic designed to specify
properties of real-valued dense-time signals. It gained popularity due to the
rigour and the ability to reason about analog and mixed signals; and it found
use in such domains as analog circuits, systems biology, cyber-physical control
systems (see [3] for a survey). A major use of STL is in monitoring: given a signal
and an STL formula, an automated procedure can decide whether the formula
holds at a given time point.

Monitoring of STL is reliably efficient. A monitoring procedure typically
traverses the formula bottom up, and for every sub-formula computes a satisfac-
tion signal, based on satisfaction signals of its operands. Boolean monitoring is
based on the computation of conjunctions and disjunctions over a sliding window
(“until” is implemented using a specialized version of running conjunction), and
robustness monitoring (computing how well a signal satisfies a formula [9,10]) is
based on the computation of minimum and maximum over a sliding window. The
complexity of both Boolean and robustness monitoring is linear in the length of
the signal and does not depend on the width of temporal windows appearing in
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the formula. At the same time, for a range of applications, pure STL is either
not expressive enough or difficult to use, and specifying a desired property often
becomes a puzzle of its own. The existence of robustness and other real-valued
semantics does not always help, since a monitor can perform a limited set of
operations that the semantics assigns to Boolean operators. For example, for
robustness semantics, min and max are the only operations beyond the atomic
proposition level.

One way to work around the expressiveness issues of STL is pre-processing:
a computation that cannot be performed by an STL monitor can be performed
by a pre-processor and supplied as an extra input signal. For a number of rea-
sons, this is not always satisfactory. First, for monitoring of continuous-time
signals, there is a big gap between the logical definitions of properties and the
implementation of monitors. In continuous-time setting, properties are defined
using quantification, upper and lower bounds, and similar mathematical tools
for dense sets, while a monitor works with a finite piecewise representation of a
signal and performs a computation that is based on induction and other tools
for discrete sets. Leaving this gap exposed to the user, who has to implement
the pre-processing step, is not very user-friendly. Second, monitoring of some
properties cannot be cleanly decomposed into a pre-processing step followed by
standard STL monitoring. Later, we give a concrete example using an extended
“until” operator, and for now, notice that “until” instructs the monitor to com-
pute a conjunction over the window that is not fixed in advance, but is defined
by its second operand. Because of that, multiple researches have been motivated
to search for a more expressive superset of STL that would allow to specify the
properties they were interested in.

One direction for extension is to add to the original quantifier-free logic
(MTL, STL) a form of variable binding: a freeze quantifier as in STL* [6], a
clock reset as in TPTL [1], or even first order quantification [2]. Unfortunately,
such extensions are detrimental to complexity of monitoring. When monitoring
logics with quantifiers using standard bottom-up approach, subformulas con-
taining free variables evaluate not to Boolean- or real-valued signals, but to
maps from time to non-convex sets, and they cannot in general be efficiently
manipulated (although for some classes of formulas monitoring of logics with
quantifiers works well [4,13]). Perhaps the most benign in this respect but also
least expressive extension is 1-TPTL (TPTL with one active clock), which is
as expressive as MITL, but is easier to use and admits a reasonably efficient
monitoring procedure [11].

An alternative direction is to define a quantifier-free specification language
with more flexible syntax and sliding window operations. For example, Signal
Convolution Logic (SCL [20]) allows to specify properties using convolution with
a set of select kernels. In particular, it can express properties of the form “state-
ment ¢ holds on an interval for at least X% of the time”. In SCL, every formula
has a Boolean satisfaction signal, but some works go further and allow a for-
mula to produce a real-valued output signal based on the real-valued signals of
its subformulas. This already happens for robustness of STL in a very limited
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way, and can be extended. For example, [19] presents temporal logic monitor-
ing as filtering, which allows to derive multiple different real-valued semantics.
Another work [7] focuses on the practical application of robustness in falsifica-
tion and allows to choose between different possible robust semantics for “even-
tually” and “always”, in particular to replace min or max with integration where
necessary.

This paper is our take on extending STL in the latter direction. We define a
specification language that is more expressive than STL, but not less efficient to
monitor offline, i.e., the complexity of monitoring is linear in the length of the
signal and does not depend on the width of temporal windows in the formula
(the latter property tends to be missing from the STL extensions, even when the
authors can achieve linear complexity for a fixed formula). The most important
features of the new language are as follows.

1. We remove several syntactic constrains from STL: we allow a formula to have
a real-valued output signal; we allow these signals to be combined in a point-
wise way with arithmetic operations, comparisons, etc. This distinguishes us
from the works that use standard MTL or STL syntax and assign them new
semantics [10,19].

2. We allow to apply an efficiently computable aggregate function over a sliding
window. We currently focus on min and max, which are enough to specify
properties that motivated the development of more expressive and hard to
monitor logics.

3. We offer a version of “until” operator that performs aggregation over a sliding
window of dynamic width, that depends on satisfaction of some formula.
This distinguishes us from the works that focus on aggregation over a fixed
window [20].

Finally, we focus our attention on continuous-time piecewise-constant and piece-
wise linear signals; we describe the algorithms and prepare an implementation
only for piecewise-constant.

2 Motivating Examples

Before formally defining the new language, let us look at some examples of
properties that we would like to express. In particular, we look at properties that
motivated the development of more expressive and harder to monitor logics.

Example 1 (Stabilization). The first interesting property is stabilization
around a value that is not known in advance, e.g., “x stays within 0.05 units of
some value for at least 200 time units”. It is tempting, to formalize this prop-
erty using existential quantification “there exists a threshold v, such that...”,
which is possible with first-order logic of signals (and was one of its motiva-
tional properties [2]), but it is actually not necessary. Instead, we can compute
the minimum and maximum of x over the next 200 time units and compare
their distance to 0.1 = 2 - 0.05. In some imaginary language, we could write
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max|o,200] X — mingg 200) X < 0.1. At this point we propose to separate the aggre-
gate operators from the operator that defines the temporal window, which will
be useful later, when the “until” operator will define a window of variable width.
We use the operator On, ) to define the temporal window of constant width
and the operators Min and Max (capitalized) to denote the minimum and max-
imum over the previously defined window. Signal = stabilizes within 0.05 units
of an unknown value for 200 time units:

On[O’Q(]O] Max x — On[O,Q()O] Minx < 0.1

Figure 1 shows an example of a signal x(¢) (red) performing damped oscillation
with the period of 250 time units. Blue and green curves are the maximum
and the minimum of x over a siding window [z, + 200]. Finally, the orange
Boolean signal (its y scale is on the right) evaluates to true (i.e., y = 1) when
the maximum and minimum of x over the next 200 time units are within 0.1.

Example 2 (Local Maximum). Consider the property: “the current value
of x is a minimum or maximum in some neighbourhood of current time point”.
Previously, a similar property became a motivation to extend STL with freeze
quantifiers [6], but we can also express it by comparing the value of a signal with
some aggregate information about its neighbourhood, which we can do similarly
to the previous example.

Current value of x is a local mazimum on the interval [0, 85] relative to the
current time.

x > Onjo 51 Max x

Figure 2 shows an example of a sine wave x(¢) (red) with the period of 250 time
units. Blue curve is the maximum x over a siding window [¢, 7 + 85]. The orange
Boolean signal evaluates to true when the current value of x is a maximum for
the next 85 time units.

0.3 T T T T T T T

T T T T
11 1 b
0.2 | 1
0.1 4 05 | 4
0 0 0| .

0.1}

X —
0n[0,200] Max x 4 X
0On[0,200] Min x 4 a1k 0n[0,85] Max x

Stable[0,200] | Localmax[0,85]
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Fig. 1. Damped oscillation x(¢) and its max- Fig. 2. Sine wave x(¢), its maxi-
imum and minimum over the window [¢,¢ + mum over the window [¢,7 + 200],
200]. (Color figure online) and whether x(7) is a local max-

imum on the interval [f,¢ + 200].
(Color figure online)
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Example 3 (Stabilization Contd.). We want to be able to assert that x
becomes stable around some value not for a fixed duration, but until some signal
q becomes true. We will be able to do this with our version of “until” operator.
Signal x is stable within 0.05 units of an unknown value until q becomes true:

(Maxx U g)— (Minx U ¢g) <0.1

Intuitively, for a given time point, we want the monitor to find the closest future
time point, where g holds and compute Min and Max of x over the resulting
interval. Note that this property cannot be easily monitored in the framework
of “STL with pre-processing”, since it requires the monitor to compute Min and
Max over a sliding window of variable width, which depends on the satisfaction
signal of g.

Example 4 (Linear Increase). At this point, we can assert x to follow a
more complex shape, for example, to increase or decrease with a given slope.
Let T denote an auxiliary signal that linearly increases with rate 1 (like a clock
of a timed automaton), i.e. we define T(z) = r; this example works as well for
T(t) =t + ¢, where ¢ is a constant. To specify that x increases with the rate 2.5,
we assert that the distance from x to 2.5 - T stays within some bounds.

Signal x increases approximately with slope 2.5 during the next 100 time units:

On[O,lOO] Max |x - 25T| - On[o’lool Min |x - 25T| <0.1

3 Syntax and Semantics

From the examples above we can foresee how the new language looks like. For-
mally, an (input) signal is a function w : T — R", where the time domain T is a
closed real interval [0, |w|] € R, and the number |w| is the duration of the signal.
We refer to signal components using their own letters: x,y,--- € T — R. We
assume that every signal component is piecewise-constant or piecewise-linear.

The semantics of a formula is a piecewise-constant or piecewise-linear func-
tion from real time (thus, has real-valued switching points) to a dual number
(rather than a real). We defer the discussion of dual numbers until Sect. 3.2; for
now we note that they extend reals, and a dual number can be written in the
form a + be, which, when b # 0, denotes a point infinitely close to a. We denote
the set of dual numbers as R,. Our primary use of a dual number is to represent
a time point strictly after an event (switching point, threshold crossing, etc.)
but before any other event can happen; as a result we have to allow an output
signal to have a dual value, denoting a value that is attained at this dual time
point.

Syntax. We can write the abstract syntax of our language as follows:

pur=clx]| fler - on)l On[a,b] AR Ufla,b] olerl Ufia’b]¢2

: (1)
Y = Min g | Max ¢
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where ¢ is a real-valued constant; x refers to an input signal; f is a real-valued
function symbol (e.g., sum, absolute value, etc.); for the On-operator, a and b
can be real numbers or (with some abuse of notation) +co, i.e., the interval may
refer to both past and future, bounded or unbounded; for the U-operator, d is a
real value, and a, b are non-negative, and b can be oo, i.e., the interval refers to
bounded or unbounded future. Let us go over some of the features of the new
language and then formally write down its semantics.

Point-wise Functions. Function symbol f ranges over real-valued functions
R" — R that preserve the chosen shape of signals (and can be lifted to dual num-
bers). In this paper, we focus on piecewise-constant and piecewise-linear signals,
so when f is applied point-wise to a piecewise-constant input, we want the result
to be piecewise-constant; when f is applied point-wise to a piecewise-linear input,
we want the result to be piecewise-linear. Examples of such functions are addi-
tion, subtraction, min and max of finitely many operands (we use lowercase min
and max to denote a real-valued n-ary function), multiplication by a constant,
absolute value, etc.

Boolean Output Signals. Output signals of some formulas can informally
be interpreted as Boolean-valued. In Example 2, “x” and “Onpggs Max x” are
dual-valued, but the result of their comparison, “x > Ong g5; Max x” should be
interpreted as Boolean. Here, we take the more simple path and treat a Boolean
signal as a special case of a real-valued signal that can take the value of 0 or 1.
We expect comparison operators to produce a value in {0, 1}, e.g., 1 < ¢3 is a
shortcut for “if ¢1 < @2 then 1 else 0”. Standard Boolean connectives can then
be defined as follows:

@1 A 2 = min{ey, g2} @1V g2 = max{gi, p2} p=1-9¢

Another option would be to distinguish Boolean-valued formulas on the syntactic
level.

Temporal p-Formulas. Symbol ¢ denotes a temporal formula that has a dual-
valued output signal. In other words, it can be evaluated at a time point and
produces a dual value. A ¢-formula may:

1. refer to an input signal x;

2. apply a real-valued function f pointwise to the outputs its p-subformulas;

3. apply an aggregate function over the sliding window [a, b] (with some abuse
of notation a can be —co, and b can be o);

4. be an “until” formula, which is described in Sect. 3.3.

Interval y-Formulas. A y-formula is evaluated on an interval and does not
have an output signal by itself. Instead, it supplies an aggregate operation that
will be computed when evaluating the containing On-formula or “until”-formula.
It should be possible to efficiently compute this aggregate operation over a sliding
window, and it should preserve the chosen shape of signals. Since we focus on
piecewise-constant and piecewise-linear signals, the two operations that we can
immediately offer are Min and Max, which can be efficiently computed over a



Specification and Efficient Monitoring Beyond STL 85

sliding window using the algorithm of Lemire [9,15], and preserve the piecewise-
constant and piecewise-linear shapes. In discrete time or for piecewise-polynomial
signals, we could use more aggregate operations, e.g., integration.

“Eventually” and “Always”. Standard STL “eventually” and “always” oper-
ators can be expressed in the new language as follows:

F[a,b] @ = On[a’b] ManO G[a,b] Y = Onla»bl Mil’ltp

3.1 Semantics of Until-Free Fragment

The semantics of the until-free fragment is straightforward. The semantics of a
@-formula is a function [¢] : T — R, mapping real time to a dual value. We
define it as:

[x](2) = x(2) [Onpap¢](@) = [w](lz + a1 + b))
[fler .- en)]®) = f([er] @) - .. [en] ()

We abuse the notation so that x is both a symbol referring to a component of
an input signal and the corresponding real-valued function; similarly, f is both
a function symbol and the corresponding function.

The semantics of a y-formula is a function [¢] : (R U —o0) X (Rz U 00) — R,
from an interval of time with real lower bound to a dual value. The upper bound
of the interval can be dual-valued, which will be used by the “until” operation
(see Sect. 3.3).

(2)

[Min ¢][a, b] = glibri[[soﬂ [Max ¢][a, b] = I[rawﬁ[[sa]] (3)

The way we define min and max over an interval for a discontinuous piecewise-
linear function relies on dual numbers, which we explain just below.

3.2 Dual Numbers

Dual numbers extend reals with a new element & that has a property £2 = 0.
A dual number can be written in a form a + be, where a,b € R. We denote
the set of dual numbers as R.. Dual numbers were proposed by the English
mathematician W. Clifford in 1873 and later applied in geometry by the German
mathematician E. Study. One of modern applications of dual numbers and their
extensions is in automatic differentiation [12]: one can exactly compute the value
of the first derivative at a given point using the identity f(x+¢&) = f(x)+ f'(x)e.
Intuitively, & can be understood as an infinitesimal value, and a + be (for b # 0)
is a point that is infinitely close to a. Polynomial functions can be extended
to dual numbers, and via Taylor expansion, so can exponents, logarithms, and
trigonometric functions. We work with piecewise-constant and piecewise-linear
functions with real switching points, and we only make use of basic arithmetic.
For example, if on the interval (b1, b2) the signal x is defined as x(f) = a1t + ay,
then x(by + &) = a1by + ag + a1€ and x(by — &) = a by + ag — a1 €.
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Fig. 3. Signals x and y for Example 8. Fig. 4. Signals x and y for Examples 5
and 6.

Our primary use of a dual number is to represent a time point strictly after
an event (a switching point, a threshold crossing, etc.) but before any other
event can happen, i.e., we use t’ + € to represent the time point that happens
right after ¢t’. The coefficient 1 at & denotes that time advances with the rate of
1 (although another consistently used coefficient works as well). Consequently,
we also allow an output signal to produce a dual value, denoting a value that is
attained at this dual time point. On the other hand, we require that signals are
defined over real time, switching points of piecewise signals are reals, and time
constants in formulas are reals. That is, dual-valued time is only used internally
by the temporal operators and cannot be directly observed.

Minimum and Maximum of a Discontinuous Function. We also use dual-
valued time to define the result of Min and Max for a discontinuous piecewise-
linear function. The standard way to compute minimum and maximum of a
continuous piecewise-linear function on a closed interval is based on the fact
that they are attained at the endpoints of the interval or at the endpoints of
the segments on which the function is defined. Using dual numbers, we extend
it to discontinuous functions: if for ¢ € (by, bs), x(t) = a1t + as then we consider
time points b1 + € and by — & as the candidates for reaching the minimum or
maximum. Let us demonstrate this with an example.

Example 5. Consider the signal x defined as: “x(t) = -0.5r + 1.5ifr €
[0,1);x(r) = 0.5t + 1ifr > 17, as shown in Fig.4. Let us find the minimum
of x on the interval [0, 2+ &]. By our definition, min, ¢[o,2+¢] X(¢) = min{x(0), x(1 —
€),x(1), x(2+¢&)} = x(1—-¢&) = 1+0.5&. This result should be understood as follows:
x(t) approaches the value of 1 from the above with derivative —0.5, but never
reaches it.

Example 6. Our definition of minimum and maximum allows to correctly com-
pare values of piecewise-linear functions around their discontinuity points. In
Example 5, x never reaches the value of its lower bound, and our definition of
minimum produces a dual number that reflects this fact and also specifies the
rate at which x approaches its lower bound. This information would be lost
if we computed the infimum of x. Again consider the signals in Fig.4, with x
defined as before, and “y(t) = ¢, if t € [0,1), y(r) = —=0.5¢ + 1, if t > 17, Let us
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evaluate at time ¢ = 0 the formula Onjg o) Min x > Onjg o) Max y, which denotes
the property Vt,¢t’ € [0,2]. x(¢) > y(¢'). From the previous example, we have
that [Onpg ) Minx[}(0) = 1 + 0.5¢. By a similar argument, [Onpg 2 Max y](0) =
y(1 — &) = 1 — &, which means that y approaches 1 from below with the rate of
1. Since, 1 + 0.5¢ > 1 — &, our property holds at time 0, as expected.

We want to emphasize that while an output signal can take a dual value, its
domain is considered to be a subset of reals. The semantics of temporal operators
are allowed to internally use dual-valued time points, but has to produce an
output signal that is defined over real time. This ensures that a piecewise signal
always has real-valued switching points and that no event can happen at a dual-
valued time point.

Example 7. Consider a formula ¢ = F|g 2)(x = On(_inginf) Min x), where x is as
in Fig. 4. The meaning of ¢ is that within 2 time units x reaches its global mini-
mum. In our semantics, this formula does not hold at time 0. By our definition,
the global minimum of x is 1+ 0.5&, so the semantics of the formula at time 0 is
equivalent to:

[¢l(0) = [Flo,2)(x = 1 + 0.5¢)](0)
= ifIreT.t€[0,2] Ax(t) =1+ 0.5¢ then 1 else 0

where T = [0, |w|] € R. There is no real value of time, where x(¢) yields a dual
value, so the formula does not hold.

3.3 Semantics of Until

The On-operator allowed us to compute minima and maxima over a sliding
window of fixed width. In this section, we introduce a new version of “until”
operator that allows the window to have variable width that depends on the
output signal of some formula.

Reinterpreting the Classical Until as “Find First”. Let us explain how
we extend the “until” operator to work in the new setting. There already exists
real-valued robust semantics of “until”, but we do not believe it to be a good
specification primitive. Instead, re-state standard the Boolean semantics and
based on the re-stated version introduce the new real-(actually, dual-)valued
semantics. Let us recall a possible semantics of untimed until in STL. Informally,
“until” computes a conjunction of the values of the first operand over an interval
that is not fixed, but defined by the second operand. Formally,

[p UST™ g (t) = 3" > 1. q(t') A Vs € [1,1]. p(s)
To denote the STL version of “until” we write it with the superscript: USTE, to
distinguish from the new version that we define for our language. The version
of “until” that we use in this paper is non-strict in the sense of [17]; it requites
that p holds both at ¢ and #’.
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Efficient monitoring of STL “until” relies on instantiating the existential
quantifier. The monitor scans the signal backwards and instantiates ¢’ based on
the earliest time point where ¢ is true. The monitor needs to consider three cases
shown in Figs. 5, 6 and 7.

1 —_— 1 o——
q q q
0 - 0 —/— . 0 —/—— .
; t t’ t '
Fig.5. Case 1: g is Fig. 6. Case 2: g there Fig. 7. Case 3: ¢ becomes
never true in the future. exists the earliest time true, but there is no earli-
point, where g becomes est time point.
true.

1. Figure5: g is false for every ¢’ > t. Then the value of p USTL ¢ at ¢ is false.

2. Figure6: there exists the smallest ' > ¢, where ¢ is true (this includes the
case, where ¢’ = t). Then the value of pUSTlg at ¢ is Vs € [t,¢']. p(s) (predicate
p is not shown in the figure). The monitor needs not consider time points after
t’, since if “forall” produces false on a smaller interval, it will produce false
on a larger one.

3. Figure7: g becomes true in the future, but there is no earliest time point.
In this case, the monitor needs to take the universal quantification over an
interval that ends just after ¢’ (the switching point of g), but before any
other event occurs. We can formalize this reasoning using dual numbers and
say that the value of p USTL g at ¢ is Vs € [t,#” + €]. p(s), where ¢’ + & can be
intuitively understood as a time point that happens after ¢’, but before any
other event can occur.

Below is the equivalent semantics of STL until that resolves the existential quan-
tifier:

Vs € [t,t']. p(s), if there exists the smallest ¢’ > ¢, s.t. g(t")
[p USTE g (¢) = Vs € [t,t’ +&]. p(s), where t' =inf{¢'|t' >t A q(t')},
if 3" > 1. g(¢t'), but there is no smallest ¢’
false, otherwise

Then, a monitor evaluates the universal quantifier via a finite conjunction, since
in practice the signal p has finite variability, i.e. every interval is intersected by
a finite number of constant segments.

Example 8. Let us consider two linear input signals: x(t) = ¢ and y(f) = 2t — 1
(see Fig.3), and let us evaluate the formula (y < x) USTV (x > 1) at time 0
using non-strict “until” semantics. We define the earliest time point where x > 1
becomes true to be 1 + &, thus we need to evaluate the expression V¢ € [0,1 +
gl. y(t) < x(t). At time 1+ &, we get y(1+¢&)=1+2e>1+& = x(1+¢), thus the
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“until” formula does not hold. Informally, we can interpret the result as follows:
when x becomes greater than 1, y becomes greater than x, while non-strict
“until” requires that there exists a point, where both its left- and right-hand
operands hold at the same time.

New Until as “Find First”. At this point, extending “until” to produce a
dual value is straightforward. With every time point, “until” possibly associates
an interval, and we can compute an arbitrary aggregate function over it, instead
of just conjunction. In fact, we introduce two flavors of “until”. The first version:
7/ Ud — works as follows. For every time point ¢, we either associate an
1nterval endlng when ¢ becomes non-zero (i.e., starts holding); or we report that
no suitable end point was found. When such 1nterval exists, we evaluate ¢ on it.
When the interval does not exist, we produce d. Formally,

[l ¢'], if 3 the smallest ¢’ € [t + a, 1 + b], s.t. [e](#) #0
[w]lt,t’ + €], where ¢’ = inf{¢'|t" € [t + a,t + b] A [@] ()},

if 3" € [t + a,t + b). @] (¢") # 0, but there is no smallest ¢’
d, otherwise

[[‘//U[a b]‘ﬁﬂ([) =

The second version: ¢1 | U %2 does not perform aggregation, but evaluates ¢,
at the time point where 902 becomes non-zero, or produces d if such time point
does not exist:

[e1](#’), if 3 the smallest ¢’ € [ + a,t + b, s.t. [p2])(t") # 0
[e1](t" + &), where ¢ = inf{t'|t’ € [t + a,1 + b] A 2] (')},

if 3t" € [t +a,t + b]. [p2](¢") # 0, but there is no smallest ¢’
d, otherwise

[p1 UE, , 02]®) =

In a similar way, we could define past versions “until”, where the interval [a, b]
refers to the past; we do not discuss them here due to space constraints.
STL Until. The standard STL “until” can be expressed in the new language
as follows:

#1 U] #2 = (Min 1) Up, ) 2

Lookup. Using “until”, we can express the “lookup” operator that queries the
value of a signal at a point in the future, or returns some default value if the
point does not exist.
d d
Dae=¢l U,

Example 9 (Spike). The ST-Lib library [14] uses the following formula to
define a start point of a spike: x” > m A Fjo 4)(x" < —m), where x" is the approx-
imation of the right derivative x’(t) = (x(¢ + 8) — x(¢))/6, m is the magnitude of
the spike, and d is the width. Using the lookup operator, we can include the
definition of x’ in the property itself:

(D x - x)/6 = m AFjgq(Dy x — x)/6 < —m)

where y gives the value of the signal outside of its original domain.
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Fig. 8. Before time 2, an event p is Fig.9. A sequence of spikes and a
followed by an event g. Boolean signal marking the detected

start times of spikes. (Color figure
online)

Example 10 (Spike of Given Width and Height). Our language offers
several alternative ways to define a spike. We can define a (start point of a)
spike by composing two ramps: an increasing one, where the signal x increases
by at least m withing w time units, and a decreasing one, where x decreases by
at least m within w time units; the two ramps should be at most w units apart.
The parameter w is the half-width of the spike.

(On[o,w] Maxx > x +m) A F[O,w](on[o,w] Minx < x —m)

Figure 9 shows an example of a series of spikes (blue) and a Boolean signal (red)
that marks the detected start times of spikes.

Example 11 (TPTL-like Assertion). The second form of “until” allows
to reason explicitly about time points and durations, somewhat similarly to
TPTL. Consider the property “within 2 time units, we should observe an event
p followed by an event ¢” (Fig. 8 shows an example of a satisfying signal). With
some case analysis, this property can be expressed in MTL [5], but probably the
best way to express it is offered by TPTL, that allows to assert “c. F(pAF(gAc <
2))”, meaning “reset a clock ¢, eventually, we should observe p and from that
point, eventually we should observe ¢, while the clock value will be at most 2”.
To express the property in our language, we introduce three auxiliary signals:
T(r) = ¢t (which we use in some other examples as well), pdelay = (T'| U®p) - T,
which denotes the duration until the next occurrence of p and similarly gdelay =
(T'] U®q) — T, the duration until the next occurrence of g. Then, the property
can be expressed as: pdelay + (gqdelay | U®p) < 2.

4 Monitoring

Similarly to other works on STL monitoring (e.g., [9]), we implement the algo-
rithms for a subset of the language, and support the remaining operators via
rewriting rules.
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Rewriting of Until. Similarly to STL, the timed “until” operator in our
language can be expressed in terms of “eventually” (which is expressed using
On), “lookup”, and untimed “until”.

(Min ¢1) Uf’a’ py 2 = if = Flap) @a then d else Onjg o) Min((Min ¢1) U go)
(Max ¢1) Ufa’b] @2 = if = F[4p] @2 then d else Onjg 4 Max((Max ¢1) U ¢2)
@1l UL, #2 = if = Flap) @2 then d else D, (¢1] Ugs)

Let us prove that the first equivalence is true, and for the other two the proof
idea is similar. Let ¢ be the time point where we evaluate (Min gal)Ufia b P2 and its
rewriting. If there is no time point s € [t+a, t+b] where @5 holds, both the original
formula and its rewriting evaluate to d. Otherwise, let s be the earliest time point
in [t + a,t + b], where s holds, which can be a real or dual value, as explained
in Sect. 3.3. Then the original formula evaluates to min{[e1](#") | ' € [z 5]}
The rewritten formula at ¢ evaluates to min{[(Min¢1) U ¢o] | ¢ € [t,t + a]}.
Notice that for every ¢’ there is a time point in the future, which we denote
g(t") where @2 holds, which is at most s, and for ¢’ = ¢ + a it is exactly s. That
is, the rewritten formula evaluates to min{min{[e1](#") | " € [t/,g(t')]} | t' €
[, + al} = min{Je1]J(t”) | ¢ € U{[t’,g(")] | ¢ € [t,t + a]}}. Notice that since
gt e[t',s] and g(t + a) = s, then J{[t’,g(t")] | t’ € [t,t + a]} = [¢,s], and thus
the rewritten formula evaluates to the same value as the original one.
Referring to Both Future and Past. In the syntax, we allow the Ony, )
operator to refer to both future and past, i.e., we allow the case when a < 0
and b > 0. Algorithms for Min/Max over a running window typically cannot
work with this situation directly, and we need to apply the following rewriting:
ifa<0and b >0,

Onyg,p) Min ¢ = min{Ony, 0 Min ¢, Onyg ) Min ¢}
Onyg,p) Max ¢ = max{Ony,,0 Max ¢, Onjg ) Max ¢}

Language of the Monitor. The following subset of the language is equally
expressive as the full language presented in (1). We implement the monitoring
algorithms for this language, and the full syntax of (1) we support via rewriting.

gu=cl x| fler @n) | Onp ¥ |y U@ @1l Ulpy | DLy
Y == Ming | Max ¢

where either @ > 0 or b < 0, i.e., the interval [a, b] cannot refer to both future
and past.

All operators in the language of the monitor admit efficient offline monitoring.
Minimum and maximum over a sliding window required by the On-operator can
be computed using a variation of Lemire’s algorithm [9,15]; “lookup” operator
D shifts its input signal by a constant distance; and for untimed “until” we can
scan the input signal backwards and perform a special case of running minimum
or maximum.
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4.1 Monitoring Algorithms

In this section, we briefly describe monitoring algorithms for piecewise-constant
signals.

Representation of Signals. We represent a piecewise-constant function T —
R or T — R, as a sequence of segments: (sg, 51, ..., Sm-1), where every segment
s; = J; > v; maps an interval J; to a real or dual value v;. The intervals J; form a
partition the domain of the signal and are ordered in ascending time order, i.e.,
sup J; = inf J;11 and J; N Jix1 = @. The domain of the signal corresponding to the
sequence u = (Jg — vy, ..., Ju—1 = Vip—1) is denoted by dom(u) = JoU... U Jy_1.
For example, if the function x(z) is defined as x(¢) = 0, if z € [0, 1), and x(¢) = 1,
if t € [1,2], then x(¢) is represented by the sequence u, = ([0,1) — 0,[1,2] — 1),
and dom(uy) = [0, 2].

Empty brackets () denote an empty sequence that does not represent a valid
signal, but can be used by algorithms as an intermediate value. We manipulate
the sequences with two main operations. The function append adds a segment to
the end of a sequence: append({sq,...,Sm-1)3") = (S0, ..., Sm-1,8"). The function
prepend adds a segment to the start of a sequence: prepend({sg,...,Sm-1),5") =
(s',50,...,8m-1). This may produce a sequence where the first segment does
not start time at time 0. While such a sequence does not represent a valid
signal, it can be used by the algorithms as an intermediate value. The function
removeLast removes the last segment of a sequence, assuming it was non-empty:
removeLast({sg, ..., Sm-1)) = {505 - - -» Sm—2)-

An output signal of a formula is scalar-valued and is represented by one such
sequence. An input signal usually has multiple components, i.e., it is a function
T — R", and is represented by a set of n sequences.

On-Formulas. For Onp, ) Min ¢ and Onp, ) Max ¢, a monitor needs to com-
pute the minimum or maximum of the output signal of ¢ over the sliding window.
The corresponding algorithm was developed for discrete time by Lemire [15] and
later adapted for continuous time [9].

Lookup-Formulas. Computing the output signal for D¢ ¢ is straightforward.
We need to shift every segment of u, (the representation of the output signal
of ¢) to the left by a truncating at 0 and append a padding segment with the
value of d.

Until-Formulas. Informally, monitoring the “until”’-formulas, Min ¢, U4 ¢s,
Max ¢; U9 @y, and ¢; | U4gp,, works as follows. The monitor scans the output
signals of ¢; and ¢y backwards. While ¢y evaluates to a non-zero value, the
monitor outputs the value of ¢;. When ¢, evaluates to 0, the monitor outputs
either the default value (if the monitor did not yet encounter a non-zero value
of ¢3), or the running minimum or maximum of ¢, or the value that ¢; had at
the last time point where ¢ was non-zero.

The function until and untilAnd in Fig.10 implement this idea. The inputs
to the function until are: sequences u; and us representing the output signals
of o1 and @2 (with dom(uy) = dom(usz)), default value d, and the function f
used for aggregation; it can be min, max, or the special function Ax, y. x which
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function until(uy,uy, f,d) function untilAdd(uy,s,v’,J,vi,v2)
let u) = (Jé — V(%""’Jrln—l — vrln_l) if v #0 then
’
let up = (J2 2 .. J2 > v2 ) voev
0 0 k-1 k-1 s 1

i—m-1,j—k-1
(ur, 5,v") & ((),0,d)
while i>0Aj >0 do

end

1A 72
= Jdind; prepend(uy, J > V')
(ur, 5,v") — untilAdd(uy, s,v’, J, vil, V]g) return (u,sv’)
if I el Ve J]?. fi >t then  end
je—j+1
else if e Jj?. vipeJl. n>n
then
i—i+1
else
i+l jej+1
end
end
return u,
end

else if s#0 then
v f(, )

Fig. 10. Algorithm for monitoring “until”-formulas.

returns the value of its first argument and which we use to monitor the formula
©1] U4py. The function until scans the input sequences backwards and iterates
over intervals where both input signals maintain a constant value (J). Each
such interval is passed to the function untilAdd, which updates the state of the
algorithm (v’, s) and constructs the output signal (u,).

5 Implementation and Experiments

We implemented the monitoring algorithm in a prototype tool that is available
at https://gitlab.com/abakhirkin/StlEval. The tool has a number of limitations,
notably it can only use piecewise-constant interpolation (so we cannot evaluate
examples that use the auxiliary signal T(r) = ¢) and does not support past-
time operators. It is written in C++ and uses double-precision floating point
numbers for time points and signal values. We evaluate the tool using a number
of synthetic signals and a number of properties based on the ones described
earlier in the paper.

Signals. We use the following signals discretized with time step 1.

— Xsin — sine wave with amplitude 1 and period 250; see red curve in Fig. 2.

~ Xdecay — damped oscillation with period 250. For ¢ € [0,1000), x defined as
Xdecay () = :jsin(250t + 250)e‘ﬁ"7 see red curve in Fig. 1; for r > 1000, the
pattern repeats;
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— Xspike — series of spikes; a single spike is defined for ¢ € [0, 125) as: Xgpike(f) =
(t-50)2
e 210> | and after that the pattern repeats; see blue curve in Fig. 9.

Properties. We use the following properties:

— ¢stab = G F (Onpo200) Maxx — Onpg200) Minx < 0.1), x always eventually
becomes stable around some value for 200 time units.

= @stab-0 = G F Gjo,2001(]x| < 0.05): x always eventually becomes stable around
0 for 200 time units.

~ untit = Glo200 F (Maxx)Ussg, (167 > 0.1)) = (Min x)Ugss) (1’| 2 0.1)) <

0.1, where x” = (D{ x —x), x always eventually becomes stable for at least 200
time units and then starts changing with derivative of at least 0.1.

~ @max-min = G ((x = Onyg g5 Maxx) = F(x < Onjggs) Min x)), every local
maximum is followed by a local minimum.

~ Qabove-below = G (x > 0.85 = (Fx < —0.85)), if x is above 0.85, it should
eventually become below —0.85.

— @spike = (Ong16) Maxx > x + 0.5) A F[g,16)(Onjo,16) Min x < x — 0.5), spike of
half-width 16 and height at least 0.5.

~ @spike—stlib = F (x” > 0.04 A Fjg 25(x” < =0.04)), where x" = (D x — x), spike of
width at most 25 and magnitude 0.04.

Some properties are expressed in our language using On- and “until”-operators,
and some are STL properties. This allows us to see how much time it takes to
monitor a more complicated property in our language (e.g., @stap, stabilization
around an unknown value) compared to a similar but more simple STL property
(e.g., ¥stab-0, stabilization around a known value). In our experiments we see a
constant factor between 2 and 5.

Table1 shows the evaluation results. A row gives a formula and a signal
shape; a column gives the number of samples in the input signal, and a table
cell gives two time figures in seconds: the monitoring time excluding the time
required to read the input data, and the total runtime of an executable. We note
that for our tool, the total runtime is dominated by the time required to read
the input signal from a text file. For the three STL properties we include the
time it took AMT 2.0 (a monitoring tool written in Java [18]) and Breach (a
Matlab toolbox partially written in C++ [8]; Breach does not have a standalone
executable, so the we leave the corresponding columns empty) to evaluate the
formula. This way we show that our implementation of STL monitoring has
good enough performance to be used as a baseline when evaluating the cost of
the added expressiveness in the new language. Time figures were obtained using
a PC with a Core 13-2120 CPU and 8 GB RAM running 64-bit Debian 8.
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Table 1. Monitoring time for different formulas and signals.

This paper AMT 2.0 Breach
100k IM 100k IM 100k IM
®stab  Xdecay | 0.004 0.0510.048 0.39
Pstab—0 Xdecay | 0.003 0.04|0.023 0.38|0.59 4.0|2.4 7.3/0.053 -|0.42 -
®until Xdecay | 0.01 0.05/0.097 0.43
@max—min Xsin | 0.007 0.04] 0.07 04
@Pabove—below Xsin |0.002 0.04] 0.02 0.36| 0.6 3.1{24 7.5/ 005 -| 04 -
Pspike Xspike | 0.01 0.05| 0.1 045
Pspike—stlib Xspike | 0-006 0.05] 0.05 0.43] 1.0 4.0|5.0 13 |0.058 -|0.47 -

6 Conclusion and Future Work

We describe a new specification language that extends STL with the ability to
produce and manipulate real-valued output signals (while in STL, every formula
has a Boolean output signal). Properties in the new language are specified in
terms of minima and maxima over a sliding window, which can have fixed width,
when using a generalization of F- and G-operators, or variable width, when using
a new version “until”. We show how the new language can express properties that
motivated the creation of more expressive and harder to monitor logics. Offline
monitoring for the new language is almost as efficient as STL monitoring; the
complexity is linear in the length of the input signal and does not depend on the
constants appearing in the formula.

There are multiple directions for future work; perhaps more interesting one
is adding integration over a sliding window (in addition to minimum and max-
imum). This is already allowed by some formalisms [7], and when added to
our language will allow to assert that a signal approximates the behaviour of a
system defined by a given differential equation (since we will be able to assert
y(t) = fot x(t)dr). Before making integration available, we wish to investigate how
to better deal in a specification language with approximation errors. Finally, we
wish to make our language usable in falsification, which means that for every
formula with Boolean output signal we wish to be able to compute a real-valued
robustness measure.

Acknowledgements. The authors thank T. Ferrére, D. Nickovic, E. Asarin for com-
ments on the draft of this paper, and O. Lebeltel for providing a version of AMT for
the experiments.
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Abstract. Runtime Verification (RV) is the process of checking whether
a run of a system holds a given property. In order to perform such a check
online, the algorithm used to monitor the property must induce mini-
mal overhead. This paper focuses on two areas that have received little
attention from the RV community: Python programs and web services.
Our first contribution is the VYPR runtime verification tool for single-
threaded Python programs. The tool handles specifications in our, previ-
ously introduced, Control-Flow Temporal Logic (CFTL), which supports
the specification of state and time constraints over runs of functions.
VYPR minimally (in terms of reachability) instruments the input pro-
gram with respect to a CFTL specification and then uses instrumentation
information to optimise the monitoring algorithm. Our second contribu-
tion is the lifting of VYPR to the web service setting, resulting in the
VYPR2 tool. We first describe the necessary modifications to the archi-
tecture of VyPR, and then describe our experience applying VYPR2 to a
service that is critical to the physics reconstruction pipeline on the CMS
Experiment at CERN.

1 Introduction

Runtime Verification [1] is the process of checking whether a run of a system
holds a given property (often written in a temporal logic). This can be checked
while the system is running (online) or after it has run (post-mortem or offline).
Often this is presented abstractly as checking an abstraction of behaviour, cap-
tured by a trace. This abstract setting often ignores the practicalities of instru-
mentation and deployment. This paper presents a tool for the runtime verifica-
tion of Python-based web services that efficiently handles the instrumentation
problem and integrates with the widely used web-framework Flask [2]. This
work is carried out within the context of verifying web-services used at the CMS
Experiment at CERN.

Despite the wealth of existing logics [3-9], in our work [10,11] performing
verification of state and time constraints over Python-based web services on the
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CMS Experiment at CERN we have found that, in most cases, the existing logics
operate at a high level of abstraction in relation to the program under scrutiny.
This leads to (1) a less straightforward specification process for engineers, who
have to think indirectly about their programs; and (2) difficulty writing spec-
ifications about behaviour inside functions themselves. These observations led
us to develop Control-Flow Temporal Logic [10,11] (CFTL), a logic that has a
tight-coupling with the control flow of the program under scrutiny (so operates
at a lower level of abstraction which, in our experience, makes writing specifi-
cations with it easier for engineers) and is easy to use to specify state and time
constraints over single runs of functions.

After the introduction of CFTL (Sect. 2), the first contribution of this paper is
a description of the VYPR tool (Sect.3), which verifies single-threaded Python
programs with respect to CFTL specifications. It does this by (1) providing
PyCFTL, the Python binding for CFTL, for writing specifications; (2) instru-
menting the input program minimally with respect to reachability; and (3) using
the resulting instrumentation information to make its online monitoring algo-
rithm more efficient.

Since the development of VYPR as a prototype verification tool for CFTL, we
have found that there are, to the best of our knowledge, no frameworks for fully-
automated instrumentation and verification of multiple functions in web services
with respect to low-level properties. Therefore, the second contribution of this
paper is the lifting of CFTL and VYPR to the web service setting in a tool we call
VYPR2 (Sect. 4). We present a general infrastructure for the runtime verification
of Python-based web services with respect to CFTL specifications. Moving from
VYPR to VYPR2 presents a number of challenges, which we discuss in detail.
For the moment, we focus on web services that use the Flask framework, a
Python framework that allows one to write a web service by writing Python
functions to serve as end-points. VyPR2 admits a simple specification process
using PyCFTL, performs automatic and optimised instrumentation of the web
service under scrutiny, and provides a separate verdict server for collection of
verdicts obtained by monitoring CFTL specifications.

Our final contribution is a case study (Sect.5) applying VYPR2 to the CMS
Conditions Upload Service [12], a single-threaded Python-based web service used
on the CMS Experiment at CERN. We find that our verification infrastructure
induces minimal overhead on Conditions uploads, with experiments showing
an overhead of approximately 4.7%. We also find unexpected violations of the
specification, one of which has triggered investigations into a mechanism that was
designed to be an optimisation but is in danger of adding unnecessary latency.
Ultimately, VYPR2 has made analysis of the performance of a critical part of
CMS’ physics reconstruction pipeline much more straightforward.

2 Control-Flow Temporal Logic (CFTL)

Both of the tools presented in this paper make use of the CFTL specification
language [10,11]. We briefly describe this language, focusing on the kinds of
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¢ =VqETs:¢p|Vtelr:d|dVe|-d|true|pa
ba = S(x) = v| S(@) = S() | S(z) € (n,m) | S(z) € [n,m]
| duration(T’) € (n, m) | duration(T") € [n,m]
I's := changes(z) | futures (g, changes(x)) | futures(¢, changes(z))
I'p := calls(f) | futurer (g, calls(f)) | futurer (¢, calls(f))
S :=q| source(T) | dest(T) | nexts (S, changes(z)) | nexts (7T, changes(z))
T :=t|incident(S) | nextr (S, calls(f)) | nextr (T, calls(f))

Fig. 1. Syntax of CFTL.

properties it can capture. CFTL is a linear-time temporal logic whose formulas
reason over two central types of objects: states, instantaneous checkpoints in a
program’s runtime; and transitions, the computation that must happen to move
between states.

Consider the following property, taken from the case study in Sect. 5:

Whenever authenticated is changed, if it is set to True, then all
future calls to execute should take no more than 1 second.

This can be expressed in CFTL as

Vq € changes(authenticated) :
Vt € future(q, calls(execute)) : (1)
g(authenticated) = True = duration(t) € [0, 1]

This first quantifies over the states ¢ in which the program variable
authenticated is changed and then over the transitions ¢ occurring after that
state that correspond to a call of a program function called execute. Given this
pair of ¢ and ¢, the specification then states that if authenticated is mapped
to True by ¢ then the duration of the transition ¢ is within the given range.

Syntaz. Figurel gives the syntax of CFTL. CFTL specifications take prenex
form consisting of a list of quantifiers followed by a quantifier-free part. The
quantification domains are defined by I's (for states) and Iy (for transitions).
Terms produced by the S and T cases denote states and transitions respectively.
We often drop the S and T subscripts from future and next when the meaning is
clear from the context. The quantifier-free part of CFTL formulas is a boolean
combination of atoms generated by ¢ 4. Let A(p) be the set of atoms of a CFTL
formula ¢ and, for a@ € A(yp), let var(a) be the variable on which « is based.
In the above example A(p) = {g(authenticated) = True, duration(t) € [0, 1]},
var(g(authenticated) = True) = ¢, and var(duration(¢) € [0,1]) = t. A CFTL
formula is well-formed if it does not contain any free variables (those not captured
by a quantifier) and every nested quantifier depends on the previously quantified
variable.
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Forall (g = changes (’authenticated’)) .\
Forall (t = calls(’execute’, after='qg’)).\
Check (lambda g, t : (
If(g("authenticated’) .equals (True)) .then
t.duration()._in ([0, 11)
)
))

Fig. 2. An example of a CFTL specification written in Python using PyCFTL.

Semantics. The semantics of CFTL is defined over a dynamic run of the pro-
gram. A dynamic run is a sequence of states 7 = (o,t), where o is a map
(partial functions with finite domain) from program variables/functions to val-
ues and t € RZ is a timestamp. Transitions are then pairs (7, ;) for states 7
and 7;. The product quantification domain over which a CFTL formula is evalu-
ated is derived from the dynamic run using the quantifier list e.g. by extracting
all states where some variable changes. Elements of the product quantification
domain are maps from specification variables to concrete states/transitions and
will be referred to as concrete bindings.

3 VYPR

We now present VYPR, which can perform runtime verification on a single
Python function with respect to some CFTL specification . Further details can
be found in a paper [11] and technical report [10], and the tool is available online
at http://cern.ch/vypr/.

Tool Workflow. To runtime verify a Python function we follow the following
steps. Firstly the property is captured as a CFTL specification using a Python
binding called PyCFTL. Given this specification, VYPR instruments the input
program so that the monitoring algorithm receives data from any points in the
program that could contribute to a verdict. Finally, the modified program will
communicate with the monitor at runtime, which will process the observations
to produce a verdict.

3.1 Writing CFTL Specifications with PyCFTL

The first step is to write a CFTL specification. Note that such a specification is
specific to a particular function being verified as it refers directly to the symbols
in that function. For specification we provide PyCFTL, a Python binding for
CFTL. Figure 2 shows the PyCFTL specification for the CFTL specification in
Eq.1. A CFTL specification is defined in PyCFTL in two parts:

1. The first part is the quantification sequence. For example, the quantification
Vq € changes(z) is given as Forall (g = changes(’'x’)).
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2. The second part, the argument to Check (), gives the property to be eval-
uated for each concrete binding in the quantification domain. This is done
by specifying a template for the specification with a lambda expression (an
anonymous function in Python) whose arguments match the variables in the
quantification sequence.

3.2 Instrumenting for CFTL

VYPR instruments a Python program for a CFTL specification ¢ by building
up the set Inst containing all points in the program that could contribute to the
verdict of p. VYPR works at the level of the abstract syntax tree (AST) of the
program and the program points of interest are nodes in the AST. Once this set
of nodes has been computed, the AST is modified to add instruments at each of
these points.

During runtime monitoring the most expensive operation is usually the
lookup of the relevant monitor state that needs to be modified. To make moni-
toring more efficient, our instrumentation algorithm computes Inst by computing
a direct lookup structure that allows the monitoring algorithm to go directly to
this state. This structure can be abstractly viewed as a tree, H,, whose leaves
are sets that form a partition of Inst and whose intermediate nodes contain the
information required to identify the relevant monitoring state.

The first step in computing H, is to construct the Symbolic Control-Flow
Graph (SCFG) of the body of a (Python) function f.

Definition 1. A symbolic control-flow graph (SCFG) is a directed graph
(V, E,vs) whereV is a finite set of symbolic states (maps from all program sym-
bols, e.g. program variables/functions, to a status in {changed, unchanged, called,
undefined} ), E CV XV is a finite set of edges, and vy € V is the initial symbolic
state.

The SCFG of a function f is independent of any property ¢ being checked.
Our construction of the SCFG of a program encodes information about state
changes (by symbolic states) and reachability (by edges being generated for
each state-changing instruction in code), making it an ideal structure from
which to derive candidate points for state changes. The SCFG is used to find all
symbolic states or edges that could generate concrete bindings in the product
quantification domain of a formula. For example, if the CFTL specification is
Vq € changes(z) : g(x) < 10, all symbolic states representing changes to x will
be identified as having potential to generate concrete bindings. From this, we
construct a set of static bindings, which are maps from specification variables to
candidate symbolic states/edges in the SCFG. The key distinction between con-
crete and static bindings is that static bindings are computed from the SCFG
before runtime, and can correspond to zero or more concrete bindings during
runtime. We call the set of static bindings the binding space for ¢ with respect
to the SCFG and denote it by B, with the SCFG implicit. Elements 3 of B,
form the top level of the tree H,,.
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Data: ¢ and the SCFG (V, E,v,) of function f

Result: Lookup tree H,,

// Construct B,

B, = {0};

foreach quantified variable (x; € predicate) in ¢ in order do

for v € V do
if v is a candidate for predicate then

By, ={BU[zi—v]|B € By Ai>1— reaches((zi—1),v)};
end
end
// Construct H,
He = 0;
for § € B, with index ig do
for quantified variable z; in ¢ with index iq do
foreach a € {a € A(p) | var(a) = z;} with index i do
| Holig,igyia) < lift(a, B(xi));
end
end
end

Algorithm 1: VYPR’s algorithm for construction of the tree H,,.

Once B, is constructed, for each 3 € By, VYPR lifts each o € A(yp) (the
atoms of ¢) from the dynamic context to the SCFG in order to find the relevant
symbolic states/edges around the symbolic state/edge ((var(c)). This process
constructs the second and third levels of the tree H,: the second level consisting
of variables, and the third level of atoms in A(y). The leaves on the fourth level
of the tree H, are then the subsets of Inst; sets of symbolic states or edges from
the SCFG.

Whilst we can abstractly view H, as a tree, in practice we represent it as
a map from triples (ig,iv,iq) to symbolic states/edges of the SCFG where iz,
iy and i, are indices into the binding space, quantifier list, and set of atoms
respectively. An instrument placed in the input program for an atom «, using
H,, contains a triple to identify a subset of Inst and a value obs which is whatever
code is required to obtain the value necessary to compute a truth value for c.
For example, if the instrument is being placed to record the value of a program
variable, obs is the name of the variable which, at runtime, is evaluated to give
the value the variable holds. Such an instrument, which pushes its triple and
evaluated obs value to a queue to be consumed by the monitoring thread, is
placed by modifying the Abstract Syntax Tree (AST) of the program.

Our algorithm for construction of H, is Algorithm 1. This makes use of a
predicate reaches which checks whether one symbolic state is reachable from
another in the SCFG; and a function lift(a, v) for a € A(p) and v € V which
gives the symbolic states reachable from v obtained by lifting « to the static
context. With the tree H, and binding space B, defined, in the next section we
present our monitoring approach.
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3.3 Monitoring for CFTL

The modified version of the body of f resulting from instrumentation is run
alongside VYPR/’s monitoring algorithm, which consumes data from instruments
via a consumption queue populated by the main program thread. Monitoring is
performed asynchronously. VYPR’s monitoring algorithm involves instantiating
a formula tree (an and-or tree) for each binding in the quantification domain
of a formula. This algorithm uses the triple (ip,iv,is) and evaluated obs value
given by each instrument to perform lookup (to find in which formula trees to
update the truth value of a specific atom), decide if new formula trees should be
instantiated and compute the truth value of the atom at index i, in A(y).

Given a CFTL formula Vg1 € In,...,Yg, € I, : ¥(q1,...,qn), when
monitoring one can interpret multiple quantification as single quantification
over a product space I7 X --- X I,. Such a space contains concrete bindings
[q1 — v1,...,qn +— v,] for states or transitions v;. Each of these concrete bind-
ings generated at runtime corresponds to a single static binding 5 € B,. Using
this correspondence, we say that each concrete binding has a supporting static
binding B € B,.

Given that monitoring is performed by instantiating a formula tree for each
concrete binding in the product quantification domain, the speed of lookup of
relevant formula trees is greatly increased by grouping them by the indices of
supporting static bindings (determined by iz). Hence, to either update or instan-
tiate formula trees, when information is observed from an instrument that helps
to evaluate 1 at some concrete binding, the supporting static binding must be
found, giving rise to the requirement for static information during monitoring.
During monitoring, lookup of which set of formula trees to use is straightforward
since the index i is given by the instrument.

Once lookup has been performed, the result is a set of formula trees corre-
sponding to the static binding index i5 received from the instrument. From here,
the index i, is used to determine the atom in A(p) whose truth value (computed
using the value given by obs) must be updated in each formula tree.

3.4 Verdict Reports

Once execution has finished, a verdict report is generated, which VYPR keeps
in memory. Since each formula tree corresponds to a single concrete binding,
verdicts share concrete bindings’ correspondence with static bindings. Hence,
verdicts can be grouped by the supporting static bindings. Given the binding
space B, computed during instrumentation, a verdict report V from a single run
of a function can be seen as a partial function

V N li(J — ({T,L} X Rz)*,

sending a static binding 3 € B, to a sequence of pairs containing a verdict
from {T, L} and a timestamp (the time at which the verdict was obtained).
The map V sends static bindings to sequences of pairs, rather than single pairs,
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because single static bindings can support multiple concrete bindings, generating
multiple verdicts. This is the case if, for example, the static binding is inside a
loop that iterates more than once at runtime.

4 An Architecture for Web Service Verification

We begin our description of the architecture of VYPR2, the extension of VYPR
to web services, by isolating a number of requirements imposed by web ser-
vice deployment environments, and production software environments in general,
that must be met.

The environment at CERN inside which our verification infrastructure must
function is similar to most production environments. It consists of machines
for development and production, with each machine automatically pulling the
relevant tags from a central repository once engineers have pushed their (locally-
tested) code. Based on this deployment architecture, and the architecture of web
services, requirements for our Runtime Verification framework include:

Centralised specifications over multiple functions with multiple properties. It
should be possible to verify each function in a web service with respect to multi-
ple properties. Further, specifications for the whole web service should be written
in a single file, to minimise intrusion into the web service’s code.

Making instrumentation data persistent. Web services’ code can be pulled from
a repository onto a production server and, once launched, be restarted multi-
ple times between successive deployments of different code versions. Therefore,
instrumentation data must be persistent between processes.

Persistent verdict data. Similarly, verdict data must be persistent and, further-
more, engineers must be able to perform offline analysis of the verdicts reached
by web services at runtime.

An architecture that meets these requirements is illustrated in Fig. 3, and
described in the following sections. The resulting tool, VYPR2, will soon be
publicly available from http://cern.ch/vypr.

4.1 Specifying Multiple Function, Multiple Property Specifications

For simplicity of use, we have opted to have engineers write their entire specifi-
cation in a central configuration file, in the root directory of their web service.
This is a file written in Python, specifying CFTL properties over the service
using the PyCFTL library.

Part of such a configuration file, using the PyCFTL specification given in
Fig. 2, is shown in Fig. 4: one must first give the fully-qualified name of the mod-
ule in the service in standard Python dot notation and then, for each function,
the list of properties built up using PyCFTL.


http://cern.ch/vypr

106 J. H. Dawes et al.

Monitored Web Service Verdict Server

Web Service Frontend

Verdict ’

Online N
q> Verification " q Ins:;llon

Service Code

Instrumentation
.

Relational Verdict
Database

Program Thread Monitor

Fig. 3. The architecture of VYPR extended to web services.

Vq € changes(authenticated) :
Pauth = | Vt € future(g, calls(execute)) :
¢q(authenticated) = True = duration(t) € [0, 1]

"app.metadata_handler" : {
"MetadataHandler.__init__ " : [
Forall (g = changes (’authenticated’)) .\
Forall (t = calls(’execute’, after="qgq’)).\
Check (lambda g, t : (
If(g("authenticated’) .equals (True)) .then(
t.duration () ._in ([0, 11])
)
))

Fig.4. A CFTL specification and its PyCFTL equivalent.

4.2 Instrumentation

Given a specification such as that in Fig. 4, VYPR’s strategy must be extended
to the multiple function, multiple property context. Multiple functions are dealt
with by constructing the SCFG for each function found in the specification and
performing instrumentation for each property.

Instrumentation for each property over the same function is performed
sequentially: VYPR2 instruments using the AST of the input code, and so instru-
mentation for each property progressively modifies the AST.

We now describe the modifications required to the actual instruments. In
VYPR’s simplified setting, instruments need only send the (ig, iv, i) triple along
with the obs value relevant to the atom for which the instrument was placed.
The multiple function, multiple property setting yields several problems that are
solved by modifying existing instruments and adding a new kind.
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In our architecture, monitoring is performed by a single thread, which means
that this thread must have a way to distinguish between instruments received
from different functions. We accomplish this by adding the name of the function
to all instruments added to code. By adding the name of the function to all
instruments, we deal not only with multiple functions, but with monitored func-
tions calling other monitored functions, in which case monitor states for multiple
functions must be maintained at the same time.

We deal with multiple properties over the same function by adding a unique
identifier of a property to each of its instruments. We compute a uniquely identi-
fying string for each property by taking the SHA1 hash of the combination of the
quantification sequence and the template. We add this unique identifier to each
instrument, giving the monitoring algorithm a way to distinguish properties.

Taking the original triple (ig, iy, i), the appropriate obs code, and the new
requirements for the function name and the property hash, the new form of
instruments that are placed by VYPR2 is (function, hash, obs, iz, iv, ).

4.3 Making Instrumentation Data Persistent

The tree H, is dependent on the CFTL formula ¢ for which it has been com-
puted. Hence, if the specification for a given function in the web service consists
of aset g ={p1,...,p,} of CFTL formulas, the data required to monitor each
property at the same time over the same execution of the given function consists
of the set of maps H,, which can be identified by ¢;. In particular, when data is
received from an instrument by the monitoring algorithm, we can assume from
Sect. 4.2 that it will contain a unique identifier for the formula for which it was
placed. Therefore, the correct tree H,, can be determined for each instrument.
We make such instrumentation data persistent by creating new directories in
the root of the web service called binding_spaces and instrumentation_maps
to hold the binding spaces and trees, respectively, computed for each func-
tion/CFTL property combination. To dump the binding spaces and hierarchy
functions in files in these directories, we use Python’s pickle [13] module.

4.4 Activating Verification in a Web Service

Our infrastructure is designed to minimise intrusion, both by minimising the
amount of instrumentation performed and by minimising the amount of code
engineers must add to their services for verification to be performed.

With the Flask-based implementation of VYPR2 that we present here, one
can activate verification by adding the lines from vypr import Verification
and verification = Verification (app) where app is the Flask application
object required when building a web service with the Flask framework.

Running verification = Verification(app) will start up the separate
monitoring thread, similar to VYPR, and will also read the serialised binding
spaces and trees from the directories described in Sect.4.3. It will subsequently
place them in a map G from (module.function, property hash) pairs to objects
containing the unserialised forms of the binding spaces and trees.
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4.5 A Modified Monitoring Algorithm

VYPR’s algorithm uses the tuple (ig,iv,iq) with H, to determine the set of
formula trees to update. In this case, H, is fixed. However, in the web ser-
vice setting, the additional information regarding the current function that has
control and the property to update is present and required to find the correct
binding space and tree given by G. From here the process is the same as that used
by VYPR, since the monitoring problem has once again collapsed to monitoring
a single property over a single function.

4.6 A Verdict Server

For a CFTL formula Vq; € I7,...,Vq, € I, : ¥(q1,...,qn) over a function f,
we use verdicts to refer to the sequence of truth values in ({T, L} x RZ)*, where
¥(q1,...,qn) generates a truth value in {T, L} for each binding in I x -+ x
I, at a time t € RZ. To store such verdicts from a specification written over
a web service, we now present the most substantial modification to VYPR’s
architecture: a central server to collect verdicts. This is, in itself, a separate
system; communication with it takes place via HTTP. It consists of two major
components:

— The server, a Python program that provides an API both for verdict inser-
tion by the monitoring algorithm and for querying by a front-end for verdict
visualisation.

— A relational database whose schema is derived from that of the tree H,,.

We omit further discussion of the server and first state some facts regarding
our relational schema. Functions and properties are paired, so multiple properties
over a single function yield multiple pairs; HTTP requests are used to group
function calls; function calls correspond to function/property pairs; and verdicts
are organised into bindings belonging to a function/property pair. With these
facts in mind, one can answer questions such as:

— “For a given HTTP request, function and property ¢ combination, what were
the verdicts generated by monitoring ¢ across all calls?”

— “For a given verdict and subsystem, which function/property pairs generated
the verdict?”

— “For a given function call and verdict, which lines were part of bindings that
generated this verdict while monitoring some property ?”

5 An Application: The CMS Conditions Uploader

We now present the details of the application of VYPR2 to the CMS Condi-
tions Upload Service. We begin by introducing the data with which the CMS
Conditions Upload Service works. We then give a brief overview of the existing
performance analysis approaches taken at CERN, before describing our app-
roach for replaying real data from LHC runs. Finally, we give our specification
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and present an analysis of the verdicts derived by monitoring the Conditions
Uploader with input taken from our test data, consisting of in the order of 10*
inputs recorded during LHC runs.

5.1 Conditions Data, Their Computation and Upload

CERN is home to the Large Hadron Collider (LHC) [14], the largest and most
powerful particle accelerator ever built. At one of the interaction points on the
LHC beamline lies the Compact Muon Solenoid (CMS) [15], a general purpose
detector which is a composite of sub-detector systems. Physics analysis at CERN
requires reconstruction; a process whose input consists of both Event (collisions)
and Non-Event (alignment and calibrations, or Conditions) data. The lifecycle
of Conditions data begins with its computation during LHC runs, and ends
with its upload to a central Conditions database. The service responsible for
this upload is the CMS Conditions Upload service, a precise understanding of
the performance of which is vital given planned upgrades to the LHC that will
increase the amount of data taken.

The Conditions data used in reconstruction by CMS must define (1) the
alignment and calibrations constants associated with a particular subdetector
of CMS and (2) the time (run of the LHC) during which those constants are
valid. The atomic unit of Conditions is the Payload, which is a serialised C++
class whose fields are specific to the subdetector of CMS to which the class
corresponds. We define when a Payload applies to the subdetector by associating
with it an Interval of Validity (IOV). We then group IOVs into sequences by
defining Tags, which define to which subdetector each Payload associated with
the IOVs it contains applies.

The CMS Conditions Uploader is used for release of Conditions by the auto-
mated Conditions computation that takes place at Tier 0 [16] (CERN’s local
computing grid) and detector experts who require their own Conditions. The
Uploader is responsible for checking whether the Conditions proposed are valid
before inserting the Conditions into the central database.

5.2 A Specification

We now give the specification with which we tested the Upload service on the
upload data we collected, along with an interpretation for each property. These
were written in collaboration with engineers working on the service.

1. app.usage.Usage.new_upload_session

Vq € changes(authenticated) : Whenever authenticated is changed,
Vt € future(q, calls(execute)) : if it is set to True, then all future calls

q(authenticated) = True to execute should take no more than
= duration(¢) € [0, 1] 1 second.
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2. app.routes.check_hashes
Vq € changes(hashes) : duration(next(q, calls(find_new_hashes))) € [0,0.3]
When the variable hashes is assigned, the next call to find_new_hashes

should take no more than 0.3 seconds.

3. app.routes.store_blobs
FEvery call to the con.execute

Vt € calls(con.execute) : method on the current database con-
duration(t) € [0, 2] nection should take no more than 2
seconds.

4. app.metadata_handler.MetadataHandler.__init__

FEvery time the method insert_iovs
s called, the next commit after the

. t(t
duration | " (% . € [0,1] insertion should take no more than 1
calls(commit)) J
second.

Vt € calls(insert_iovs) :

5. app.routes.upload_metadata

Fvery time MetadataHandler 1S
instantiated, the instantiation should
take no more than 1 second.

Vi € calls(MetadataHandler) :
duration(t) € [0, 1]

5.3 Analysis of Verdicts

We present, our analysis of the Conditions uploader with respect to the specifi-
cation in Sect. 5.2. The analysis is performed in two parts:

1. Complete Replay - performing a complete upload replay of 14,610 uploads
collected over a period of 7 months. The time between uploads in this part is
fixed.

2. Single Tag Replay - performing a smaller upload replay of ~ 900 uploads
based on a single Tag. This part is a subset of the first, but where the time
between uploads is varied.

Complete Replay. Figure5 shows the results of monitoring our specification over
a dataset of 14,610 uploads. The x axis is function/property pair IDs from the
verdict database snapshot used to generate the plot. The ID to property corre-
spondence is such that ID 99 refers to property 1; ID 100 to property 2; ID 101
to property 3; ID 102 to property 4; and ID 103 to property 5. Clearly, from
this plot, the violations of property 2 exceed those caused by other properties by
an order of magnitude. The check_hashes function carries out an optimisation
that we call hash checking, used to make sure that a Conditions upload only
sends the Payloads that are not already in the target Conditions database. This
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is possible because Payloads are uniquely identifiable by their hashes. This opti-
misation reduces the time spent on Payload uploads by an order of magnitude
[12], but the frequency of violation in Fig. 5 suggests that the optimisation itself
may be causing unacceptable latency.

Single Tag Replay. Figure6 shows the results of monitoring a subset of our
specification over a dataset of ~ 900 uploads from a single Tag in the Conditions
database. In this case, the x axis is runs of this upload dataset performed with
varying delays between uploads, and the y axis is the number of violations based
on a specification with 3 properties. This plot is of interest because, for the ~ 300
Payloads inserted during this replay, it shows that the latency experienced by
those insertions (in terms of violations of property 3, shown in orange) decreases
as the delay between uploads increases.

5.4 Resulting Investigation

Based on the observations presented in Sect.5.3, we have made investigation
of the number of violations caused by hash checking a priority. It is recognised
that this process is required, and its addition to the Conditions Uploader was a
significant optimisation, but the optimisation can only be considered as such if
it does not introduce unacceptable overhead to the upload process.

It is also clear that we should understand the pattern of violations in Fig. 6
more precisely. Given that the Conditions Uploader must operate successfully
with both the current and upgraded LHC, it is a priority to understand the
behaviour of the Uploader under varying frequencies of uploads. We suspect
that investigation into the pattern seen in Fig.6 will result in modification of
either the Conditions Uploader’s code, or the way in which Conditions are sent
for upload during LHC runs.
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5.5 Performance

We now describe the time and space overhead induced by using VYPR2 to
monitor the specification in Sect. 5.2 over the Conditions Uploader. We consider
both the time overhead on a single upload, and the space required to store
intermediate instrumentation data.

To measure the time overhead induced over a single upload, we found that
measuring overhead by running our complete upload dataset in a small period
of time resulted in erratic database latency (the dataset was recorded over 7
months), so we opted to run a single upload 10 times with and without mon-
itoring. This provided a more realistic upload scenario, and allowed us to see
the overhead induced with respect to a single upload process (the process varies
depending on the Conditions being uploaded). The result, from 10 runs of the
same upload, was an average time overhead of 4.7%. Uploads are performed by a
client sending the Conditions to the upload server over multiple HTTP requests,
so this overhead is measured starting from when the first request is received by
the upload server to when the last response is sent.

The space required to store all of the necessary instrumentation data for the
specification in Sect. 5.2 is divided into space for binding spaces (By,), instrumen-
tation maps (H,) and indices (a map from property hashes to the position in the
specification at which they are found). The binding spaces took up 170 KB, the
instrumentation maps 173 KB and the index map 4.3 KB, giving a total space
overhead for instrumentation data storage of 347.3 KB.

6 Related Work

To the best of our knowledge, there is no existing work on Runtime Verification
of web services. We are also unaware of other (available and maintained) RV
tools for Python (there is Nagini [17], but this focuses on static verification) as
most either operate offline (on log files) or focus on other languages such as Java
[5,7,18] using AspectJ for instrumentation, C [19], or Erlang [20]. Few RV tools
consider the instrumentation problem within the tool. The main exception is
Java-MaC [3] who also use the specification to rewrite the Java code directly.

High-Energy Physics. In High Energy Physics, any form of monitoring concen-
trates on instrumentation in order to carry out manual inspection. For exam-
ple, the instrumentation and subsequent monitoring of CMS’ PHEDEX system
for transfer of physics data was performed [21] and resulted in the identifica-
tion of areas in which latency could be improved. Closer to the case study we
present here, CMS uses the PCLMON tool to monitor Conditions computation
[22]. Finally, the Frontier query caching system performs offline monitoring by
analysing logs [23]. None of these approaches uses a formal specification lan-
guage, and they all collect a single type of statistics for a single defined use case.
On the contrary, VYPR2 is configurable in the sense that one can change the
specification being checked using our formal specification language, CFTL.
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7 Conclusion

We have introduced the VYPR tool for monitoring single-threaded Python pro-
grams with respect to CFTL specifications, expressed using the PyCFTL library
for Python. We then highlighted the problems that one must solve to extend
VYPR’s architecture to the web service setting, and presented the VYPR2
framework which implements our solutions. VYPRZ2 is a complete Runtime Ver-
ification framework for Flask-based web services written in Python; it provides
the PyCFTL library for writing CFTL specifications over an entire web service,
automatic minimal (with respect to reachability) instrumentation and efficient
monitoring. Finally, we have described our experience using VYPR2 to anal-
yse performance of the CMS Conditions Uploader, a critical part of the physics
reconstruction pipeline of the CMS Experiment at CERN.

With the large amount of test data we have at CERN, we plan to extend
VYPR2 to address explanation of violations of any part of a specification. This
has been agreed within the CMS Experiment as being a significant step in devel-
oping the necessary software analysis tools ready for the upgraded LHC.
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Abstract. Verifying hyperproperties at runtime is a challenging prob-
lem as hyperproperties, such as non-interference and observational deter-
minism, relate multiple computation traces with each other. It is neces-
sary to store previously seen traces, because every new incoming trace
needs to be compatible with every run of the system observed so far. Fur-
thermore, the new incoming trace poses requirements on future traces. In
our monitoring approach, we focus on those requirements by rewriting a
hyperproperty in the temporal logic HyperLTL to a Boolean constraint
system. A hyperproperty is then violated by multiple runs of the system if
the constraint system becomes unsatisfiable. We compare our implemen-
tation, which utilizes either BDDs or a SAT solver to store and evaluate
constraints, to the automata-based monitoring tool RVHyper.

Keywords: Monitoring - Rewriting - Constraint-based -
Hyperproperties

1 Introduction

As today’s complex and large-scale systems are usually far beyond the scope
of classic verification techniques like model checking or theorem proving, we
are in the need of light-weight monitors for controlling the flow of information.
By instrumenting efficient monitoring techniques in such systems that oper-
ate in an unpredictable privacy-critical environment, countermeasures will be
enacted before irreparable information leaks happen. Information-flow policies,
however, cannot be monitored with standard runtime verification techniques
as they relate multiple runs of a system. For example, observational deter-
minism [19,21,24] is a policy stating that altering non-observable input has
no impact on the observable behavior. Hyperproperties [7] are a generalization
of trace properties and are thus capable of expressing information-flow poli-
cies. HyperLTL [6] is a recently introduced temporal logic for hyperproperties,
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which extends Linear-time Temporal Logic (LTL) [20] with trace variables and
explicit trace quantification. Observational determinism is expressed as the for-
mula Vr, 7. (out, < outr ) W(ing < ing), stating that all traces 7, 7’ should
agree on the output as long as they agree on the inputs.

In contrast to classic trace property monitoring, where a single run suffices
to determine a violation, in runtime verification of HyperLTL formulas, we are
concerned whether a set of runs through a system violates a given specifica-
tion. In the common setting, those runs are given sequentially to the runtime
monitor [1,2,12,13], which determines if the given set of runs violates the specifi-
cation. An alternative view on HyperLTL monitoring is that every new incoming
trace poses requirements on future traces. For example, the event {in, out} in
the observational determinism example above asserts that for every other trace,
the output out has to be enabled if in is enabled. Approaches based on static
automata constructions [1,12,13] perform very well on this type of specifica-
tions, although their scalability is intrinsically limited by certain parameters:
The automaton construction becomes a bottleneck for more complex specifica-
tions, especially with respect to the number of atomic propositions. Furthermore,
the computational workload grows steadily with the number of incoming traces,
as every trace seen so far has to be checked against every new trace. Even opti-
mizations [12], which minimize the amount of traces that must be stored, turn
out to be too coarse grained as the following example shows. Consider the moni-
toring of the HyperLTL formula V¥, 7. O(ar — —by), which states that globally
if @ occurs on any trace 7, then b is not allowed to hold on any trace 7/, on the
following incoming traces:

| 0] 0]
‘{a} l {a} l {} l {} ‘ —b is enforced on the 1st and 2nd pos. (2)
|

@] O] @

In prior work [12], we observed that traces, which pose less requirements
on future traces, can safely be discarded from the monitoring process. In the
example above, the requirements of trace 1 are dominated by the requirements
of trace 2, namely that b is not allowed to hold on the first and second position of
new incoming traces. Hence, trace 1 must not longer be stored in order to detect a
violation. But with the proposed language inclusion check in [12], neither trace 2
nor trace3 can be discarded, as they pose incomparable requirements. They
have, however, overlapping constraints, that is, they both enforce —b in the first
step.

To further improve the conciseness of the stored traces information, we use
rewriting, which is a more fine-grained monitoring approach. The basic idea is
to track the requirements that future traces have to fulfill, instead of storing
a set of traces. In the example above, we would track the requirement that
b is not allowed to hold on the first three positions of every freshly incoming
trace. Rewriting has been applied successfully to trace properties, namely LTL

{} ‘ —b is enforced on the 1st pos. (1)

{} ‘ —b is enforced on the 1st and 3rd pos. (3)
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formulas [17]. The idea is to partially evaluate a given LTL specification ¢ on an
incoming event by unrolling ¢ according to the expansion laws of the temporal
operators. The result of a single rewrite is again an LTL formula representing
the updated specification, which the continuing execution has to satisfy. We use
rewriting techniques to reduce V2HyperLTL formulas to LTL constraints and
check those constraints for inconsistencies corresponding to violations.

In this paper, we introduce a complete and provably correct rewriting-
based monitoring approach for V2HyperLTL formulas. Our algorithm rewrites
a HyperLTL formula and a single event into a constraint composed of plain
LTL and HyperLTL. For example, assume the event {in, out} while monitor-
ing observational determinism formalized above. The first step of the rewrit-
ing applies the expansion laws for the temporal operators, which results in
(ing < ing) V (outy < outy) AO((outy < outr ) W(ing < ing)). The event
{in,out} is rewritten for atomic propositions indexed by the trace variable 7.
This means replacing each occurrence of in or out in the current expansion step,
i.e., before the O operator, with T. Additionally, we strip the 7’ trace quantifier
in the current expansion step from all other atomic propositions. This leaves us
with (T < in) V (T < out) AO((outr < outr ) W(in, < ing)). After sim-
plification we have —in V out A O((out, < outr ) W(ing < ing)) as the new
specification, which consists of a plain LTL part and a HyperLTL part. Based
on this, we incrementally build a Boolean constraint system: we start by encod-
ing the constraints corresponding to the LTL part and encode the HyperLTL
part as variables. Those variables will then be incrementally defined when more
elements of the trace become available. With this approach, we solely store the
necessary information needed to detect violations of a given hyperproperty.

We evaluate two implementations of our approach, based on BDDs and SAT-
solving, against RVHyper [13], a highly optimized automaton-based monitoring
tool for temporal hyperproperties. Our experiments show that the rewriting
approach performs equally well in general and better on a class of formulas
which we call guarded invariants, i.e., formulas that define a certain invariant
relation between two traces.

Related Work. With the need to express temporal hyperproperties in a suc-
cinct and formal manner, the above mentioned temporal logics HyperLTL and
HyperCTL* [6] have been proposed. The model-checking [6,14,15], satisfiability
[9], and realizability problem [10] of HyperLTL has been studied before.

Runtime verification of HyperLTL formulas was first considered for (co-)k-
safety hyperproperties [1]. In the same paper, the notion of monitorability for
HyperLTL was introduced. The authors have also identified syntactic classes
of HyperLTL formulas that are monitorable and they proposed a monitoring
algorithm based on a progression logic expressing trace interdependencies and
the composition of an LTL3 monitor.

Another automata-based approach for monitoring HyperLTL formulas was
proposed in [12]. Given a HyperLTL specification, the algorithm starts by cre-
ating a deterministic monitor automaton. For every incoming trace it is then
checked that all combinations with the already seen traces are accepted by
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the automaton. In order to minimize the number of stored traces, a language-
inclusion-based algorithm is proposed, which allows to prune traces with redun-
dant information. Furthermore, a method to reduce the number of combination
of traces which have to get checked by analyzing the specification for relations
such as reflexivity, symmetry, and transitivity with a HyperLTL-SAT solver
[9,11], is proposed. The algorithm is implemented in the tool RVHyper [13],
which was used to monitor information-flow policies and to detect spurious
dependencies in hardware designs.

Another rewriting-based monitoring approach for HyperLTL is outlined in
[5]. The idea is to identify a set of propositions of interest and aggregate con-
straints such that inconsistencies in the constraints indicate a violation of the
HyperLTL formula. While the paper describes the building blocks for such a
monitoring approach with a number of examples, we have, unfortunately, not
been successful in applying the algorithm to other hyperproperties of interest,
such as observational determinism.

In [3], the authors study the complexity of monitoring hyperproperties. They
show that the form and size of the input, as well as the formula have a sig-
nificant impact on the feasibility of the monitoring process. They differentiate
between several input forms and study their complexity: a set of linear traces,
tree-shaped Kripke structures, and acyclic Kripke structures. For acyclic struc-
tures and alternation-free HyperLTL formulas, the problems complexity gets as
low as NC.

In [4], the authors discuss examples where static analysis can be combined
with runtime verification techniques to monitor HyperLTL formulas beyond the
alternation-free fragment. They discuss the challenges in monitoring formulas
beyond this fragment and lay the foundations towards a general method.

2 Preliminaries

Let AP be a finite set of atomic propositions and let X = 24 be the correspond-
ing alphabet. An infinite trace t € X* is an infinite sequence over the alphabet.
A subset T C X% is called a trace property. A hyperproperty H C 2(¥%) is a
generalization of a trace property. A finite trace t € X* is a finite sequence
over Y. In the case of finite traces, |t| denotes the length of a trace. We use the
following notation to access and manipulate traces: Let ¢ be a trace and i be a
natural number. ¢[i] denotes the i-th element of ¢. Therefore, ¢[0] represents the
first element of the trace. Let j be natural number. If j > ¢ and 7 > |t|, then
t[¢, j] denotes the sequence t[i]t[i + 1] - - - t[min(j,|t| — 1)]. Otherwise it denotes
the empty trace e. t[i) denotes the suffix of ¢ starting at position ¢. For two finite
traces s and ¢, we denote their concatenation by s - t.

HyperLTL Syntax. HyperLTL [6] extends LTL with trace variables and trace
quantifiers. Let V be a finite set of trace variables. The syntax of HyperLTL is
given by the grammar
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= Vm. | Im. oY
Vo= ar |[YAY [ [OV [P U 9,

where ¢ € AP is an atomic proposition and m € V is a trace variable. Atomic
propositions are indexed by trace variables. The explicit trace quantification
enables us to express properties like “on all traces ¢ must hold”, expressed by
V7. . Dually, we can express “there exists a trace such that ¢ holds”, expressed
by 3m. p. We use the standard derived operators release ¢ R = —(—pU —p),
eventually & ¢ = trueld ¢, globally O¢ = ~ O, and weak until o1 W g ==
(p1U 2) VOe1. As we use the finite trace semantics, O denotes the strong
version of the next operator, i.e., if a trace ends before the satisfaction of ¢
can be determined, the satisfaction relation, defined below, evaluates to false.
To enable duality in the finite trace setting, we additionally use the weak next
operator O ¢ which evaluates to true if a trace ends before the satisfaction of ¢
can be determined and is defined as Oy = O —-p. We call ¢ of a HyperLTL
formula @.1, with an arbitrary quantifier prefix @, the body of the formula. A
HyperLTL formula @Q.% is in the alternation-free fragment if either @ consists
solely of universal quantifiers or solely of existential quantifiers. We also denote
the respective alternation-free fragments as the V" fragment and the 3" fragment,
with n being the number of quantifiers in the prefix.

Finite Trace Semantics. We recap the finite trace semantics for HyperLTL [5]
which is itself based on the finite trace semantics of LTL [18]. In the following,
when using L£(p) we refer to the finite trace semantics of a HyperLTL formula
¢. Let II5, : V — X7 be a partial function mapping trace variables to finite
traces. We define €[0] as the empty set. IIg, [i) denotes the trace assignment that
is equal to Il 4y (m)[4) for all m € dom(I1g,). By slight abuse of notation, we write
t € Iz, to access traces ¢ in the image of Ilg,. The satisfaction of a HyperLTL
formula ¢ over a finite trace assignment 14, and a set of finite traces 7', denoted
by g, Fr ¢, is defined as follows:

I, Fr oax if a € g, (m)[0]

Hﬁn Fr @ lfHﬁn%T(P

Hﬁn}:T(p\/w ifHﬁn':T(pOI‘Hﬁn':Tw

Hﬁn ?TOQO ithEHﬁn.|t|>land Hﬁn[1> ':TQD

Hfgn BFr U if Fi < mingep, t]. Hpn (i) B o AVY) < i.Ignlj) Er @
g, Fr 3w ¢  if there is some ¢ € T such that Ilg, [Tt Er o

I, Ep Vm. @ if for all t € T such that ITg,[m— t] Fr ¢

Due to duality of iU /R, O /O, 3/V, and the standard Boolean operators, every
HyperLTL formula ¢ can be transformed into negation normal form (NNF), i.e.,
for every ¢ there is some 1) in negation normal form such that for all 115, and T'
it holds that I1s, Fr ¢ if, and only if, IIg, Fr 9. The standard LTL semantic,
written ¢ Frrr,, ¢, for some LTL formula ¢ is equal to {7+ t} s, Fg ¢, where
¢’ is derived from ¢ by replacing every proposition p € AP by p.
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3 Rewriting HyperLTL

Given the body ¢ of a V?HyperLTL formula V7, 7’. ¢, and a finite trace t € X+,
we define alternative language characterizations. These capture the intuitive idea
that, if one fixes a finite trace ¢, the language of Vr, 7. ¢ includes exactly those
traces t’ that satisfy ¢ in conjunction with ¢.

Li(p) =t et {m—tn =t} Fo

LT (p) =t € ZT{m =t n' > t}g, Fo

Li(p) = LE(0) N LT (#)
We call @ := ¢ A [’ /7, m/7’] the symmetric closure of ¢, where p[r’ /7, m/7']
represents the expression ¢ in which the trace variables m, 7’ are swapped. The

language of the symmetric closure, when fixing one trace variable, is equivalent
to the language of .

Lemma 1. Given the body ¢ of a V?HyperLTL formula ¥Ym, 7. ¢, and a finite
trace t € XT, it holds that LT(p) = Li(¢p).

Proof.
()

{t' eXt{m=tn =t} F gﬁ}
= eXt{r—t, 1 =t} FoA go[w’/w,w/ﬂ’]}
teXt{ntn =t Fo{rmtn =t} F go[ﬂ’/ﬂ',ﬂ/ﬂ’]}
= eXt{r=tn =t Folr=t,m—th, F cp} = L(p)
We exploit this to rewrite a V2HyperLTL formula into an LTL formula. We define

the projection ¢|T of the body ¢ of a V?HyperLTL formula V7, 7. ¢ in NNF and
a finite trace t € X to an LTL formula recursively on the structure of ¢:

ol = {T ifaco] - {T if @ ¢ ¢[0]

1 otherwise " 1 otherwise
anr|T =a —ap|f = -a
(V)T =lf VYIT (e AT =l AYIT
. 1 if |t| <1
Ol = O g0|f[1> otherwise
Sof =17 if |t < 1
A= C~)<,0|?[1> otherwise
-l if [t < 1
(pU)|F =4 . . .
ITV (lf ANO(pUP)[Fy))  otherwise
O i Jt] < 1
(¢ RY)IF = '

YIF A (olf Vv CN)((chw)\fm)) otherwise
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Theorem 1. Given a V2HyperLTL formula ¥V, 7. and any two finite traces
t,t" € X it holds that t' € LT () if, and only if t' Frrr,, o|f.

Proof. By induction on the size of ¢. Induction Base (¢t = e, where ¢ € X):
Let ¢’ € X7T be arbitrarily chosen. We distinguish by structural induction the
following cases over the formula ¢. We begin with the base cases.

— ar: we know by definition that a,|7 equals T if a € ¢[0] and L otherwise, so
it follows that ¢’ FrrL,, ax|f < a € t[0] & ' € LT (ar).

— Q' t e ﬁ?(aﬂ—/) = a < tl[O] st ':LTLﬁn a&et ':LTLﬁn aﬂllf.

— —a, and —a, are proven analogously.

The structural induction hypothesis states that V' € Yt.¢ € LT(¢) &
t' Furry, ¥|f (SIH1), where 1 is a strict subformula of .
STH
—p Vit € LT(p V) & (¥ € LT(p) V(Y € LTW) E5 (¢ Furi,
olf) v (' Furw,, ¢IF) & t' Furu,, (9 V)T
t=1 t|=1
—0p:t € L7 (09) L= L v ki, 097

- wuw: t' e Lf(wuw) Jg t' e ;C?(lb) <SI—_H1> t ':LTLﬁn ’(/JHT ig t/ ':LTLﬁ,,,

(U
- A, Op and p Ry are proven analogously.

Induction Step (t = e-t*, where e € X, t* € X+): The induction hypothesis states
that V' € Xt.t' € LT (¢) & t' Fur, ¢l (IH). We make use of structural
induction over . All cases without temporal operators are covered as their
proofs above were independent of |t|. The structural induction hypothesis states
for all strict subformulas ¢ that V¢’ € X*.¢' € LT (¢) & t' Frrr,, ¥|T (SIH2).

t*>2
—0pi t' € LE(O9) 2B vy € £ (p) B ) Fun, off © ¢ Fu,
O(elf) =Ly FrrLs, (Op)

—pUp: € LR(pUy) LB (¢ € LRw) v (F € LE(p) A () €
Shtbanis T)A ([ Frrw,, (pUD)F) &

LT (pU)) == (t' FrrL,, Y[-) V(' F e (t
(t' FrrLg, Y1)V (E E olf) A Fur, O(eUY)[T)) &t Fur,, (U Y)

~ Oy and ¢ R are proven analogously.

s
o

V
N

T
* .

4 Constraint-Based Monitoring

For monitoring, we need to define an incremental rewriting that accurately mod-
els the semantics of ¢|T while still being able to detect violations early. To this
end, we define an operation ¢[r, e, i, where e € X' is an event and i is the cur-
rent position in the trace. @[, e,i] transforms ¢ into a propositional formula,
where the variables are either indexed atomic propositions p; for p € AP, or a
variable Ve it and ’U;—,J 41 that act as placeholders until new information about
the trace comes in. Whenever the next event e’ occurs, the variables are defined
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with the result of ¢/[m,€’,i + 1]. If the trace ends, the variables are set to true
and false for v and v~, respectively. We define ¢[r, e, 1] of a V?HyperLTL for-
mula Vm,7’. ¢ in NNF, event e € X', and ¢ > 0 recursively on the structure of
the body ¢:

I — {T ifae e. (cax)[m e i] = {T ifa¢ e.
1 otherwise 1 otherwise
[, e, ] = ay (max)[m, e, = —a;
(90 \ ¢)[7T» ¢, Z] = 90[7‘—7 €, Z] \ "/}[7‘—7 €, 7’] (Qf A ¢) T, €, Z} = 50[7‘—7 €, Z] A ’(/J[’/T, €, 7’]
(Op)[m,e,i = U;,iJrl O)[m e id] = U:;,iJrl
(¢U¢)[Wa€7i] = ’(/J[T(,@J]\/((p[ ]/\ngl/{'(/; 1+1)
((,DR’(/J)[TF,@, Z] = w[ﬂ-’ evi] A ((,0[ e, ] v U;Rw,wl)

We encode a V2HyperLTL formula and finite traces into a constraint system,
which, as we will show, is satisfiable if and only if the given traces satisfy the
formula w.r.t. the finite semantics of HyperLTL. We write v, ; to denote either
v, ; Or v;f’i. For e € X and ¢t € X*, we define

@i
constr(v);e) =T
constr(v, ;,€) =L
constr(vy i, e - t) = @[m, e, i A A (Uw,H-l — Constr(v,¢7i+1,t)>
. vy, i+1 €[, e,i]
encfAP (¢) =T
encyp(e-t) = A a A AN —a; A encip (1),
ac€APnNe a€AP\e

where we use vy ;11 € @[T, e, 1] to denote variables vy, ;41 occurring in the propo-
sitional formula @[m,e,i]. enc is used to transform a trace into a propositional
formula, e.g., enc?a_’b}({a}{mb}) =ap A 2by A a1 A by. For n =0 we omit the
annotation, i.e., we write encap(t) instead of encdp(t). Also we omit the index
AP if it is clear from the context. By slight abuse of notation, we use constr™(p, t)
for some quantifier free HyperLTL formula ¢ to denote constr(vy, . t) if [t| > 0.
For a trace t' € X7, we use the notation enc(t’) E constr(p,t), which evaluates
to true if, and only if enc(t’) A constr(p,t) is satisfiable.

4.1 Algorithm

Figure 1 depicts our constraint-based algorithm. Note that this algorithm can
be used in an offline and online fashion. Before we give algorithmic details,
consider again, the observational determinism example from the introduction,
which is expressed as V2HyperLTL formula V7, 7’. (out, < outy)W(in,
in,). The basic idea of the algorithm is to transform the HyperLTL formula
to a formula consisting partially of LTL, which expresses the requirements of
the incoming trace in the current step, and partially of HyperLTL. Assuming
the event {in, out}, we transform the observational determinism formula to the
following formula: —in V out A O((out, < outy) W(ing < ing)).
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Input :Vm,7'.p, T C Xt
Output: violation or no violation

p—
C=T

foreach t € T' do

Ct = Uy0

tenc =T

while e; := getNeztEvent(t) do
tene = tene A enct(e;)
foreach vy ; € Cy do

L ci= @[, e, 1]

© 00 N O Uk W N

[y
o

Cr=Cy N (vp;— ¢

11 if —sat(C A Cy Atepne) then
12 L return violation

13 foreach U(LH i C; do
14 L Cy =Cy A Vg it

15 foreach v, ; , € C} do

123

A Boolean constraint system is
then build incrementally: we start
encoding the constraints correspond-
ing to the LTL part (in front of the
next-operator) and encode the Hyper-
LTL part (after the next-operator)
as variables that are defined when
more events of the trace come in.
We continue by explaining the algo-
rithm in detail. In line 1, we construct
1 as the negation normal form of
the symmetric closure of the origi-
nal formula. We build two constraint
systems: C' containing constraints of
previous traces and C; (built incre-
mentally) containing the constraints
for the current trace t. Consequently,
we initialize C' with T and C; with
vy,0 (lines2 and 4). If the trace ends,

16 L Cpi=Cy Ay, we deﬁne the re'maininig v variables
’ according to their polarities and add
1 | C=C0NG C; to C. For each new event e; in
18 return no violation the trace t, and each “open” con-
straint in C} corresponding to step i,
ie., vg; € Cy we rewrite the for-
mula ¢ (line9) and define vy ; with
the rewriting result, which, potentially
introduced new open constraints vy ;41 for the next step 7 + 1. The constraint
encoding of the current trace is aggregated in constraint te,. (line7). If the
constraint system given the encoding of the current trace turns out to be unsat-
isfiable, a violation to the specification is detected, which is then returned.

In the following, we sketch two algorithmic improvements. First, instead of
storing the constraints corresponding to traces individually, we use a new data
structure, which is a tree maintaining nodes of formulas, their corresponding
variables and also child nodes. Such a node corresponds to already seen rewrites.
The initial node captures the (transformed) specification (similar to line4) and
it is also the root of the tree structure, representing all the generated constraints
which replaces C' in Fig.1. Whenever a trace deviates in its rewrite result a
new child or branch is added to the tree. If a rewrite result is already present
in the node tree structure there is no need to create any new constraints nor
new variables. This is crucial in case we observe many equal traces or traces
behaving effectively the same. In case no new constraints were added to the
constraint system, we omit a superfluous check for satisfiability.

Second, we use conjunct splitting to utilize the node tree optimization even
more. We illustrate the basic idea on an example. Consider Vr, 7. ¢ with ¢ =

Fig. 1. Constraint-based algorithm for
monitoring V*HyperLTL formulas.
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O((ar < al)V(br < b)), which demands that on all executions on each position
at least on of propositions a or b agree in its evaluation. Consider the two traces
t1 = {a}{a}{a}, t2 = {a}{a,b}{a} that satisfy the specification. As both traces
feature the same first event, they also share the same rewrite result for the first
position. Interestingly, on the second position, we get (a V —b) A s, for ¢; and
(aVb) A s, for ty as the rewrite results. While these constraints are no longer
equal, by the nature of invariants, both feature the same subterm on the right
hand side of the conjunction. We split the resulting constraint on its syntactic
structure, such that we would no longer have to introduce a branch in the tree.

4.2 Correctness

In this technical subsection, we will formally prove correctness of our algorithm
by showing that our incremental construction of the Boolean constraints is equi-
satisfiable to the HyperLTL rewriting presented in Sect. 3. We begin by showing
that satisfiability is preserved when shifting the indices, as stated by the follow-
ing lemma.

Lemma 2. For any Y?HyperLTL formula ¥m, 7. over atomic propositions
AP, any finite traces t,t' € XT and n > 0 it holds that encap(t’) FE
constr(p,t) < enc’ p(t') E constr™(p,t).

Proof. By renaming of the positional indices.

In the following lemma and corollary, we show that the semantics of the next
operators matches the finite LTL semantics.

Lemma 3. For any V2 HyperLTL formula VY, 7'. ¢ over atomic propositions AP
and any finite traces t,t' € XV it holds that enc(t’) E constr(Op,t) < enc(t')
constr(v, 1,t[1)) < enc(t'[1)) F constr(v, o, t[1)).

Proof. Let ¢, t,t" be given. It holds that constr(Op,t) = constr(v, ;,[1))

by definition. As constr(v, ;,t[1)) by construction does not contain any vari-
ables with positional index 0, we only need to check satisfiability with respect
to enc(t'[1)). Thus enc(t') & constr(Op,t) < enc(t’) F constr(v, 1,t[1)) <

enc(t'[1)) E constr(v, 1, t[1)) FEE:L enc(t'[1)) F constr(v, o, t[1)).

Corollary 1. For any Y2 HyperLTL formula ¥, m'. o over atomic propositions

AP and any finite traces t,t' € Xt it holds that enc(t') E constr(Op,t) &

enc(t') E constr(v;l, t[1)) < enc(t'[1)) E constr(vi}o, t[1)).

We will now state the correctness theorem, namely that our algorithm preserves
the HyperLTL rewriting semantics.

Theorem 2. For every V2 HyperLTL formula ¥V, 7. ¢ in negation normal form
over atomic propositions AP and any finite trace t € X7 it holds that Vt' €
Xt Errr,, lf € encap(t’) E constr(p,t).
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Proof. By induction over the size of t. Induction Base (t = e, where e € X'): We
choose ' € X7 arbitrarily. We distinguish by structural induction the following
cases over the formula ¢:

— an: constr(ar,e) = (az)[m,e,0] = T if, and only if, a € e. Thus enc(t') E
constr(arx,e) & a € e e t' Fyry,, x|l
— apr: constr(aq,e) = (aq)|m,e,0] = ag Thus enc(t’) E constr(ar,e) <

def enc |

def |™
6716(75’) Fay<—=a € t/[O] St ':LTLﬁn a <e:> t ':LTLﬁn aﬂ—l|g.
— —a, and —a,s are proven analogously.

The structural induction hypothesis states that V&' € X*.¢" Frry, [f &

enc(t') E constr(1,t) (SIH1), where v is a strict subformula of .

— oVt Frrw, (o V)T & (U Fure, @lT) V(¢ Frw, ¥7) £ (ene(t') F
constr(p,e)) V (enc(t') E constr(y,e)) < (enc(t') E @[, e,0]) V (enc(t’) E
Plm,e,0]) < enc(t') E or,e,0] V i[r, e,0] LLLE enc(t) F (o V )[r, e, 0] <
enc(t') E constr(eo V 1, e).

— Oy constr(Op,e) = (Op)[m,e,0] = v, oA (v,o— constr(v,g,€)) = L.
Thus ¢’ Frrr,, (O@)|f = L < enc(t') F L.

S QUG constr(plipe) = (pUB)me0] = Ylme,0] V (g e,0 A
constr(vy p0,€)) = Wlme 0] = constr(d,e). Thus ' Frrw,

(U Y)|T FrrLg, YIT SHL enc(t') E constr(i, e).
— oA, Op, and ¢ R are proven analogously.

Induction Step (t = e - t*, where e € X and ¢* € X7): The induction hypothesis
states that Vt' € 2%, ¢ Frry,, o|f & enc(t') E constr(p,t*) (IH). We make use
of structural induction over . All base cases are covered as their proofs above
are independent of |¢|. The structural induction hypothesis states for all strict
subformulas 1 that V¢’ € 2%, ' Fpry,, ¢|f < enc(t') E constr(i,t).

- @V
t' Furng, (P VO)IT <t Fur, ¢ff V U Furw,, 9T
ZHL enc(t') E constr(p,t) V enc(t') E constr(y,t)
SN enc(t') E (¢[m,e,0] A A Vg1 — constr(vyr 1,t%))
v, 1 Ep[m,e,0]
Voenc(t') F (¢[m, e, 0] A A Uy 1 — constr(vy 1,t%))
vw/ylecp[w,e,o]
< enc(t) E ([ e 0] Vlm, e, 0])
A A Vg1 — constr(ve 1,t")
v, 1 €p[m,e,0]
A A Vyr 1 — constr(vyy 1,t%)
1),‘/)/‘1690[71',670]
& enc(t’) E (¢ V)[m,e,0)
A A Vg1 — constr(vg1,t*)
vg,1€(pV)[m,e,0]
SASIAN enc(t') E constr(p V 1, t)
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f: «<: trivial, =: Assume a model M, for enc(t’) F p[r, e, 0] A A. By construc-
tion, constraints by ¢ do not share variable with constraints by ¥. We extend
the model by assigning vy 1 with L, for all vy 1 € ¥[m, e, 0] and assigning
the rest of the variables in [, e, 0] arbitrarily.

1H
- Op: ! Fur,, O@)f & 1 Furn,, O¢lf & ¢'[1) Fur, ¢ff <
enc(t'[1)) E constr(p,t*) Lo enc(t’) E constr(Op, t).
- pUY: )
t ':LTLﬁn (@qu)l?
& ' Frrr,, YT V[ Furn,, off A 1) Forwg, (0U9)|E]
SHIHTH LY enc(t') E constr(y,t)
\Y% [enc(t') E constr(p,t) A enc(t') E constr(v;uwl,t*)}
& enc(t') E (¢[r, e, 0] A A vyr 1 — constr(vy 1,t7))
vy 1 E€P[m,e,0]
enc(t’) F (o[, e, 0] A A V1 — constr(vy 1,t"))
V v, 1 Ep[m,e,0]

A enc(t') B (v;uw,1 ANVoypa = constr(v;uw’l,t*))

same as g enc(t/) E ('d}[ﬂ'7 e, 0] \% (90[71'7 €, O} A vc;l/{ 111,1))

A A Vg1 — constr(vy 1,t")
”1/;’,161/’[7(76,0]
A A Vg 1 — constr(vy 1,t%)

v, 1 Ep[m,e,0]
A v;uw,l — constr(v;u%l,t*)
& enc(t') E pUY[r, e, 0]
Vg1 — constr(v¢71,t*)
vg,1E€p U p[m,e,0]
& enc(t") E constr(oUp,t)

— oA, O, and ¢ R are proven analogously.

>

Corollary 2. For any Y2 HyperLTL formula Y7, 7. ¢ in negation normal form
over atomic propositions AP and any finite traces t,t' € XV it holds that t' €
Li(p) & encap(t’) E constr(é,t).

Proof. t' € Li(y) Lol o FrrL, OlF e enc(t’) E constr(p,t).

Lemma 4. For any V?HyperLTL formula ¥r, 7. in negation normal form
over atomic propositions AP and any finite traces t,t' € X7 it holds that
encap(t') ¥ constr(p,t) = Vt" € Xt/ <t — encap(t”) ¥ constr(p,t).

Proof. We proof this via contradiction. We choose t,t’ as well as ¢ arbitrarily,
but in a way such that enc(t’) ¥ constr(p,t) holds. Assume that there exists
a continuation of ¢/, that we call t”| for which enc(t”) F constr(p,t) holds. So
there has to exist a model assigning truth values to the variables in constr(y, t),
such that the constraint system is consistent. From this model we extract all
assigned truths values for positional variables for position |¢| to |¢”| — 1. As ¢/
is a prefix of ¢, we can use these truth values to construct a valid model for
enc(t') E constr(yp,t), which is a contradiction.
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Fig. 2. Runtime comparison between RVHyper and our constraint-based monitor on a
non-interference specification with traces of varying input size.

Corollary 3. For any VY2 HyperLTL formula Y7, 7'. ¢ in negation normal form
over atomic propositions AP and any finite set of finite traces T € P(XT) and
finite trace t' € XT it holds that

t' e ﬂ Li(p) <= encap(t')E /\ constr(p,t).
teT teT

Proof. It holds that Vt,t' € XT.t £ t' — constr(p,t) # constr(p,t’). Follows
with same reasoning as in earlier proofs combined with Corollary 2.

5 Experimental Evaluation

We implemented two versions of the algorithm presented in this paper. The first
implementation encodes the constraint system as a Boolean satisfiability prob-
lem (SAT), whereas the second one represents it as a (reduced ordered) binary
decision diagram (BDD). The formula rewriting is implemented in a Maude [§]
script. The constraint system is solved by either CryptoMiniSat [23] or CUDD
[22]. All benchmarks were executed on an Intel Core i5-6200U CPU @2.30 GHz
with 8 GB of RAM. The set of benchmarks chosen for our evaluation is composed
out of two benchmarks presented in earlier publications [12,13] plus instances of
guarded invariants at which our implementations excels.

Non-interference. Non-interference [16,19] is an important information flow
policy demanding that an observer of a system cannot infer any high security
input of a system by observing only low security input and output. Reformulated
we could also say that all low security outputs 0! have to be equal on all
system executions as long as the low security inputs i'°" of those executions are
the same: V7, 7. (017 < 09 )W(3!°" < 3!9). This class of benchmarks was
used to evaluated RVHyper [13], an automata-based runtime verification tool
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Fig. 3. Runtime comparison between RVHyper and our constraint-based monitor on
the guarded invariant benchmark with trace lengths 20, 20 bit input size.

Table 1. Average results of our implementation compared to RVHyper on traces gen-
erated from circuit instances. Every instance was run 10 times.

instance # traces length time RVHyper time SAT time BDD

XOR1 19 5 12ms 47 ms 49 ms
XOR2 1000 5 16913 ms 996 ms 1666 ms
counterl 961 20 9610 ms 8274ms 303 ms
counter2 1353 20 19041 ms 13772ms 437 ms
MUX1 1000 5 14924 ms 693ms 647 ms
MUX2 80 5 121 ms 79 ms 81 ms

for HyperLTL formulas. We repeated the experiments and depict the results
in Fig.2. We choose a trace length of 50 and monitored non-interference on
1000 randomly generated traces, where we distinguish between a 64 bit input
(left) and an 128 bit input (right). For 64 bit input, our BDD implementation
performs comparably well to RVHyper, which statically constructs a monitor
automaton. For 128 bit input, RVHyper was not able to construct the automaton
in reasonable time. Our implementation, however, shows promising results for
this benchmark class that puts the automata-based construction to its limit.

Detecting Spurious Dependencies in Hardware Designs. The problem
whether input signals influence output signals in hardware designs, was con-
sidered in [13]. Formally, we specify this property as the following HyperLTL
formula: Vr1Vma. (05, < 0my) W(ir, ¢ ir,), where 4 denotes all inputs except
2. Intuitively, the formula asserts that for every two pairs of execution traces
(m1,m2) the value of o has to be the same until there is a difference between
71 and 7y in the input vector i, i.e., the inputs on which o may depend. We
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consider the same hardware and specifications as in [13]. The results are depicted
in Table 1. Again, the BDD implementation handles this set of benchmarks well.
The biggest difference can be seen
between the runtimes for counter2.
This is explained by the fact that
this benchmark demands the highest
number of observed traces, and there-
fore the impact of the quadratic run-
time costs in the number of traces
dominates the result. We can, in
fact, clearly observe this correlation
between the number of traces and the
runtime on RVHyper’s performance
over all benchmarks. On the other
hand our constraint-based implemen-
tations do not show this behavior.

Nin = 50

120

100

80

sec

60

40

20

0 200 400 600 800 1,000

number of traces

Fig. 4. Runtime of the SAT-based algo-
rithm on the guarded invariant benchmark
with a varying number of atomic proposi-
tions.

Guarded Invariants. We consider
a new class of benchmarks, called
guarded invariants, which express a
certain invariant relation between two
traces, which are, additionally, guarded by a precondition. Figure 3 shows the
results of monitoring an arbitrary invariant P : X — B of the following form:
v, 7. O(Vierin «» iqn) — O(P(7) < P(n)). Our approach significantly outper-
forms RVHyper on this benchmark class, as the conjunct splitting optimization,
described in Sect. 4.1, synergizes well with SAT-solver implementations.

Atomic Proposition Scalability. While RVHyper is inherently limited in its
scalability concerning formula size as the construction of the deterministic mon-
itor automaton gets increasingly hard, the rewrite-based solution is not affected
by this limitation. To put it to the test we have ran the SAT-based implementa-
tion on guarded invariant formulas with up to 100 different atomic propositions.
Formulas have the form: Va, 7', (A (inix < ini o)) — OVj2y (outj - <
out;j ), where ny,, noyr represents the number of input and output atomic
propositions, respectively. Results can be seen in Fig.4. Note that RVHyper
already fails to build monitor automata for |n;, + neu:| > 10.

6 Conclusion

We pursued the success story of rewrite-based monitors for trace properties by
applying the technique to the runtime verification problem of Hyperproperties.
We presented an algorithm that, given a V2HyperLTL formula, incrementally
constructs constraints that represent requirements on future traces, instead of
storing traces during runtime. Our evaluation shows that our approach scales in
parameters where existing automata-based approaches reach their limits.
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Abstract. Programs with randomization constructs is an active
research topic, especially after the recent introduction of martingale-
based analysis methods for their termination and runtimes. Unlike most
of the existing works that focus on proving almost-sure termination or
estimating the expected runtime, in this work we study the tail proba-
bilities of runtimes—such as “the execution takes more than 100 steps
with probability at most 1%.” To this goal, we devise a theory of super-
martingales that overapproximate higher moments of runtime. These
higher moments, combined with a suitable concentration inequality, yield
useful upper bounds of tail probabilities. Moreover, our vector-valued
formulation enables automated template-based synthesis of those super-
martingales. Our experiments suggest the method’s practical use.

1 Introduction

The important roles of randomization in algorithms and software systems are
nowadays well-recognized. In algorithms, randomization can bring remarkable
speed gain at the expense of small probabilities of imprecision. In cryptography,
many encryption algorithms are randomized in order to conceal the identity of
plaintexts. In software systems, randomization is widely utilized for the purpose
of fairness, security and privacy.

Embracing randomization in programming languages has therefore been an
active research topic for a long time. Doing so does not only offer a solid infras-
tructure that programmers and system designers can rely on, but also opens
up the possibility of language-based, static analysis of properties of randomized
algorithms and systems.

The current paper’s goal is to analyze imperative programs with randomiza-
tion constructs—the latter come in two forms, namely probabilistic branching
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and assignment from a designated, possibly continuous, distribution. We shall
refer to such programs as randomized programs.!

Runtime and Termination Analysis of Randomized Programs. The run-
time of a randomized program is often a problem of our interest; so is almost-sure
termination, that is, whether the program terminates with probability 1. In the
programming language community, these problems have been taken up by many
researchers as a challenge of both practical importance and theoretical interest.

Most of the existing works on runtime and termination analysis follow either
of the following two approaches.

— Martingale-based methods, initiated with a notion of ranking supermartingale
in [4] and extended [1,6,7,11,13], have their origin in the theory of stochas-
tic processes. They can also be seen as a probabilistic extension of ranking
functions, a standard proof method for termination of (non-randomized) pro-
grams. Martingale-based methods have seen remarkable success in automated
synthesis using templates and constraint solving (like LP or SDP).

— The predicate-transformer approach,pursued in [2,17,19],uses a more syntax-
guided formalism of program logic and emphasizes reasoning by invariants.

The essential difference between the two approaches is not big: an invariant
notion in the latter is easily seen to be an adaptation of a suitable notion of
supermartingale. The work [33] presents a comprehensive account on the order-
theoretic foundation behind these techniques.

These existing works are mostly focused on the following problems: decid-
ing almost-sure termination, computing termination probabilities, and comput-
ing expected runtime. (Here “computing” includes giving upper/lower bounds.)
See [33] for a comparison of some of the existing martingale-based methods.

Our Problem: Tail Probabilities for Runtimes. In this paper we focus on
the problem of tail probabilities that is not studied much so far.? We present a
method for overapproximating tail probabilities; here is the problem we solve.

Input: a randomized program I', and a deadline d € N
Output: an upper bound of the tail probability Pr(Tu, > d), where Ty, is the
runtime of I’

Our target language is a imperative language that features randomization
(probabilistic branching and random assignment). We also allow nondetermin-
ism; this makes the program’s runtime depend on the choice of a scheduler (i.e.
how nondeterminism is resolved). In this paper we study the longest, worst-case
runtime (therefore our scheduler is demonic). In the technical sections, we use
the presentation of these programs as probabilistic control graphs (p CFGs)—this
is as usual in the literature. See e.g. [1,33].

1 'With the rise of statistical machine learning, probabilistic programs attract a lot
of attention. Randomized programs can be thought of as a fragment of probabilis-
tic programs without conditioning (or observation) constructs. In other words, the
Bayesian aspect of probabilistic programs is absent in randomized programs.

2 An exception is [5]; see Sect. 7 for comparison with the current work.
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An example of our target programisin Fig. 1. 1 x := 2; y := 2;
It is an imperative program with randomization: 2 While::(fjnzfo (x_‘;‘ ¥)> 0) do
in Line 3, the value of z is sampled from the uni- 4 if * then
form distribution over the interval [—2,1]. The Z T
symbol * in the line 4 stands for a nondetermin- 7 y iy +z
istic Boolean value; in our analysis, it is resolved S odfi

so that the runtime becomes the longest.

Given the program in Fig. 1 and a choice of a  Fig. 1. An example program
deadline (say d = 400), we can ask the question
“what is the probability Pr(T}u,, > d) for the runtime T,,, of the program to
exceed d = 400 steps?” As we show in Sect. 6, our method gives a guaranteed
upper bound 0.0684. This means that, if we allow the time budget of d = 400
steps, the program terminates with the probability at least 93%.

a randomized program [’

lstep 1: template-based synthesis of vector-valued supermartingales (§3, §5)|
v
upper bounds of higher moments E[Trun], .. ., E[(Trun)™]
v
a deadline d—){step 2: calculation via a concentration inequality (§4)‘

¥
an upper bound of the tail probability Pr(Tun > d)

Fig. 2. Our workflow

Our Method: Concentration Inequalities, Higher Moments, and
Vector-Valued Supermartingales. Towards the goal of computing tail prob-
abilities, our approach is to use concentration inequalities, a technique from
probability theory that is commonly used for overapproximating various tail
probabilities. There are various concentration inequalities in the literature, and
each of them is applicable in a different setting, such as a nonnegative ran-
dom variable (Markov’s inequality), known mean and variance (Chebyshev’s
inequality), a difference-bounded martingale (Azuma’s inequality), and so on.
Some of them were used for analyzing randomized programs [5] (see Sect.7 for
comparison).

In this paper, we use a specific concentration inequality that uses higher
moments E[Trun), - - ., E[(Trun) ] of runtimes Tpyy, up to a choice of the maximum
degree K. The concentration inequality is taken from [3]; it generalizes Markov’s
and Chebyshev’s. We observe that a higher moment yields a tighter bound of
the tail probability, as the deadline d grows bigger. Therefore it makes sense to
strive for computing higher moments.

For computing higher moments of runtimes, we systematically extend the
existing theory of ranking supermartingales, from the expected runtime (i.e. the
first moment) to higher moments. The theory features a wvector-valued super-
martingale, which not only generalizes easily to degrees up to arbitrary K € N,
but also allows automated synthesis much like usual supermartingales.
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We also claim that the soundness of these vector-valued supermartingales is
proved in a mathematically clean manner. Following our previous work [33], our
arguments are based on the order-theoretic foundation of fixed points (namely
the Knaster-Tarski, Cousot—Cousot and Kleene theorems), and we give upper
bounds of higher moments by suitable least fixed points.

Overall, our workflow is as shown in Fig. 2. We note that the step 2 in Fig. 2
is computationally much cheaper than the step 1: in fact, the step 2 yields a
symbolic expression for an upper bound in which d is a free variable. This makes
it possible to draw graphs like the ones in Fig. 3. It is also easy to find a deadline
d for which Pr(T,,, > d) is below a given threshold p € [0, 1].

We implemented a prototype that synthesizes vector-valued supermartingales
using linear and polynomial templates. The resulting constraints are solved by
LP and SDP solvers, respectively. Experiments show that our method can pro-
duce nontrivial upper bounds in reasonable computation time. We also experi-
mentally confirm that higher moments are useful in producing tighter bounds.

Our Contributions. Summarizing, the contribution of this paper is as follows.

— We extend the existing theory of ranking supermartingales from expected
runtimes (i.e. the first moment) to higher moments. The extension has a solid
foundation of order-theoretic fixed points. Moreover, its clean presentation by
vector-valued supermartingales makes automated synthesis as easy as before.
Our target randomized programs are rich, embracing nondeterminism and
continuous distributions.

— We study how these vector-valued supermartingales (and the resulting upper
bounds of higher moments) can be used to yield upper bounds of tail probabil-
ities of runtimes. We identify a concentration lemma that suits this purpose.
We show that higher moments indeed yield tighter bounds.

— Overall, we present a comprehensive language-based framework for overap-
proximating tail probabilities of runtimes of randomized programs (Fig. 2). It
has been implemented, and our experiments suggest its practical use.

Organization. We give preliminaries in Sect. 2. In Sect. 3, we review the order-
theoretic characterization of ordinary ranking supermartingales and present an
extension to higher moments of runtimes. In Sect. 4, we discuss how to obtain
an upper bound of the tail probability of runtimes. In Sect.5, we explain an
automated synthesis algorithm for our ranking supermartingales. In Sect. 6, we
give experimental results. In Sect. 7, we discuss related work. We conclude and
give future work in Sect. 8. Some proofs and details are deferred to the appendices
available in the extended version [22].

2 Preliminaries

We present some preliminary materials, including the definition of pCFGs (we
use them as a model of randomized programs) and the definition of runtime.
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Given topological spaces X and Y, let B(X) be the set of Borel sets on X
and B(X,Y) be the set of Borel measurable functions X — Y. We assume that
the set R of reals, a finite set L and the set [0, 00] are equipped with the usual
topology, the discrete topology, and the order topology, respectively. We use the
induced Borel structures for these spaces. Given a measurable space X, let D(X)
be the set of probability measures on X. For any p € D(X), let supp(p) be the
support of u. We write E[X] for the expectation of a random variable X.

Our use of pCFGs follows recent works including [1].

Definition 2.1 (pCFG). A probabilistic control flow graph (pCFG) is a tuple
I' = (L, V, linit, @init, —, Up, Pr, G) that consists of the following.

— A finite set L of locations. It is a disjoint union of sets Lp, Lp, L, and L4

of deterministic, probabilistic, nondeterministic and assignment locations.

A finite set V' of program variables.

— An initial location iy, € L. — An initial valuation T € RY

— A transition relation — C L x L which is total (i.e. VI.3U'.1— ).

An update function Up : Ly — V x ( B(RY,R)UD(R)UB(R) ) for assignment.

— A family Pr = (Pr;);er, of probability distributions, where Pr; € D(L), for
probabilistic locations. We require that I’ € supp(Pr;) implies [ — .

— A guard function G : Lp x L — B(RY) such that for each [ € Lp and x € RV,
there exists a unique location I’ € L satisfying [ — I’ and & € G(I,').

The update function can be decomposed into three functions Upp : Lap —
V x B(RV,R), Upp : Lap — V x D(R) and Upy : Lay — V x B(R), under
a suitable decomposition Ly = Lap U Lap U Lan of assignment locations.
The elements of Lap, Lap and Lan represent deterministic, probabilistic and
nondeterministic assignments, respectively. See e.g. [33].

An example of a pCFG is shown on zi=x+fz
the right. It models the program in Fig. 1. A2=2Y=2 /fa50 Unif(=2, 1)
The node I is a nondeterministic loca- Ifr” and C
tion. Unif(—2,1) is the uniform distribu- y <0 vyt 2
tion on the interval [—2,1].

A configuration of a pCFG I is a pair (I,z) € L x RV of a location and
a valuation. We regard the set S = L x RY of configurations is equipped with
the product topology where L is equipped with the discrete topology. We say a
configuration (I’ &’) is a successor of (I,x), if I — I’ and the following hold.

zZ =

—~ Ifl € Lp, then 2’ =z and = € G(,1). ~Ifle Ly ULp, then ' = x.

— Ifl € Ly, then ' = x(z; « a), where x(z; < a) denotes the vector obtained
by replacing the x;-component of @ by a. Here z; is such that Up(l) = (z;, u),
and a is chosen as follows: (1) a = u(z) if u € B(RV,R); (2) a € supp(u) if
u € D(R); and (3) a € u if u € B(R).

An invariant of a pCFG I is a measurable set I € B(.S) such that (linit, Tinit) € 1
and I is closed under taking successors (i.e. if ¢ € I and ¢’ is a successor of ¢
then ¢’ € I). Use of invariants is a common technique in automated synthesis
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of supermartingales [1]: it restricts configuration spaces and thus makes the
constraints on supermartingales weaker. It is also common to take an invariant as
a measurable set [1]. A run of I' is an infinite sequence of configurations cocg . . .
such that ¢ is the initial configuration (linit, @init) and ¢;+1 is a successor of ¢;
for each 4. Let Run(I") be the set of runs of I'.

A scheduler resolves nondeterminism: at a location in Ly U L 4, it chooses
a distribution of next configurations depending on the history of configurations
visited so far. Given a pCFG I' and a scheduler o of I', a probability measure
vl on Run(I") is defined in the usual manner. See [22, Appendix B] for details.

Definition 2.2 (reaching time Tg,Tga). Let I" be a pCFG and C' C S be a
set of configurations called a destination. The reaching time to C' is a function
TL : Run(I') — [0, 00] defined by (T )(cocy ...) = argmin;cy(c; € C). Fixing
a scheduler o makes TCI; a random variable, since o determines a probability
measure v% on Run(I'). It is denoted by T ,.

Runtimes of pCFGs are a special case of reaching times, namely to the set
of terminating configurations.

The following higher moments are central to our framework. Recall that we
are interested in demonic schedulers, i.e. those which make runtimes longer.

Definition 2.3 (Mgl; and Mgk) Assume the setting of Definition 2.2, and let
k € Nand c € S. We write Mg];(c) for the k-th moment of the reaching time
of I' from ¢ to C under the scheduler o, i.e. that is, Mg’;(c) = E[(Tgfa)k] =
f(Tgc)k dvle where I', is a pCFG obtained from I" by changing the initial config-

. . . . Lok
uration to c. Their supremum under varying o is denoted by M := sup, Mg’;

3 Ranking Supermartingale for Higher Moments

We introduce one of the main contributions in the paper, a notion of rank-
ing supermartingale that overapproximates higher moments. It is motivated by
the following observation: martingale-based reasoning about the second moment
must concur with one about the first moment. We conduct a systematic theo-
retical extension that features an order-theoretic foundation and vector-valued
supermartingales. The theory accommodates nondeterminism and continuous
distributions, too. We omit some details and proofs; they are in [22, Appendix C].
The fully general theory for higher moments will be presented in Sect.3.2;
we present its restriction to the second moments in Sect. 3.1 for readability.
Prior to these, we review the existing theory of ranking supermartingales,
through the lens of order-theoretic fixed points. In doing so we follow [33].

Definition 3.1 (“nexttime” operation X (pre-expectation)). Given 7 :
S — [0,00], let Xn : S — [0, 00] be the function defined as follows.
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Ifl € Lp and = F G(I,I'), then (Xn)(l,z) = n(I', z).

If I € Lp, then (Xn)(l,z) =Y, ., Pr;(I")n(l', x).
— If I € Ly, then (Xn)(l,z) = sup;_; n(l', x).
- Ifl € La, Up(l) = (:CJ, uw) and [ — I' if u € B(RV R), then (Xn)(l,z) =
n(l',x(z; — u(x))); if u € D(R), then (Xn) (L) = [pnl',x(x; — y))du(y);
and if u € B(R), then (Xn)(l,z) = sup, e, (U, x(z; < y)).

Intuitively, Xn is the expectation of 7 after one transition. Nondeterminism is
resolved by the maximal choice.
We define F : (S — [0,00]) — (S — [0, 00]) as follows.

(Fi(n)(c) = {1 +Xn)(e) celI\C

0 otherwise
The function F} is an adaptation of the Bellman operator, a classic notion in the
theory of Markov processes. A similar notion is used e.g. in [19]. The function
space (S — [0,00]) is a complete lattice structure, because [0, cc] is; moreover
F} is easily seen to be monotone. It is not hard to see either that the expected

(Here “14” accounts for time elapse)

— 1 o . .
reaching time M~ to C coincides with the least fixed point pF3.
The following theorem is fundamental in theoretical computer science.

Theorem 3.2 (Knaster—Tarski, [34]). Let (L,<) be a complete lattice and
f: L — L be a monotone function. The least fixed point pf is the least prefized
point, i.e. pf =min{l € L | f(I) <}. O

The significance of the Knaster-Tarski theorem in verification lies in the induced
proof rule: f(I) <1 = pf <. Instantiating to the expected reaching time MQI =
wFy, it means Fy(n)<n = Mg’l <, i.e. an arbitrary prefixed point of F;—which
coincides with the notion of ranking supermartingale [4]—overapproximates the
expected reaching time. This proves soundness of ranking supermartingales.

3.1 Ranking Supermartingales for the Second Moments

We extend ranking supermartingales to the second moments. It paves the way
to a fully general theory (up to the K-th moments) in Sect. 3.2.

The key in the martingale-based reasoning of expected reaching times (i.e.
first moments) was that they are characterized as the least fixed point of a
function Fj. Here it is crucial that for an arbitrary random variable T', we have
E[T + 1] = E[T]+1 and therefore we can calculate E[T" + 1] from E[T]. However,
this is not the case for second moments. As E[(T + 1)?] = E[T?] + 2E[T] +
1, calculating the second moment requires not only E[T?] but also E[T]. This
encourages us to define a vector-valued supermartingale.

Definition 3.3 (time-elapse function El;). A function El; : [0, c0]? — [0, 00]?
is defined by El; (21, z2) = (21 + 1,22 + 221 + 1).

Then, an extension of F for second moments can be defined as a combination
of the time-elapse function El; and the pre-expectation X.
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Definition 3.4 (F3). Let I be an invariant and C' C I be a Borel set. We define
F2 : (S - [03 00}2) - (S - [0700]2) by
(Fa(n))(e) = {

(X(EL on))(c) cel\C
(0,0) otherwise.

Here X is applied componentwise: (X(n1,72))(c) = ((Xn1)(c), (Xn2)(c)).

We can extend the complete lattice structure of [0, co] to the function space
S — [0,00]? in a pointwise manner. It is a routine to prove that F, is monotone
with respect to this complete lattice structure. Hence F5 has the least fixed

—I1
point. In fact, while M/~ was characterized as the least fixed point of F7, a tuple

(Mg’l,Mgz) is not the least fixed point of F; (cf. Example 3.8 and Theorem 3.9).
However, the least fixed point of F5 overapprozimates the tuple of moments.

Theorem 3.5. For any configuration ¢ € I, (uF»)(c) > (Mg’l(c),mg’z(c)). O

Let T¢, . ,, = min{n, T, }. To prove the above theorem, we inductively prove

(B (L)(e) = ([ T, vk, [(TE,,)? i)
for each o and n, and take the supremum. See [22, Appendix C] for more details.
Like ranking supermartingale for first moments, ranking supermartingale for
second moments is defined as a prefixed point of Fb, i.e. a function n such that
n > F»(n). However, we modify the definition for the sake of implementation.

Definition 3.6 (ranking supermartingale for second moments). A rank-
ing supermartingale for second moments is a function 7 : S — R? such that: (i)

n(c) > (X(Ely o n))(c) for each ¢ € I'\ C; and (ii) n(c) > 0 for each ¢ € I.

Here, the time-elapse function El; captures a positive decrease of the ranking
supermartingale. Even though we only have inequality in Theorem 3.5, we can
prove the following desired property of our supermartingale notion.

Theorem 3.7. If n : S — R? is a supermartingale for second moments, then
(Mg’l(c),mgz(c)) < n(c) for each c € I. O

The following example and theorem show that we cannot replace > with =
in Theorem 3.5 in general, but it is possible in the absence of nondeterminism.

Example 3.8. The figure on the right
shows a pCFG such that I € Lp and all the
other locations are in Ly, the initial location
is lp and l17 is a terminating location. For the
pCFG, the left-hand side of the inequality in
Theorem 3.5 is uFs(lg) = (6,37.5). In contrast, if a scheduler o takes a transition
from Iy to I with probability p, (Mg, (lo), M¢2 (l)) = (6 — 3p, 36 — 3p). Hence

the right-hand side is (M (lo), M (lo)) = (6, 36).
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Theorem 3.9. If Ly = Lay =0, Ve € I. (uFs)(c) = (Mg (¢), M (c)). O

3.2 Ranking Supermartingales for the Higher Moments

We extend the result in Sect. 3.1 to moments higher than second.
Firstly, the time-elapse function El; is generalized as follows.

Definition 3.10 (time-elapse function EI'**). For K eNand ke{1,..., K},

a function EIX* : [0,00]K — [0,00] is defined by EIX*(zy,...,2x) = 1+
25:1 (];)xj Here (lj) is the binomial coefficient.

Again, a monotone function F is defined as a combination of the time-elapse
function Elf’]C and the pre-expectation X.

Definition 3.11 (Fg). Let I be an invariant and C' C I be a Borel set. We
define F : (S — [0,00]%) — (S — [0,00]%) by Fr(n)(c) = (Fx1(n)(c),...,
Fr (n)(c)), where Fr . : (S — [0,00]%) — (S — [0, c]) is given by

(Frx(n))(c) = {(X(Elfk on))(c) ceI\C

0 otherwise.
As in Definition 3.6, we define a supermartingale as a prefixed point of Fik.

Definition 3.12 (ranking supermartingale for K-th moments). We
define 91, ...,nx : S = R by (m1(c),...,nx(c)) = n(c). A ranking supermartin-
gale for K-th moments is a function  : S — RX such that for each k, (i)
ne(c) > (X(ELF o n;))(c) for each ¢ € I'\ C; and (i) mx(c) > 0 for each ¢ € 1.

For higher moments, we can prove an analogous result to Theorem 3.7.

Theorem 3.13. If n is a supermartingale for K-th moments, then for each
—T,1 — K
cel, (Mg (¢),...,M¢g" () <nlc). O

4 From Moments to Tail Probabilities

We discuss how to obtain upper bounds of tail probabilities of runtimes
from upper bounds of higher moments of runtimes. Combined with the result
in Sect. 3, it induces a martingale-based method for overapproximating tail prob-
abilities.

We use a concentration inequality. There are many choices of concentration
inequalities (see e.g. [3]), and we use a variant of Markov’s inequality. We prove
that the concentration inequality is not only sound but also complete in a sense.

Formally, our goal is to calculate is an upper bound of Pr(Té; , > d) for
a given deadline d > 0, under the assumption that we know upper bounds
uy, ..., ug of moments E[TZ ],...,E[(T,)%]. In other words, we want to over-
approximate sup,, p([d, 0o]) where 1 ranges over the set of probability measures
on [0, 00] satisfying ([ zdu(z),..., [«¥ du(z)) < (u1, ..., uk).

To answer this problem, we use a generalized form of Markov’s inequality.
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Proposition 4.1 (see e.g. [3, §2.1]). Let X be a real-valued random variable
and ¢ be a nondecreasing and nonnegative function. For any d € R with ¢(d) > 0,

E[p(X)]

Pr(X >d) < o)

O

By letting ¢(x) = x* in Proposition 4.1, we obtain the following inequality.
It gives an upper bound of the tail probability that is “tight.”

Proposition 4.2. Let X be a nonnegative random variable. Assume E[X*] <
ug for each k € {0,...,K}. Then, for any d > 0,

Pr(X >d) < min &, (1)

Moreover, this upper bound is tight: for any d > 0, there exists a probability
measure such that the above equation holds.

Proof. The former part is immediate from Proposition 4.1. For the latter part,
consider 1 = pdg + (1 — p)dp where §, is the Dirac measure at = and p is the
value of the right-hand side of (1). O

By combining Theorem 3.13 with Proposition 4.2, we obtain the following
corollary. We can use it for overapproximating tail probabilities.

Corollary 4.3. Let n : S — RE be a ranking supermartingale for K-th
moments. For each scheduler o and a deadline d > 0,

Linits Tinit)
I' S < . nk( init, ®init .

Pr(To,, 2 d) < min —— 75— (2)
Here ng, ...,nk are defined by no(c) =1 and n(c) = (m(c),...,nk(c)). O

Note that if K = 1, Corollary 4.3 is essentially the same as [5, Thm 4].
Note also that for each K there exists d > 0 such that % =

minp<p<x 2 inie @init) - Hence higher moments become useful in overapproxi-
mating tail probabilities as d gets large. Later in Sect.6, we demonstrate this

fact experimentally.

5 Template-Based Synthesis Algorithm

We discuss an automated synthesis algorithm that calculates an upper bound
for the k-th moment of the runtime of a pCFG using a supermartingale in
Definitions 3.6 or 3.12. It takes a pCFG I, an invariant I, a set C' C I of
configurations, and a natural number K as input and outputs an upper bound
of K-th moment.

Our algorithm is adapted from existing template-based algorithms for synthe-
sizing a ranking supermartingale (for first moments) [4,6,7]. It fixes a linear or
polynomial template with unknown coefficients for a supermartingale and using
numerical methods like linear programming (LP) or semidefinite programming
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(SDP), calculate a valuation of the unknown coefficients so that the axioms of
ranking supermartingale for K-th moments are satisfied.
We hereby briefly explain the algorithms. See [22, Appendix D] for details.

Linear Template. Our linear template-based algorithm is adapted from [4,7].
We should assume that I', I and C are all “linear” in the sense that expressions
appearing in I are all linear and I and C' are represented by linear inequalities.
To deal with assignments from a distribution like # := Norm(0,1), we also
assume that expected values of distributions appearing in I" are known.

The algorithm first fixes a template for a supermartingale: for each location

I, it fixes a K-tuple (le‘gl abjz+ 0, levl aé-’Kxj +b%) of linear formulas.

Here each aé-’i and bl are unknown variables called parameters. The algorithm
next collects conditions on the parameters so that the tuples constitute a rank-
ing supermartingale for K-th moments. It results in a conjunction of formulas
of a form ¢1 >0A---Ap, >0 = ¢ >0. Here ¢1, ..., ¢, are linear formulas
without parameters and 1 is a linear formula where parameters linearly appear
in the coefficients. By Farkas’ lemma (see e.g. [29, Cor 7.1h]) we can turn such
formulas into linear inequalities over parameters by adding new variables. Its fea-
sibility is efficiently solvable with an LP solver. We naturally wish to minimize
an upper bound of the K-th moment, i.e. the last component of 7(linit, Tinit)-

We can minimize it by setting it to the objective function of the LP problem.

Polynomial Template. The polynomial template-based algorithm is based
on [6]. This time, I', I and C can be “polynomial.” To deal with assignments of
distributions, we assume that the n-th moments of distributions in I" are easily
calculated for each n € N. It is similar to the linear template-based one.

It first fixes a polynomial template for a supermartingale, i.e. it assigns each
location [ a K-tuple of polynomial expressions with unknown coefficients. Like-
wise the linear template-based algorithm, the algorithm reduces the axioms of
supermartingale for higher moments to a conjunction of formulas of a form
w1 > 0A - ANy >0 = ¢ > 0. This time, each ; is a polynomial formula
without parameters and v is a polynomial formula whose coefficients are linear
formula over the parameters. In the polynomial case, a conjunction of such for-
mula is reduced to an SDP problem using a theorem called Positivstellensatz (we
used a variant called Schmiidgen’s Positivstellensatz [28]). We solve the resulting
problem using an SDP solver setting n(linit, Tinit) as the objective function.

6 Experiments

We implemented two programs in OCaml to synthesize a supermartingale based
on (a) a linear template and (b) a polynomial template. The programs translate
a given randomized program to a pCFG and output an LP or SDP problem as
described in Sect. 5. An invariant I and a terminal configuration C' for the input
program are specified manually. See e.g. [20] for automatic synthesis of an invari-
ant. For linear templates, we have used GLPK (v4.65) [12] as an LP solver. For
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polynomial templates, we have used SOSTOOLS (v3.03) [31] (a sums of squares
optimization tool that internally uses an SDP solver) on Matlab (R2018b). We
used SDPT3 (v4.0) [30] as an SDP solver. The experiments were carried out on
a Surface Pro 4 with an Intel Core i5-6300U (2.40 GHz) and 8 GB RAM. We
tested our implementation for the following two programs and their variants,
which were also used in the literature [7,19]. Their code is in [22, Appendix EJ.

Coupon collector’s problem. A probabilistic model of collecting coupons enclosed
in cereal boxes. There exist n types of coupons, and one repeatedly buy cereal
boxes until all the types of coupons are collected. We consider two cases: (1-1)
n =2 and (1-2) n = 4. We tested the linear template program for them.

Random walk. We used three variants of 1-dimensional random walks: (2-1)
integer-valued one, (2-2) real-valued one with assignments from continuous
distributions, (2-3) with adversarial nondeterminism; and two variants of 2-
dimensional random walks (2-4) and (2-5) with assignments from continuous
distributions and adversarial nondeterminism. We tested both the linear and
the polynomial template programs for these examples.

Experimental results. We measured execution times needed for Step 1 in
Fig.2. The results are in Table1. Execution times are less than 0.2s for lin-
ear template programs and several minutes for polynomial template programs.
Upper bounds of tail probabilities obtained from Proposition 4.2 are in Fig. 3.

We can see that our method is applicable even with nondeterministic branch-
ing ((2-3), (2-4) and (2-5)) or assignments from continuous distributions ((2-2),
(2-4) and (2-5)). We can use a linear template for bounding higher moments as
long as there exists a supermartingale for higher moments representable by linear
expressions ((1-1), (1-2) and (2-3)). In contrast, for (2-1), (2-2) and (2-4), only
a polynomial template program found a supermartingale for second moments.

It is expectable that the polynomial template program gives a better bound
than the linear one because a polynomial template is more expressive than a
linear one. However, it did not hold for some test cases, probably because of
numerical errors of the SDP solver. For example, (2-1) has a supermartingale
for third moments that can be checked by a hand calculation, but the SDP
solver returned “infeasible” in the polynomial template program. It appears that
our program fails when large numbers are involved (e.g. the third moments of
(2-1), (2-2) and (2-3)). We have also tested a variant of (2-1) where the initial
position is multiplied by 10000. Then the SDP solver returned “infeasible” in
the polynomial template program while the linear template program returns a
nontrivial bound. Hence it seems that numerical errors are likely to occur to the
polynomial template program when large numbers are involved.

Figure3 shows that the bigger the deadline d is, the more useful higher
moments become (cf. a remark just after Corollary4.3). For example, in
(1-2), an upper bound of Pr(T{ , > 100) calculated from the upper bound of
the first moment is 0.680 while that of the fifth moment is 0.105.

To show the merit of our method compared with sampling-based methods,
we calculated a tail probability bound for a variant of (2-2) (shown in Fig.4 on
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Fig. 3. Upper bounds of the tail probabilities (except (2-5)). Each gray line is the
value of Z—’,j where uy is the best upper bound in Table1 of k-th moments and d is
a deadline. Each black line is the minimum of gray lines, i.e. the upper bound by
Proposition 4.2. The red lines in (1-1), (1-2) and (2-1) show the true tail probabilities
calculated analytically. The red points in (2-2) show tail probabilities calculated by
Monte Carlo sampling where the number of trials is 100000000. We did not calculate
the true tail probabilities nor approximate them for (2-4) and (2-5) because these

examples seem difficult to do so due to nondeterminism. (Color figure online)

Table 1. Upper bounds of the moments of runtimes.
“” indicates that the LP or SDP solver returned
“infeasible”. The “degree” column shows the degree
of the polynomial template used in the experiments.

(a) linear template (b) polynominal template
moment [upper bound[time (s)|[upper bound[time (s)[degree 1 x := 200000000;
(1-1) 1st 13 0.012 2 while true do
2nd 201 0.019 3 if prob(0.7) then
3rd 3829 0.023 4 z := Unif (0,1);
(1-2) 1st 68 0.024 5 X 1= X - z
2nd 3124 0.054 6 else
3rd 171932 0.089 7 z := Unif (0,1);
Ith | 12049876 | 0.126 ] % i x 4 2
5th 1048131068 | 0.191 9 £i;
(2-1) 1st 20 0.024 20.0 24.980 2 10 refute (x < 0)
2nd - 0.013 2320.0 37.609 2 11 od
3rd - 0.017 - 30.932 3
(2-2) 1st 75 0.009 75.0 33.372 2
2nd B 0.014 8375.0 | 73.514 | 2 Fig. 4. A variant of (2-2).
3rd - 0.021 - 170.416 3
(2-3) 1st 62 0.020 62.0 40.746 2
2nd 28605.4 0.038 6710.0 97.156 2
3rd 19567043.36 | 0.057 - 35.427 3
(2-4) 1st 96 0.020 95.95 157.748 2
2nd - 0.029 10944.0 361.957 2
(2-5) 1st 90 0.022 - 143.055 2
2nd - 0.042 - 327.202 2
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p. 12) with a deadline d = 10'!. Because of its very long expected runtime, a
sampling-based method would not work for it. In contrast, the linear template-
based program gave an upper bound Pr(TgJ > 10*1) < 5000000025/10* ~ 0.05
in almost the same execution time as (2-2) (< 0.025s).

7 Related Work

Martingale-Based Analysis of Randomized Programs. Martingale-based
methods are widely studied for the termination analysis of randomized pro-
grams. One of the first is ranking supermartingales, introduced in [4] for prov-
ing almost sure termination. The theory of ranking supermartingales has since
been extended actively: accommodating nondeterminism [1,6,7,11], syntax-
oriented composition of supermartingales [11], proving properties beyond ter-
mination/reachability [13], and so on. Automated template-based synthesis of
supermartingales by constraint solving has been pursued, too [1,4,6,7].

Other martingale-based methods that are fundamentally different from rank-
ing supermartingales have been devised, too. They include: different notions of
repulsing supermartingales for refuting termination (in [8,33]; also studied in
control theory [32]); and multiply-scaled submartingales for underapproximating
reachability probabilities [33,36]. See [33] for an overview.

In the literature on martingale-based methods, the one closest to this work
is [b]. Among its contribution is the analysis of tail probabilities. It is done by
either of the following combinations: (1) difference-bounded ranking supermartin-
gales and the corresponding Azuma’s concentration inequality; and (2) (not nec-
essarily difference-bounded) ranking supermartingales and Markov’s concentra-
tion inequality. When we compare these two methods with ours, the first method
requires repeated martingale synthesis for different parameter values, which can
pose a performance challenge. The second method corresponds to the restriction
of our method to the first moment; recall that we showed the advantage of using
higher moments, theoretically (Sect.4) and experimentally (Sect.6). See [22,
Appendix F.1] for detailed discussions. Implementation is lacking in [5], too.

We use Markov’s inequality to calculate an upper bound of Pr(Tyu, > d) from
a ranking supermartingale. In [7], Hoeffding’s and Bernstein’s inequalities are
used for the same purpose. As the upper bounds obtained by these inequalities
are exponentially decreasing with respect to d, they are asymptotically tighter
than our bound obtained by Markov’s inequality, assuming that we use the same
ranking supermartingale. However, Hoeffding’s and Bernstein’s inequalities are
applicable to limited classes of ranking supermartingales (so-called difference-
bounded and incremental ones, respectively). There exists a randomized pro-
gram whose tail probability for runtimes is decreasing only polynomially (not
exponentially, see [22, Appendix G]); this witnesses that there are cases where
the methods in [7] do not apply but ours can.

The work [1] is also close to ours in that their supermartingales are vector-
valued. The difference is in the orders: in [1] they use the lexicographic order
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between vectors, and they aim to prove almost sure termination. In contrast, we
use the pointwise order between vectors, for overapproximating higher moments.

The Predicate-Transformer Approach to Runtime Analysis. In the run-
time/termination analysis of randomized programs, another principal line of
work uses predicate transformers [2,17,19], following the precedent works on
probabilistic predicate transformers such as [21,25]. In fact, from the mathemati-
cal point of view, the main construct for witnessing runtime/termination in those
predicate transformer calculi (called invariants, see e.g. in [19]) is essentially the
same thing as ranking supermartingales. Therefore the difference between the
martingale-based and predicate-transformer approaches is mostly the matter of
presentation—the predicate-transformer approach is more closely tied to pro-
gram syntax and has a stronger deductive flavor. It also seems that there is less
work on automated synthesis in the predicate-transformer approach.

In the predicate-transformer approach, the work [17] is the closest to ours,
in that it studies variance of runtimes of randomized programs. The main dif-
ferences are as follows: (1) computing tail probabilities is not pursued [17]; (2)
their extension from expected runtimes to variance involves an additional vari-
able 7, which poses a challenge in automated synthesis as well as in generalization
to even higher moments; and (3) they do not pursue automated analysis. See
Appendix F.2 of the extended version [22] for further details.

Higher Moments of Runtimes. Computing and using higher moments of
runtimes of probabilistic systems—generalizing randomized programs—has been
pursued before. In [9], computing moments of runtimes of finite-state Markov
chains is reduced to a certain linear equation. In the study of randomized algo-
rithms, the survey [10] collects a number of methods, among which are some tail
probability bounds using higher moments. Unlike ours, none of these methods
are language-based static ones. They do not allow automated analysis.

Other Potential Approaches to Tail Probabilities. We discuss potential
approaches to estimating tail probabilities, other than the martingale-based one.

Sampling is widely employed for approximating behaviors of probabilistic
systems; especially so in the field of probabilistic programming languages, since
exact symbolic reasoning is hard in presence of conditioning. See e.g. [35]. We
also used sampling to estimate tail probabilities in (2-2), Fig. 3. The main advan-
tages of our current approach over sampling are threefold: (1) our upper bounds
come with a mathematical guarantee, while the sampling bounds can always be
erroneous; (2) it requires ingenuity to sample programs with nondeterminism;
and (3) programs whose execution can take millions of years can still be ana-
lyzed by our method in a reasonable time, without executing them. The latter
advantage is shared by static, language-based analysis methods in general; see
e.g. [2].

Another potential method is probabilistic model checkers such as PRISM [23].
Their algorithms are usually only applicable to finite-state models, and thus not
to randomized programs in general. Nevertheless, fixing a deadline d can make
the reachable part S<4 of the configuration space S finite, opening up the pos-
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sibility of use of model checkers. It is an open question how to do so precisely,
and the following challenges are foreseen: (1) if the program contains contin-
uous distributions, the reachable part S<q becomes infinite; (2) even if S<4 is
finite, one has to repeat (supposedly expensive) runs of a model checker for each
choice of d. In contrast, in our method, an upper bound for the tail probabil-
ity Pr(Tiun > d) is symbolically expressed as a function of d (Proposition 4.2).
Therefore, estimating tail probabilities for varying d is computationally cheap.

8 Conclusions and Future Work

We provided a technique to obtain an upper bound of the tail probability of
runtimes given a randomized algorithm and a deadline. We first extended the
ordinary ranking supermartingale notion using the order-theoretic characteri-
zation so that it can calculate upper bounds of higher moments of runtimes
for randomized programs. Then by using a suitable concentration inequality,
we introduced a method to calculate an upper bound of tail probabilities from
upper bounds of higher moments. Our method is not only sound but also com-
plete in a sense. Our method was obtained by combining our supermartingale
and the concentration inequality. We also implemented an automated synthesis
algorithm and demonstrated the applicability of our framework.

Future Work. Example 3.8 shows that our supermartingale is not complete: it
sometimes fails to give a tight bound for higher moments. Studying and improv-
ing the incompleteness is one possible direction of future work. For example, the
following questions would be interesting: Can bounds given by our supermartin-
gale be arbitrarily bad? Can we remedy the completeness by restricting the type
of nondeterminism? Can we define a complete supermartingale?

Making our current method compositional is another direction of future
research. Use of continuations, as in [18], can be a technical solution.

We are also interested in improving the implementation. The polynomial
template program failed to give an upper bound for higher moments because
of numerical errors (see Sect.6). We wish to remedy this situation. There exist
several studies for using numerical solvers for verification without affected by
numerical errors [14-16,26,27]. We might make use of these works for improve-
ments.
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Abstract. Free-Choice Workflow Petri nets, also known as Workflow
Graphs, are a popular model in Business Process Modeling.

In this paper we introduce Timed Probabilistic Workflow Nets
(TPWNSs), and give them a Markov Decision Process (MDP) semantics.
Since the time needed to execute two parallel tasks is the maximum of
the times, and not their sum, the expected time cannot be directly com-
puted using the theory of MDPs with rewards. In our first contribution,
we overcome this obstacle with the help of “earliest-first” schedulers,
and give a single exponential-time algorithm for computing the expected
time.

In our second contribution, we show that computing the expected time
is #P-hard, and so polynomial algorithms are very unlikely to exist. Fur-
ther, #P-hardness holds even for workflows with a very simple structure
in which all transitions times are 1 or 0, and all probabilities are 1 or
0.5.

Our third and final contribution is an experimental investigation of
the runtime of our algorithm on a set of industrial benchmarks. Despite
the negative theoretical results, the results are very encouraging. In par-
ticular, the expected time of every workflow in a popular benchmark
suite with 642 workflow nets can be computed in milliseconds. Data or
code related to this paper is available at: [24].

1 Introduction

Workflow Petri Nets are a popular model for the representation and analysis
of business processes [1,3,7]. They are used as back-end for different notations
like BPMN (Business Process Modeling Notation), EPC (Event-driven Process
Chain), and UML Activity Diagrams.
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There is recent interest in extending these notations with quantitative infor-
mation, like probabilities, costs, and time. The final goal is the development of
tool support for computing performance metrics, like the average cost or the
average runtime of a business process.

In a former paper we introduced Probabilistic Workflow Nets (PWN), a foun-
dation for the extension of Petri nets with probabilities and rewards [11]. We
presented a polynomial time algorithm for the computation of the expected cost
of free-choice workflow nets, a subclass of PWN of particular interest for the
workflow process community (see e.g. [1,10,13,14]). For example, 1386 of the
1958 nets in the most popular benchmark suite in the literature are free-choice
Workflow Nets [12].

In this paper we introduce Timed PWNs (TPWNs), an extension of PWNs
with time. Following [11], we define a semantics in terms of Markov Decision Pro-
cesses (MDPs), where, loosely speaking, the nondeterminism of the MDP models
absence of information about the order in which concurrent transitions are exe-
cuted. For every scheduler, the semantics assigns to the TPWN an expected
time to termination. Using results of [11], we prove that this expected time is
actually independent of the scheduler, and so that the notion “expected time of
a TPWN” is well defined.

We then proceed to study the problem of computing the expected time of a
sound TPWN (loosely speaking, of a TPWN that terminates successfully with
probability 1). The expected cost and the expected time have a different interplay
with concurrency. The cost of executing two tasks in parallel is the sum of the
costs (cost models e.g. salaries of power consumption), while the execution time
of two parallel tasks is the maximum of their individual execution times. For this
reason, standard reward-based algorithms for MDPs, which assume additivity
of the reward along a path, cannot be applied.

Our solution to this problem uses the fact that the expected time of a TPWN
is independent of the scheduler. We define an “earliest-first” scheduler which,
loosely speaking, resolves the nondeterminism of the MDP by picking transi-
tions with earliest possible firing time. Since at first sight the scheduler needs
infinite memory, its corresponding Markov chain is infinite-state, and so of no
help. However, we show how to construct another finite-state Markov chain with
additive rewards, whose expected reward is equal to the expected time of the
infinite-state chain. This finite-state Markov chain can be exponentially larger
than the TPWN, and so our algorithm has exponential complexity. We prove
that computing the expected time is #P-hard, even for free-choice TPWNs in
which all transitions times are either 1 or 0, and all probabilities are 1 or /2. So,
in particular, the existence of a polynomial algorithm implies P = NP.

In the rest of the paper we show that, despite these negative results, our
algorithm behaves well in practice. For all 642 sound free-choice nets of the
benchmark suite of [12], computing the expected time never takes longer than
a few milliseconds. Looking for a more complicated set of examples, we study
a TPWN computed from a set of logs by process mining. We observe that the
computation of the expected time is sensitive to the distribution of the execution
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time of a task. Still, our experiments show that even for complicated distributions
leading to TPWNs with hundreds of transitions and times spanning two orders
of magnitude the expected time can be computed in minutes.

All missing proofs can be found in the Appendix of the full version [19].

2 Preliminaries

We introduce some preliminary definitions. The full version [19] gives more
details.

Workflow Nets. A workflow net is a tuple N = (P, T, F,i,0) where P and T
are disjoint finite sets of places and transitions; F C (P x T)U (T x P) is a
set of arcs; i,0 € P are distinguished initial and final places such that ¢ has
no incoming arcs, o has no outgoing arcs, and the graph (PUT, F U {(0,4)}) is
strongly connected. For x € PUT, we write *z for the set {y | (y,z) € F} and
x® for {y | (z,y) € F}. We call *z (resp. x*) the preset (resp. postset) of x. We
extend this notion to sets X C PUT by *X & Uzex®r resp. X°® Ed Uzexx®.
The notions of marking, enabled transitions, transition firing, firing sequence,
and reachable marking are defined as usual. The initial marking (resp. final
marking) of a workflow net, denoted by ¢ (resp. o), has one token on place 4
(resp. 0), and no tokens elsewhere. A firing sequence o is a run if i = o, i.e. if
it leads to the final marking. Runn denotes the set of all runs of N.

Soundness and 1-safeness. Well designed workflows should be free of dead-
locks and livelocks. This idea is captured by the notion of soundness [1,2]: A
workflow net is sound if the final marking is reachable from any reachable mark-
ing.! Further, in this paper we restrict ourselves to 1-safe workflows: A marking
M of a workflow net W is 1-safe if M(p) < 1 for every place p, and W itself is
1-safe if every reachable marking is 1-safe. We identify 1-safe markings M with
the set {p € P | M(p) = 1}.

Independence, concurrency, conflict [22]. Two transitions ¢, t3 of a work-
flow net are independent if *t; N *ty = B, and dependent otherwise. Given a 1-safe
marking M, two transitions are concurrent at M if M enables both of them, and
they are independent, and in conflict at M if M enables both of them, and they
are dependent. Finally, we recall the definition of Mazurkiewicz equivalence.
Let N = (P, T, F,i,0) be a 1l-safe workflow net. The relation =;C T x T™* is
defined as follows: o =; 7 if there are independent transitions 1, t2 and sequences
o’,0" € T* such that 0 = ¢’ t; ta0” and 7 = ¢’ t2 t10”. Two sequences o, 7 € T*
are Mazurkiewicz equivalent if 0 = 7, where = is the reflexive and transitive
closure of =;. Observe that ¢ € T* is a firing sequence iff every sequence 7 = o
is a firing sequence.

Confusion-freeness, free-choice workflows. Let t be a transition of a work-
flow net, and let M be a l-safe marking that enables t. The conflict set of t

1In [2], which examines many different notions of soundness, this is called easy
soundness.
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at M, denoted C(t, M), is the set of transitions in conflict with ¢ at M. A
set U of transitions is a conflict set of M if there is a transition ¢ such that
U = C(t,M). The conflict sets of M are given by C(M) = UyerC(t, M). A
1-safe workflow net is confusion-free if for every reachable marking M and every
transition ¢ enabled at M, every transition u concurrent with ¢ at M satisfies
Cu, M) =C(u, M \ *°t) = C(u, (M \ *t) Ut*®). The following result follows eas-
ily from the definitions (see also [11]):

Lemma 1 [11]. Let N be a 1-safe workflow net. If N is confusion-free then for
every reachable marking M the conflict sets C(M) are a partition of the set of
transitions enabled at M.

A workflow net is free-choice if for every two places p1, pa, if p} Np$ # (), then
p} = p3. Any free-choice net is confusion-free, and the conflict set of a transition
t enabled at a marking M is given by C(t, M) = (*t)* (see e.g. [11]).

3 Timed Probabilistic Workflow Nets

In [11] we introduced a probabilistic semantics for confusion-free workflow nets.
Intuitively, at every reachable marking a choice between two concurrent tran-
sitions is resolved nondeterministically by a scheduler, while a choice between
two transitions in conflict is resolved probabilistically; the probability of choosing
each transition is proportional to its weight. For example, in the net in Fig. 1a, at
the marking {p1, ps}, the scheduler can choose between the conflict sets {t2,t3}
and {t4}, and if {t9,t3} is chosen, then t5 is chosen with probability 1/5 and ¢3
with probability 4/5. We extend Probabilistic Workflow Nets by assigning to each
transition ¢ a natural number 7(¢) modeling the time it takes for the transition
to fire, once it has been selected.?

Definition 1 (Timed Probabilistic Workflow Nets). A Timed Probabilis-
tic Workflow Net (TPWN) is a tuple W = (N,w,7) where N = (P, T, F,1,0)
18 a 1-safe confusion-free workflow net, w: T — Q¢ is a weight function, and
7: T — N is a time function that assigns to every transition a duration.

Timed sequences. We assign to each transition sequence o of W and each place

p a timestamp 11(0), through a timestamp function p: T* — Nf. The set N is
def

defined by N} = {1}UNwith L <z and L +z = 1 for all x € N . Intuitively,
if a place p is marked after o, then u(o), records the “arrival time” of the token
in p, and if p is unmarked, then p(o), = L. When a transition occurs, it removes
all tokens in its preset, and 7(t) time units later, puts tokens into its postset.

2 The semantics of the model can be defined in the same way for both discrete and
continuous time, but, since our results only concern discrete time, we only consider
this case.
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Formally, we define pu(e); = 0, u(e), = L for p # 4, and p(ot) = upd(u(o),t),
where the update function upd : N x T — NY is given by:

maxgeer g+ 7(t) if p €t®
upd(zx,t), = { L ifpect\t®
x, ifpgetut®

We then define tm(c) = maxpyep u(c), as the time needed to fire o. Further
def

[z] = {p€ P |z, # L} is the marking represented by a timestamp x € NY.
Ezxample 1. The net in Fig. la is a TPWN. Weights are shown in red next to
transitions, and times are written in blue into the transitions. For the sequence
o1 = titstats, we have tm(o1) = 9, and for oo = t1tatstyts, we have tm(os) = 10.
Observe that the time taken by the sequences is not equal to the sum of the
durations of the transitions.

Markov Decision Process semantics. A Markov Decision Process (MDP) is
a tuple M = (Q, qo, Steps) where Q is a finite set of states, gop € Q is the initial
state, and Steps: Q — 2951(@) is the probability transition function. Paths of
an MDP, schedulers, and the probability measure of paths compatible with a
scheduler are defined as usual (see the Appendix of the full version [19]).

The semantics of a TPWN W is a Markov Decision Process MDPyy. The
states of MDPyy are either markings M or pairs (M,t), where ¢t is a transition
enabled at M. The intended meanings of M and (M, t) are “the current marking
is M”, and “the current marking is M, and ¢ has been selected to fire next.”
Intuitively, ¢ is chosen in two steps: first, a conflict set enabled at M is chosen
nondeterministically, and then a transition of this set is chosen at random, with
probability proportional to its weight.

Formally, let W = (N,w,7) be a TPWN where N = (P, T, F,i,0), let M
be a reachable marking of W enabling at least one transition, and let C' be a
conflict set of M. Let w(C) be the sum of the weights of the transitions in C.
The probability distribution Py over T is given by Purc(t) = % ifteC
and Py c(t) = 0 otherwise. Now, let M be the set of 1-safe markings of W, and
let £ be the set of pairs (M,t) such that M € M and M enables t. We define
the Markov decision process MDPyy = (Q, qo, Steps), where Q = MUE, qo = i,
the initial marking of W, and Steps(M) is defined for markings of M and £ as
follows. For every M € M,

— if M enables no transitions, then Steps(M) contains exactly one distribution,
which assigns probability 1 to M, and 0 to all other states.

— if M enables at least one transition, then Steps(M) contains a distribution A
for each conflict set C' of M. The distribution is defined by: A(M, t) = Pa,c(t)
for every t € C, and A(s) = 0 for every other state s.

For every (M,t) € &, Steps(M,t) contains one single distribution that assigns

probability 1 to the marking M’ such that M - M’, and probability 0 to every
other state.
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Fig.1. A TPWN and its associated MDP. (Color figure online)

Example 2. Figure1b shows a graphical representation of the MDP of the
TPWN in Fig. 1a. Black nodes represent states, white nodes probability distri-
butions. A black node ¢ has a white successor for each probability distribution
in Steps(g). A white node A has a black successor for each node ¢ such that
A(g) > 0; the arrow leading to this black successor is labeled with A(q), unless
A(¢) = 1, in which case there is no label. States (M, t) are abbreviated to t.

Schedulers. Given a TPWN W, a scheduler of MDPyy is a function v : T* —
2T assigning to each firing sequence i = M with C(M) # § a conflict set
y(o) € C(M). A firing sequence i 2> M is compatible with a scheduler + if for
all partitions o = o1toy for some transition ¢, we have t € (o).

Ezxample 3. In the TPWN of Fig. la, after firing ¢; two conflict sets become
concurrently enabled: {t2,t3} and {t4}. A scheduler picks one of the two. If the
scheduler picks {t2,t3} then t5 may occur, and in this case, since firing t5 does
not change the marking, the scheduler chooses again one of {ts,t3} and {t4}. So
there are infinitely many possible schedulers, differing only in how many times
they pick {ta,t3} before picking t4.

Definition 2 ((Expected) Time until a state is reached). Let m be an
infinite path of MDPyy, and let M be a reachable marking of W. Observe that M
is a state of MDPyy. The time needed to reach M along 7, denoted tm(M, ),

is defined as follows: If m does not visit M, then tm(M, ) Y o; otherwise,

tm(M, ) = tm(2(x")), where X(x') is the transition sequence corresponding to

the shortest prefix ©’ of m ending at M. Given a scheduler S, the expected time
until reaching M is defined as
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ET3,(M) < Z tm(M, ) - Prob® ().
w€ Paths®

def

and the expected time ET\% is defined as ET{/SV = ETE\,(O), i.e. the expected
time until reaching the final marking.

In [11] we proved a result for Probabilistic Workflow Nets (PWNs) with
rewards, showing that the expected reward of a PWN is independent of the
scheduler (intuitively, this is the case because in a confusion-free Petri net
the scheduler only determines the logical order in which transitions occur, but
not which transitions occur). Despite the fact that, contrary to rewards, the
execution time of a firing sequence is not the sum of the execution times of
its transitions, the proof carries over to the expected time with only minor
modifications.

Theorem 1. Let W be a TPWN.

(1) There exists a value ETyy such that for every scheduler S of W, the expected
time ET{?\, of W under S is equal to ETyy.
(2) ETy is finite iff W is sound.

By this theorem, the expected time FETy, can be computed by choosing a
suitable scheduler S, and computing ETVSV.

4 Computation of the Expected Time

We show how to compute the expected time of a TPWN. We fix an appropriate
scheduler, show that it induces a finite-state Markov chain, define an appropriate
reward function for the chain, and prove that the expected time is equal to the
expected reward.

4.1 Earliest-First Scheduler

Consider a firing sequence i — M. We define the starting time of a conflict set
C € C(M) as the earliest time at which the transitions of C' become enabled.
This occurs after all tokens of *C arrive®, and so the starting time of C' is the
maximum of p(o), for p € *C (recall that p(o), is the latest time at which a
token arrives at p while firing o).

Intuitively, the “earliest-first” scheduler always chooses the conflict set with
the earliest starting time (if there are multiple such conflict sets, the scheduler
chooses any one of them). Formally, recall that a scheduler is a mapping v: T* —
2T such that for every firing sequence i = M, the set y(o) is a conflict set of
M. We define the earliest-first scheduler ~ by:

v(0) = argmin max u(o), where M is given by i 2> M.
cec(Mm) pe*C

3 This is proved in Lemma 7 in the Appendix of the full version [19].
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Ezxample 4. Figure2a shows the Markov chain induced by the “earliest-first”
scheduler defined above in the MDP of Fig. 1b. Initially we have a token at <
with arrival time 0. After firing ¢;, which takes time 1, we obtain tokens in p; and
ps with arrival time 1. In particular, the conflict sets {t2,¢3} and {t4} become
enabled at time 1. The scheduler can choose any of them, because they have the
same starting time. Assume it chooses {t2,t3}. The Markov chain now branches
into two transitions, corresponding to firing ¢ and t3 with probabilities 1/5 and
4/5, respectively. Consider the branch in which ¢, fires. Since to starts at time
1 and takes 4 time units, it removes the token from p; at time 1, and adds a
new token to p; with arrival time 5; the token at ps is not affected, and it keeps
its arrival time of 1. So we have p(tits) = {%, 72} (meaning u(t1t2),, = 5,
p(tite)p, = 1, and p(tite), = L otherwise). Now the conflict sets {t2,¢3} and
{t4} are enabled again, but with a difference: while {t4} has been enabled since
time 1, the set {t2,t3} is now enabled since time p(tit2),, = 5. The scheduler
must now choose {t4}, leading to the marking that puts tokens on p; and py
with arrival times p(t1tats)y, = 5 and p(titets)p, = 6. In the next steps the
scheduler always chooses {t2,t3} until ¢5 becomes enabled. The final marking o
can be reached after time 9, through t1t3t4t5 with probability 4/s, or with times
10 + 4k for k € N, through t1t5t4t5tsts with probability (1/5)*™" - 4/5 (the times
at which the final marking can be reached are written in blue inside the final
states).

Theorem 2 below shows that the earliest-first scheduler only needs finite mem-
ory, which is not clear from the definition. The construction is similar to those
of [6,15,16]. However, our proof crucially depends on TPWNs being confusion-
free.

Theorem 2. Let H 2 max,cp 7(t) be the mazimum duration of the transitions
of T, and let [H], = {1,0,1,...,H} CN,. There are functions v: T* — [H]Ij
(compare with p: T* — NT ), f: [H}f x T — [H}f and r: [H}i — N such that
for every o =t1...t, € T* compatible with v and for every t € T enabled by o:

(o) = argmin max v(o), (1)
cec([v(o)]) PE
v(ot) = f(v(0),t) (2)
n—1
tm(o) = max v(o), + Z r(v(ty...tg)) (3)
k=0

Observe that, unlike 1, the range of v is finite. We call it the finite abstraction
of pu. Equation 1 states that v can be computed directly from the finite abstrac-
tion v. Equation 2 shows that v(ot) can be computed from v(o) and ¢. So 7y only
needs to remember an element of [H ]i, which implies that it only requires finite
memory. Finally, observe that the function r of Eq.3 has a finite domain, and
so it allows us to use v to compute the time needed by o.
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(a) Infinite MC for scheduler using (o), (b) Finite MC for scheduler using v (o), with
with final states labeled by ¢tm(o). states labeled by rewards r(v(o)).

Fig. 2. Two Markov chains for the “earliest-first” scheduler. (Color figure online)

The formal definition of the functions v, f, and r is given below, together
with the definition of the auxiliary operator ©: NY x N — NI

fz,t) Lef upd(z,t) © maxxp
pe®t

(@on), max(zp —n,0) ifxp,#L
L ifa:p:L

v(e) &f u(e) and V(Ut) u(ot) © max w(o)p r(x) = cé?(ifz]])fé%’é zp

Example 5. Figure2b shows the finite-state Markov chain induced by the
“earliest-first” scheduler computed using the abstraction r. Consider the fir-
ing sequence t1t3. We have u(tit3) = 1%, % }, i.e. the tokens in po and p3 arrive
at times 3 and 1, respectively. Now we compute v(t;¢3), which corresponds to
the local arrival times of the tokens, i.e. the time elapsed since the last transi-
tion starts to fire until the token arrives. Transition t3 starts to fire at time 1,
and so the local arrival times of the tokens in p, and p3 are 2 and 0, respec-
tively, i.e. we have v(tit3) = {%?, %3 }. Using these local times we compute the
local starting time of the conflict sets enabled at {pa,ps}. The scheduler always
chooses the conflict set with earliest local starting time. In Fig. 2b the earliest
local starting time of the state reached by firing o, which is denoted r(v(0)), is
written in blue inside the state. The theorem above shows that this scheduler
always chooses the same conflict sets as the one which uses the function u, and
that the time of a sequence can be obtained by adding the local starting times.

This allows us to consider the earliest local starting time of a state as a reward
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associated to the state; then, the time taken by a sequence is equal to the sum
of the rewards along the corresponding path of the chain. For example, we have

Finally, let us see how v(ot) is computed from v (o) for o = t1toty and t = to.
We have v(o) = {!, P4}, i.e. the local arrival times for the tokens in p; and py
are 4 and 5, respectively. Now {t2,t3} is scheduled next, with local starting time
r(v(o)) = v(o)p, = 4. If t, fires, then, since 7(t2) = 4, we first add 4 to the time
of p1, obtaining {p1 Pa } Second, we subtract 4 from all times, to obtain the

875
time elapsed since to started to fire (for local times the origin of time changes
every time a transition fires), yielding the final result v(ots) = {7, !

4.2 Computation in the Probabilistic Case

Given a TPWN and its corresponding MDP, in the previous section we have
defined a finite-state earliest-first scheduler and a reward function of its induced
Markov chain. The reward function has the following property: the execution
time of a firing sequence compatible with the scheduler is equal to the sum of
the rewards of the states visited along it. From the theory of Markov chains with
rewards, it follows that the expected accumulated reward until reaching a certain
state, provided that this state is reached with probability 1, can be computed
by solving a linear equation system. We use this result to compute the expected
time ETyw .

Let W be a sound TPWN. For every firing sequence o compatible with the
earliest-first scheduler v, the finite-state Markov chain induced by ~ contains a
state ¢ = v(o) € [H]i Let C be the conflict set scheduled by « at . We define
a system of linear equations with variables X, , one for each state «x:

w(t)
w(Cy)

X = max if [x] = o

X:I; :T(w) + Z

teCy

'Xf(a:,t) if [[ZL’]] 7é o ( )
4

The solution of the system is the expected reward of a path leading from ¢ to o.
By the theory of Markov chains with rewards/costs ([4], Chap. 10.5), we have:

Lemma 2. Let W be a sound TPWN. Then the system of linear equations (4)
has a unique solution X, and ETyy = X (o).

Theorem 3. Let W be a TPWN. Then ETyy is either co or a rational number
and can be computed in single exponential time.

Proof. We assume that the input has size n and all times and weights are given
in binary notation. Testing whether W is sound can be done by exploration of
the state space of reachable markings in time O(2"). If W is unsound, we have
ETW = Q.

Now assume that W is sound. By Lemma?2, ETyy is the solution to the
linear equation system (4), which is finite and has rational coefficients, so it is a
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rational number. The number of variables | X| of (4) is bounded by the size of
[H]i, and as H = max,er 7(t) we have | X| < (1+ H)IPl < (142" < 2n’+n,
The linear equation system can be solved in time O (n2 X |3> and therefore in

time O(2°(™) for some polynomial p.

5 Lower Bounds for the Expected Time

We analyze the complexity of computing the expected time of a TPWN.
Botezano et al. show in [5] that deciding if the expected time exceeds a given
bound is NP-hard. However, their reduction produces TPWNs with weights and
times of arbitrary size. An open question is if the expected time can be com-
puted in polynomial time when the times (and weights) must be taken from a
finite set. We prove that this is not the case unless P = NP, even if all times
are 0 or 1, all weights are 1, the workflow net is sound, acyclic and free-choice,
and the size of each conflict set is at most 2 (resulting only in probabilities 1 or
1/2). Further, we show that even computing an e-approximation is equally hard.
These two results above are a consequence of the main theorem of this section:
computing the expected time is #P-hard [23]. For example, counting the num-
ber of satisfying assignments for a boolean formula (#SAT) is a #P-complete
problem. Therefore a polynomial-time algorithm for a #P-hard problem would
imply P = NP.

The problem used for the reduction is defined on PERT networks [9], in the
specialized form of two-state stochastic PERT networks [17], described below.

Definition 3. A two-state stochastic PERT network is a tuple PN =
(G, s,t,p), where G = (V,E) is a directed acyclic graph with vertices V', rep-
resenting events, and edges E, representing tasks, with a single source vertexr s
and sink vertez t, and where the vector p € QF assigns to each edge e € E a
rational probability p. € [0,1]. We assume that all p. are written in binary.
Each edge e € E of PN defines a random wvariable X. with distribution
Pr(Xe =1) = pe and Pr(X, = 0) = 1—p,. All X, are assumed to be independent.
The project duration PD of PN is the length of the longest path in the network

PD(PN) ¢ ma§§ X,
TE
ecT

where IT is the set of paths from vertex s to vertex t. As this defines a random
variable, the expected project duration of PN is then given by E(PD(PN)).

Ezample 6. Figure3a shows a small PERT network (without p), where the
project duration depends on the paths IT = {ejeseq, e1e4e7, eae5e7}.

The following problem is #P-hard (from [17], using the results from [20]):

Given: A two-state stochastic PERT network PN.
Compute: The expected project duration E(PD(PN)).
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First reduction: 0/1 times, arbitrary weights. We reduce the problem
above to computing the expected time of an acyclic TPWN with 0/1 times but
arbitrary weights. Given a two-state stochastic PERT network PN, we construct
a timed probabilistic workflow net Wpn as follows:

— For each edge e = (u,v) € E, add the “gadget net” shown in Fig.3b. Assign
W(te,0) =1 —pe, W(te1) = Pe, T(teo) =0, and 7(te1) = 1.

— For each vertex v € V, add a transition ¢, with arcs from each [e, v] such that
e = (u,v) € E for some u and arcs to each [v, e] such that e = (v,w) € E for
some w. Assign w(t,) =1 and 7(¢,) = 0.

— Add the place ¢ with an arc to ts and the place o with an arc from t;.

q1 bF 1 q2 be 2 Q3

te,0 : Ge. ?
@\ Qe,0 %]
[u, €] le,v]
Ol =0 5) \ //@
te,n [u, €]

(a) PERT network PN. (b) Gadget for e = (u,v) (c) Equivalent gadget for e with
with rational weights pe, De. weights 1 for p. = 5/s = (0.101),.

tes,0

Des : [es, vs]
foeal O — Qb
tei,0 Des ./ @\ teg,0

Pey @\:1,m] to, fean Peg ee,t]
[s, el] ( ?
Dey ley.0 fea, va] [vs, f’e]l“ ./
tey1 Pey @\4 4 fL O
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62 ’UQ]
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9 eg]

Des VQ@\ tes 0 @—[:4%67,t]
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(d) Timed probabilistic workflow net Wpn.

Fig. 3. A PERT network and its corresponding timed probabilistic workflow net. The
weight p is short for 1 — p. Transitions without annotations have weight 1.

The result of applying this construction to the PERT network from Fig. 3a
is shown in Fig.3d. It is easy to see that this workflow net is sound, as from
any reachable marking, we can fire enabled transitions corresponding to the
edges and vertices of the PERT network in the topological order of the graph,
eventually firing ¢; and reaching o. The net is also acyclic and free-choice.

Lemma 3. Let PN be a two-state stochastic PERT network and let WpN be its
corresponding TPWN by the construction above. Then ETyyn, = E(PD(PN)).
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Second reduction: 0/1 times, 0/1 weights. The network constructed this
way already uses times 0 and 1, however the weights still use arbitrary rational
numbers. We now replace the gadget nets from Fig. 3b by equivalent nets where
all transitions have weight 1. The idea is to use the binary encoding of the
probabilities p., deciding if the time is 0 or 1 by a sequence of coin flips. We
assume that p, = Zf:o 27 %p, for some k € N and p; € {0,1} for 0 <4 < k. The
replacement is shown in Fig. 3¢ for p. = 5/8 = (0.101),,.

Approximating the expected time is #P-hard. We show that computing
an e-approximation for ETyy is #P-hard [17,20].

Theorem 4. The following problem is #P-hard:

Given: A sound, acyclic and free-choice TPWN W where all transitions
t satisfy w(t) =1, 7(t) € {0,1} and |(*t)*] < 2, and an € > 0.
Compute: A rational r such thatr —e < ETy <r + €.

6 Experimental Evaluation

We have implemented our algorithm to compute the expected time of a TPWN
as a package of the tool ProM*. It is available via the package manager of the
latest nightly build under the package name WorkflowNetAnalyzer.

We evaluated the algorithm on two different benchmarks. All experiments in
this section were run on the same machine equipped with an Intel Core i7-6700K
CPU and 32 GB of RAM. We measure the actual runtime of the algorithm, split
into construction of the Markov chain and solving the linear equation system,
and exclude the time overhead due to starting ProM and loading the plugin.

6.1 IBM Benchmark

We evaluated the tool on a set of 1386 workflow nets extracted from a collection
of five libraries of industrial business processes modeled in the IBM WebSphere
Business Modeler [12]. All of the 1386 nets in the benchmark libraries are free-
choice and therefore confusion-free. We selected the sound and 1-safe nets among
them, which are 642 nets. Out of these, 409 are marked graphs, i.e. the size of
any conflict set is 1. Out of the remaining 233 nets, 193 are acyclic and 40 cyclic.

As these nets do not come with probabilistic or time information, we anno-
tated transitions with integer weights and times chosen uniformly from different
intervals: (1) w(t) = 7(t) = 1, (2) w(t), 7(¢) € [1,103] and (3) w(t), 7(¢) € [1,10°].
For each interval, we annotated the transitions of each net with random weights
and times, and computed the expected time of all 642 nets.

For all intervals, we computed the expected time for any net in less than
50 ms. The analysis time did not differ much for different intervals. The solving
time for the linear equation system is on average 5% of the total analysis time,

* http://www.promtools.org/.
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and at most 68%. The results for the nets with the longest analysis times are
given in Table 1. They show that even for nets with a huge state space, thanks
to the earliest-first scheduler, only a small number of reachable markings is
explored.

Table 1. Analysis times and size of the state space | X| for the 4 nets with the highest
analysis times, given for each of the three intervals [1],[10%],[10°] of possible times.
Here, |RN | denotes the number of reachable markings of the net.

Net Net info & size Analysis time (ms) | X|

cyclic |P| |T| |RN| 1] [10°] [10°]  [1] [10%] [10°]
ml1.s30s703 no 264 286 6117 40.3 44.6 43.8 304 347 347
m1.s30.s596 yes 214 230 623 21.6 24.4 23.6 208 232 234
b3.5371.s1986 no 235 101 2-10'7 16.8 16.4 16.5 101 102 102
b2.527552417 no 103 68 237626 14.2 17.8 15.9 355 460 431

6.2 Process Mining Case Study

As a second benchmark, we evaluated the algorithm on a model of a loan appli-
cation process. We used the data from the BPI Challenge 2017 [8], an event log
containing 31509 cases provided by a financial institute, and took as a model
of the process the final net from the report of the winner of the academic cate-
gory [21], a simple model with high fitness and precision w.r.t. the event log.

W _Handle leads O_Create Offer 7%

ACreate4.8%

i Application A _Concept .
Cr[20.1ms O»* 1 /} Ork

lJ [1.6d —

©—[on -
A_Complete W_Complete application

35.2%
19.4 ms

40.9% I
. A_Pending
—~ [ | W_Validate 5.1%
54.6% Jf application 2d
) )
o L43d () 1.3d | X7 A_Denied
O_Create Offer 93.8% C) 0
1.1%

W _Call incomplete files A-Cancelled
25.2d
[(£2-2C ]

D) 9.5h
3%

Fig. 4. Net from [21] of process for personal loan applications in a financial institute,
annotated with mean waiting times and local trace weights. Black transitions are invis-
ible transitions not appearing in the event log with time 0.



168 P. J. Meyer et al.

Table 2. Expected time, analysis time and state space size for the net in Fig. 4 for
various distributions, where memout denotes reaching the memory limit.

Distribution |T| ETw | X | Analysis time

Total Construction Solving
Deterministic 19 24d 1h 33 40ms 18ms  22ms
Histogram/12h 141 24d 18h 4054 244ms 232ms  12ms
Histogram/6h 261 24d 21h 15522  2.1s 1.8s 0.3s
Histogram/4h 375 24d 22h 34063 10s 6s 4s
Histogram/2h 666 24d 23h 122785 346s 52s  294s
Histogram/1h 1117 — 422614 — 12.7min memout

Using the ProM plugin “Multi-perspective Process Explorer” [18] we anno-
tated each transition with waiting times and each transition in a conflict set
with a local percentage of traces choosing this transition when this conflict set
is enabled. The net with mean times and weights as percentages is displayed in
Fig. 4.

For a first analysis, we simply set the execution time of each transition deter-
ministically to its mean waiting time. However, note that the two transitions
“O_Create Offer” and “W_Complete application” are executed in parallel, and
therefore the distribution of their execution times influences the total expected
time. Therefore we also annotated these two transitions with a histogram of
possible execution times from each case. Then we split them up into multiple
transitions by grouping the times into buckets of a given interval size, where
each bucket creates a transition with an execution time equal to the beginning
of the interval, and a weight equal to the number of cases with a waiting time
contained in the interval. The times for these transitions range from 6 ms to 31
days. As bucket sizes we chose 12,6,4,2 and 1 hour(s). The net always has 14
places and 15 reachable markings, but a varying number of transitions depend-
ing on the chosen bucket size. For the net with the mean as the deterministic
time and for the nets with histograms for each bucket size, we then analyzed the
expected execution time using our algorithm.

The results are given in Table2. They show that using the complete distri-
bution of times instead of only the mean can lead to much more precise results.
When the linear equation system becomes very large, the solver time dominates
the construction time of the system. This may be because we chose to use an
exact solver for sparse linear equation systems. In the future, this could possibly
be improved by using an approximative iterative solver.

7 Conclusion

We have shown that computing the expected time to termination of a proba-
bilistic workflow net in which transition firings have deterministic durations is
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#P-hard. This is the case even if the net is free-choice, and both probabilities
and times can be written down with a constant number of bits. So, surprisingly,
computing the expected time is much harder than computing the expected cost,
for which there is a polynomial algorithm [11].

We have also presented an exponential algorithm for computing the expected
time based on earliest-first schedulers. Its performance depends crucially on the
maximal size of conflict sets that can be concurrently enabled. In the most
popular suite of industrial benchmarks this number turns out to be small. So,
very satisfactorily, the expected time of any of these benchmarks, some of which
have hundreds of transitions, can still be computed in milliseconds.

Acknowledgements. We thank Hagen Volzer for input on the implementation and
choice of benchmarks.
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Abstract. This paper considers large families of Markov chains (MCs)
that are defined over a set of parameters with finite discrete domains.
Such families occur in software product lines, planning under partial
observability, and sketching of probabilistic programs. Simple questions,
like ‘does at least one family member satisfy a property?’, are NP-hard.
We tackle two problems: distinguish family members that satisfy a given
quantitative property from those that do not, and determine a family
member that satisfies the property optimally, i.e., with the highest prob-
ability or reward. We show that combining two well-known techniques,
MDP model checking and abstraction refinement, mitigates the compu-
tational complexity. Experiments on a broad set of benchmarks show that
in many situations, our approach is able to handle families of millions of
MCs, providing superior scalability compared to existing solutions.

1 Introduction

Randomisation is key to research fields such as dependability (uncertain sys-
tem components), distributed computing (symmetry breaking), planning (unpre-
dictable environments), and probabilistic programming. Families of alternative
designs differing in the structure and system parameters are ubiquitous. Software
dependability has to cope with configuration options, in distributed computing
the available memory per process is highly relevant, in planning the observabil-
ity of the environment is pivotal, and program synthesis is all about selecting
correct program variants. The automated analysis of such families has to face
a formidable challenge—in addition to the state-space explosion affecting each
family member, the family size typically grows exponentially in the number of
features, options, or observations. This affects the analysis of (quantitative) soft-
ware product lines [18,28,43,45,46], strategy synthesis in planning under partial
observability [12,14,29,36,41], and probabilistic program synthesis [9,13,27,40].

This paper considers families of Markov chains (MCs) to describe config-
urable probabilistic systems. We consider finite MC families with finite-state
family members. Family members may have different transition probabilities
and distinct topologies—thus different reachable state spaces. The latter aspect
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goes beyond the class of parametric MCs as considered in parameter synthe-
sis [10,22,24,31] and model repair [6,16,42].

For an MC family © and quantitative specification ¢, with ¢ a reachability
probability or expected reward objective, we consider the following synthesis
problems: (a) does some member in ® satisfy a threshold on ¢? (aka: feasibility
synthesis), (b) which members of ® satisfy this threshold on ¢ and which ones
do not? (aka: threshold synthesis), and (c) which family member(s) satisfy ¢
optimally, e.g., with highest probability? (aka: optimal synthesis).

The simplest synthesis problem, feasibility, is NP-complete and can naively
be solved by analysing all individual family members—the so-called one-by-one
approach. This approach has been used in [18] (and for qualitative systems in e.g.
[19]), but is infeasible for large systems. An alternative is to model the family ©
by a single Markov decision process (MDP)—the so-called all-in-one MDP [18].
The initial MDP state non-deterministically chooses a family member of ®, and
then evolves in the MC of that member. This approach has been implemented
in tools such as ProFeat [18], and for purely qualitative systems in [20]. The
MDP representation avoids the individual analysis of all family members, but
its size is proportional to the family size. This approach therefore does not scale
to large families. A symbolic BDD-based approach is only a partial solution as
family members may induce different reachable state-sets.

This paper introduces an abstraction-refinement scheme over the MDP repre-
sentation'. The abstraction forgets in which family member the MDP operates.
The resulting quotient MDP has a single representative for every reachable state
in a family member. It typically provides a very compact representation of the
family © and its analysis using off-the-shelf MDP model-checking algorithms
yields a speed-up compared to the all-in-one approach. Verifying the quotient
MDP yields under- and over-approximations of the min and max probability
(or reward), respectively. These bounds are safe as all consistent schedulers, i.e.,
those that pick actions according to a single family member, are contained in all
schedulers considered on the quotient MDP. (CEGAR-based MDP model check-
ing for partial information schedulers, a slightly different notion than restricting
schedulers to consistent ones, has been considered in [30]. In contrast to our
setting, [30] considers history-dependent schedulers and in this general setting
no guarantee can be given that bounds on suprema converge [29]).

Model-checking results of the quotient MDP do provide useful insights. This
is evident if the resulting scheduler is consistent. If the verification reveals that
the min probability exceeds r for a specification ¢ with a < r threshold, then—
even for inconsistent schedulers—it holds that all family members violate ¢. If
the model checking is inconclusive, i.e., the abstraction is too coarse, we iter-
atively refine the quotient MDP by splitting the family into sub-families. We
do so in an efficient manner that avoids rebuilding the sub-families. Refinement
employs a light-weight analysis of the model-checking results.

! Classical CEGAR for model checking of software product lines has been proposed
n [21]. This uses feature transition systems, is purely qualitative, and exploits exis-
tential state abstraction.
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We implemented our abstraction-refinement approach using the Storm model
checker [25]. Experiments with case studies from software product lines, plan-
ning, and distributed computing yield possible speed-ups of up to 3 orders of
magnitude over the one-by-one and all-in-one approaches (both symbolic and
explicit). Some benchmarks include families of millions of MCs where family
members are thousands of states. The experiments reveal that—as opposed to
parameter synthesis [10,24,31]—the threshold has a major influence on the syn-
thesis times.

To summarise, this work presents: (a) MDP-based abstraction-refinement for
various synthesis problems over large families of MCs, (b) a refinement strategy
that mitigates the overhead of analysing sub-families, and (c¢) experiments show-
ing substantial speed-ups for many benchmarks. Extra material can be found
in [1,11].

2 Preliminaries
We present the basic foundations for this paper, for details, we refer to [4,5].

Probabilistic models. A probability distribution over a finite or countably infinite
set X is a function p: X — [0,1] with >\ u(z) = u(X) = 1. The set of
all distributions on X is denoted Distr(X). The support of a distribution p is
supp(p) = {z € X | u(z) > 0}. A distribution is Dirac if |supp(u)| = 1.

Definition 1 (MC). A discrete-time Markov chain (MC) D is a triple
(S, s0,P), where S is a finite set of states, s € S is an initial state, and
P: S — Distr(S) is a transition probability matriz.

MCs have unique distributions over successor states at each state. Adding non-
deterministic choices over distributions leads to Markov decision processes.

Definition 2 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s0, Act, P) where S, sg as in Definition 1, Act is a finite set of actions, and
P: S x Act -» Distr(S) is a partial transition probability function.

The available actions in s € S are Act(s) = {a € Act | P(s,a) # L}. An
MDP with |Act(s)] = 1 for all s € S is an MC. For MCs (and MDPs), a state-
reward function is rew: S — R>g. The reward rew(s) is earned upon leaving s.

A path of an MDP M is an (in)finite sequence m = sq —= 51 — - - -, where
s;i € S, a; € Act(s;), and P(si,a:)(Ssi+1) # 0 for all ¢ € N. For finite 7, last(m)
denotes the last state of . The set of (in)finite paths of M is Paths}\.gl (Paths™).
The notions of paths carry over to MCs (actions are omitted). Schedulers resolve
all choices of actions in an MDP and yield MCs.

Definition 3 (Scheduler). A scheduler for an MDP M = (S, sg, Act, P) is a
function o: Paths}\ii — Act such that o(m) € Act(last(r)) for all m € Paths%.
Scheduler o is memoryless if last(w) = last(n') = o(7) = o(x’) for all
w7 € Pathstl. The set of all schedulers of M is XM .
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Definition 4 (Induced Markov Chain). The MC induced by MDP M and
o€ XM s given by M, = (Paths%ﬂso,P”) where:

a(m)
— 5

P () = {P(last(ﬂ'),a(ﬂ'))(s’) ifn =
0 otherwise.

Specifications. For a MC D, we consider unbounded reachability specifications
of the form ¢ = P.\(0G) with G C S a set of goal states, A € [0,1] C R,
and ~ € {<,<,>,>}. The probability to satisfy the path formula ¢ = 0G
in D is denoted by Prob(D,¢). If ¢ holds for D, that is, Prob(D, ¢) ~ A, we
write D |= ¢. Analogously, we define expected reward specifications of the form
¢ = E_.(0GQ) with k € R>g. We refer to A\/k as thresholds. While we only
introduce reachability specifications, our approaches may be extended to richer
logics like arbitrary PCTL [32], PCTL* [3], or w-regular properties.

For an MDP M, a specification ¢ holds (M | ¢) if and only if
it holds for the induced MCs of all schedulers. The maximum probability
Prob™®*(M, ¢) to satisfy a path formula ¢ for an MDP M is given by a max-
imising scheduler ™ ¢ XM that is, there is no scheduler ¢/ € XYM such
that Prob(Mymax,d) < Prob(M,,¢). Analogously, we define the minimising
probability Prob™" (M, ¢), and the maximising (minimising) expected reward
ExpRew™* (M, ¢) (ExpRew™ ™ (M, ¢)).

The probability (expected reward) to satisfy path formula ¢ from state s €
S in MC D is Prob(D, ¢)(s) (ExpRew(D, ¢)(s)). The notation is analogous for
maximising and minimising probability and expected reward measures in MDPs.
Note that the expected reward ExpRew(D, ¢) to satisfy path formula ¢ is only
defined if Prob(D, ¢) = 1. Accordingly, the expected reward for MDP M under
scheduler o € XM requires Prob(M,, ¢) = 1.

3 Families of MCs

We present our approaches on the basis of an explicit representation of a fam-
ily of MCs using a parametric transition probability function. While arbitrary
probabilistic programs allow for more modelling freedom and complex parameter
structures, the explicit representation alleviates the presentation and allows to
reason about practically interesting synthesis problems. In our implementation,
we use a more flexible high-level modelling language, cf. Sect. 5.

Definition 5 (Family of MCs). A family of MCs is defined as a tuple ® =
(S, 80, K,PB) where S is a finite set of states, so € S is an initial state, K is a
finite set of discrete parameters such that the domain of each parameter k € K
is T, € S, and B: S — Distr(K) is a family of transition probability matrices.

The transition probability function of MCs maps states to distributions over
successor states. For families of MCs, this function maps states to distributions
over parameters. Instantiating each of these parameters with a value from its
domain yields a “concrete” MC, called a realisation.
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Fig. 1. The four different realisations of ®.

Definition 6 (Realisation). A realisation of a family © = (S, s, K,B) is a
function r: K — S where Vk € K: r(k) € Tx. A realisation r yields a MC
D, = (S, s0,B(r)), where P(r) is the transition probability matriz in which each
k € K in ‘P is replaced by r(k). Let R® denote the set of all realisations for ®.

As a family © of MCs is defined over finite parameter domains, the number of
family members (i.e. realisations from R®) of ® is finite, viz. |D| := |R®| =
[Ticx ITk], but exponential in |K|. Subsets of R® induce so-called subfamilies
of ®. While all these MCs share the same state space, their reachable states may
differ, as demonstrated by the following example.

Ezample 1 (Family of MCs). Consider a family of MCs ® = (5, sg, K, ) where
S = {0,1,2,3}, So = O7 and K = {k‘o,kl,k'z} with domains Tkg = {0},Tk1 =
{0,1}, and T}, = {2,3}. The parametric transition function ‘B is defined by:

PB(0) =0.5: ko +0.5: kq PB(1) =0.5: k1 +0.5: ko
B2) = 1: ks PB(3) = 05: k1 +0.5: ky

Figure 1 shows the four MCs that result from the realisations {ri,re,rs,r4} =
R® of D. States that are unreachable from the initial state are greyed out.

We state two synthesis problems for families of MCs. The first is to identify the
set of MCs satisfying and violating a given specification, respectively. The second
is to find a MC that maximises/minimises a given objective. We call these two
problems threshold synthesis and maz/min synthesis.

Problem 1 (Threshold synthesis). Let © be a family of MCs and ¢ a prob-
abilistic reachability or expected reward specification. The threshold synthesis
problem is to partition R® into T and F such that ¥r € T: D, E ¢ and
Vr e F: D, Ep.

As a special case of the threshold synthesis problem, the feasibility synthesis
problem is to find just one realisation r € R® such that D, kE .
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Problem 2 (Max synthesis). Let © a family of MCs and ¢ = OG for
G C S. The max synthesis problem is to find a realisation r* € R® such that
Prob(D,«, ¢) = max,cro {Prob(D,, ¢)}. The problem is defined analogously for
an expected reward measure or minimising realisations.

Ezample 2 (Synthesis problems). Recall the family of MCs ®© from Example 1.
For the specification ¢ = P>0.1(0{1}), the solution to the threshold synthesis
problem is T' = {rq,7r3} and F = {ry,r4}, as the goal state 1 is not reachable for
D, and D,.,. For ¢ = ({1}, the solution to the max synthesis problem on ® is
ro or r3, as D,, and D,, have probability one to reach state 1.

Approach 1 (One-by-one [18]). A straightforward solution to both synthesis
problems is to enumerate all realisations r € R®, model check the MCs D,., and
either compare all results with the given threshold or determine the maximum.

We already saw that the number of realisations is exponential in |K|.
Theorem 1. The feasibility synthesis problem is NP-complete.

The theorem even holds for almost-sure reachability properties. The proof is a
straightforward adaption of results for augmented interval Markov chains [17,
Theorem 3], partial information games [15], or partially observable MDPs [14].

4 Guided Abstraction-Refinement Scheme

In the previous section, we introduced the notion of a family of MCs, two syn-
thesis problems and the one-by-one approach. Yet, for a sufficiently high number
of realisations such a straightforward analysis is not feasible. We propose a novel
approach allowing us to more efficiently analyse families of MCs.

4.1 All-in-one MDP

We first consider a single MDP that subsumes all individual MCs of a family ©,
and is equipped with an appropriate action and state labelling to identify the
underlying realisations from R?.

Definition 7 (All-in-one MDP [18,28,43]). The all-in-one MDP of a family
D = (5,50, K,P) of MCs is given as M® = (Sg,s?,Actg,Pg) where S® =
S x RPU{sD}, Act® = {a” | r € R®}, and P? is defined as follows:

P2(s5,a")((s0,r)) =1 and P2((s,r),a")((s',r)) = P(r)(s)(s).

Ezample 8 (All-in-one MDP). Figure2 shows the all-in-one MDP M?® for the
family ® of MCs from Example 1. Again, states that are not reachable from the
initial state s3 are marked grey. For the sake of readability, we only include the
transitions and states that correspond to realisations ry and rs.
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Fig. 2. Reachable fragment of the all-in-one MDP M?® for realisations r1 and r.

From the (fresh) initial state s§ of the MDP, the choice of an action a, cor-
responds to choosing the realisation r and entering the concrete MC D,.. This
property of the all-in-one MDP is formalised as follows.

Corollary 1. For the all-in-one MDP M?® of family ® of MCs*:

{MZ. | 0" memoryless deterministic scheduler} = {D, | r € R®}.

Consequently, the feasibility synthesis problem for ¢ has the solution r € R iff
there exists a memoryless deterministic scheduler 0" such that M2 F ¢.

Approach 2 (All-in-one [18]). Model checking the all-in-one MDP determines
max or min probability (or expected reward) for all states, and thereby for all
realisations, and thus provides a solution to both synthesis problems.

As also the all-in-one MDP may be too large for realistic problems, we merely
use it as formal starting point for our abstraction-refinement loop.

4.2 Abstraction

First, we define a predicate abstraction that at each state of the MDP forgets in
which realisation we are, i.e., abstracts the second component of a state (s,r).
Definition 8 (Forgetting). Let M® = (8®,s3, Act®, P?) be an all-in-one
MDP. Forgetting is an equivalence relation ~; C S® x S® satisfying

(5,7) ~p (s',7") <= s=15"and sj ~; (s5,r) Vr € R®.

Let [s].. denote the equivalence class wrt. ~; containing state s € S®.
Forgetting induces the quotient MDP M2 = (S?, [sf?]N,Actg,Pg), where

P2 ([s]~, ar)([s]~) = B(r)(s)(s).

At each state of the quotient MDP, the actions correspond to any realisation. It

includes states that are unreachable in every realisation.

Remark 1 (Action space). According to Definition 8, for every state [s]~. there are
|| actions. Many of these actions lead to the same distributions over successor
states. In particular, two different realisations r and r’ lead to the same distribu-
tion in s if r(k) = r'(k) for all k € K where (s)(k) # 0. To avoid this spurious
blow-up of actions, we a-priori merge all actions yielding the same distribution.

2 The original initial state so of the family of MCs needs to be the initial state of M.
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Fig. 3. The quotient MDP M? for realisations r1 and 7.

The quotient MDP under forgetting involves that the available actions allow to
switch realisations and thereby create induced MCs different from any MC in ©.
We formalise the notion of a consistent realisation with respect to parameters.

Definition 9 (Consistent realisation). For a family ® of MCs and k € K,
k-realisation-consistency is an equivalence relation ~j, C R® xR® satisfying:

reypr <= rk)=1"(k).
Let [r]x~, denote the equivalence class w.r.t. =, containing r € R®.

Definition 10 (Consistent scheduler). For quotient MDP M? after forget—
ting and k € K, a scheduler o € IMZ s k-consistent if for all m, 7’ € Pathsﬁ

o(r)=a, No(r") =ap, =1~ 1 .
A scheduler is K-consistent (short: consistent) if it is k-consistent for allk € K.

Lemma 1. For the quotient MDP M? of family ® of MCs:
{(M2),.

Proof (Idea). For 6" € XM”  we construct 0" € XM such that o ([s]~) = ay
for all s. Clearly 0" is con51stent and M2 = (M Q)GT* is obtained via a map

~

between (s,r) and [s]~. For 0" € M™% we construct o™ € £M7 such that if
o ([s]~) = a, then o "(s§) = a,. For all other states, we define 0" ((s,7')) = a”

independently of ¢" . Then M2, = (MND)UT* is obtained as above.

o

0" consistent scheduler} = {D, | r € R®}.

The following theorem is a direct corollary: we need to consider exactly the
consistent schedulers.

Theorem 2. For all-in-one MDP M?® and specification @, there exists a mem-
oryless deterministic scheduler o” € IM® such that M2, E ¢ iff there exists a
consistent deterministic scheduler o™ € XM2 such that (MND)G E .
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Example 4. Recall the all-in-one MDP M?® from Example 3. The quotient MDP
M? is depicted in Fig.3. Only the transitions according to realisations 7; and
r9 are included. Transitions from previously unreachable states, marked grey in
Example 3, are now available due to the abstraction. The scheduler o € ZM2
with o([s§]~) = a,, and o([1]~) = a,, is not ky-consistent as different values
are chosen for k; by r; and 73. In the MC M?2_ induced by o and M2, the
probability to reach state [2]. is one, while under realisation r;, state 2 is not
reachable.

Approach 3 (Scheduler iteration). Enumerating all consistent schedulers
for M® and analysing the induced MC provides a solution to both synthesis
problems.

However, optimising over exponentially many consistent schedulers solves the
NP-complete feasibility synthesis problem, rendering such an iterative approach
unlikely to be efficient. Another natural approach is to employ solving techniques
for NP-complete problems, like satisfiability modulo linear real arithmetic.

Approach 4 (SMT). A dedicated SMT-encoding (in [11]) of the induced MCs
of consistent schedulers from M2 that solves the feasibility problem.

4.3 Refinement Loop

Although iterating over consistent schedulers (Approach 3) is not feasible, model
checking of M? still provides useful information for the analysis of the family D.
Recall the feasibility synthesis problem for ¢ = P<y(¢). If Prob™ (M2 ¢) < A,
then all realisations of ® satisfy . On the other hand, Prob™"(M? ¢) > A
implies that there is no realisation satisfying . If A lies between the min and
max probability, and the scheduler inducing the min probability is not consistent,
we cannot conclude anything yet, i.e., the abstraction is too coarse. A natural
countermeasure is to refine the abstraction represented by M?, in particular,

~

split the set of realisations leading to two synthesis sub-problems.

Definition 11 (Splitting). Let ® be a family of MCs, and R C R® a set of
realisations. For k € K and predicate Ay over S, splitting partitions R into

Rt ={reR|Ax(r(k))} and Ry ={reR|-Ac(rk))}.

Splitting the set of realisations, and considering the subfamilies separately, rather
than splitting states in the quotient MDP, is crucial for the performance of the
synthesis process as we avoid rebuilding the quotient MDP in each iteration.
Instead, we only restrict the actions of the MDP to the particular subfamily.

Definition 12 (Restricting). Let M2 = (52, [s®]., Act®, P2) be a quotient
MDP and R C R® a set of realisations. The restriction of M® wrt. R is the
MDP M2 [R] = (52, [s8]~, Act®[R], P2) where Act®[R] = {a, | r € R}.?

3 Naturally, P2 in M2[R] is restricted to Act®[R].
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Algorithm 1. Threshold synthesis

Input: A family ® of MCs with the set R® of realisations, and specification P< (¢)
Output: A partition of R® into subsets T and F according to Problem 1.
Fe0 T—0 U—{R°}
M?Z «— buildQuotientMDP(D, R®, ~y) > Applying Def. 7 and 8
while U # 0 do
select R e U and U — U \ {R}
MZ2[R] « restrict(M2,R) > Applying Def. 12
(Max, 0max) < solveMaxMDP(MZ2[R], #)
(min, Gmin) « solveMinMDP(MZ2 [R], ¢)
if max < Athen T — TUR
if min > A then FF — FUR
10: if min < A < max then
11: U <« U Usplit(R, selPredicate(max, Gmax, Min, Omin)) > See Sect. 4.4

12: return 7', F

©

The splitting operation is the core of the proposed abstraction-refinement. Due
to space constraints, we do not consider feasibility separately.

Algorithm 1 illustrates the threshold synthesis process. Recall that the goal is
to decompose the set R® into realisations satisfying and violating a given spec-
ification, respectively. The algorithm uses a set U to store subfamilies of R®
that have not been yet classified as satisfying or violating. It starts building the
quotient MDP with merged actions. That is, we never construct the all-in-one
MDP, and we merge actions as discussed in Remark 1. For every R € U, the algo-
rithm restricts the set of realisations to obtain the corresponding subfamily. For
the restricted quotient MDP, the algorithm runs standard MDP model checking
to compute the max and min probability and corresponding schedulers, respec-
tively. Then, the algorithm either classifies R as satisfying/violating, or splits it
based on a suitable predicate, and updates U accordingly. We describe the split-
ting strategy in the next subsection. The algorithm terminates if U is empty,
i.e., all subfamilies have been classified. As only a finite number of subfamilies
of realisations has to be evaluated, termination is guaranteed.

The refinement loop for max synthesis is very similar, cf. Algorithm 2. Recall
that now the goal is to find the realisation r* that maximises the satisfaction
probability max* of a path formula. The difference between the algorithms lies
in the interpretation of the results of the underlying MDP model checking. If
the max probability for R is below max*, R can be discarded. Otherwise, we
check whether the corresponding scheduler oy« is consistent. If consistent, the
algorithm updates r* and max*, and discards R. If the scheduler is not consistent
but min > max* holds, we can still update max* and improve the pruning
process, as it means that some realisation (we do not know which) in R induces
a higher probability than max*. Regardless whether max* has been updated, the
algorithm has to split R based on some predicate, and analyse its subfamilies as
they may include the maximising realisation.
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Algorithm 2. Max synthesis

Input: A family ® of MCs with the set R® of realisations, and a path formula ¢
Output: A realisation r* € R® according to Problem 2.

1: max* « —oo, U « {R®}

2: M2 «— buildQuotientMDP(D,R®, ~y) > Applying Def. 7 and 8
3: while U # () do

4: select R € U and U — U \ {R}

5: MZ2[R] « restrict(M2,R) > Applying Def. 12
6: (max, Omax) «— solveMaxMDP(Mg [R], ¢)

7: (min, Gmin) « solveMinMDP(MZ2[R], ¢)

8: if max > max* then

9: if isConsistent(omax) then r* «— gmax, max* <« max
10: else
11: if min > max® then max™ + min
12: U «— U Usplit(R, selPredicate(max, 0max, Min, omin)) > See Sect. 4.4

13: return r*

4.4 Splitting Strategies

If verifying the quotient MDP M?®[R] cannot classify the (sub-)realisation R
as satisfying or violating, we split R, while we guide the splitting strategy by
using the obtained verification results. The splitting operation chooses a suitable
parameter k € K and predicate Ay that partition the realisations R into Rt and
R, (see Definition 11). A good splitting strategy globally reduces the number of
model-checking calls required to classify all r € R.

The two key aspects to locally determine a good k are: (1) the wvari-
ance, that is, how the splitting may narrow the difference between max =
Prob™*(M?[X],¢) and min = Prob™"(M?2[X],¢) for both X = Rt or
X = R, and (2) the consistency, that is, how the splitting may reduce the
inconsistency of the schedulers op.x and opi,. These aspects cannot be eval-
uated precisely without applying all the split operations and solving the new
MDPs M®[R 1] and M2 [R~]. Therefore, we propose an efficient strategy that
selects k and Ay, based on a light-weighted analysis of the model-checking results
for M®[R]. The strategy applies two scores variance(k) and consistency(k)
that estimate the influence of k on the two key aspects. For any k, the scores are
accumulated over all important states s (reachable via oy OF Opmin, respectively)
where PB(s)(k) # 0. A state s is important for R and some § € Rx if

Prob™™* (M2 [R], ¢)(s) — Prob™» (M2 [R], ¢)(s) -
Prob™™*(M2[R],¢) — Prob™(M2[R],¢)
where Prob™"(.)(s) and Prob™®(.)(s) is the min and max probability in the
MDP with initial state s. To reduce the overhead of computing the scores, we
simplify the scheduler representation. In particular, for o« and every k € K,
we extract a map C*, : Ty — N, where C¥__(t) is the number of important
states for which 0,ax(s) = a, with 7(k) = t. The mapping C*. represents opy.

min
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We define variance(k) = >, ., |Ck . (t)—CF

v . (t)], leading to high scores if
the two schedulers vary a lot. Further, we define consistency(k) = size (Cr];ax)~
max (C¥ . )+size (CF; ) max (Ck, ), where size (C) = |[{t € T}, | C(t) > 0}|—1
and max (C) = maxser, {C(t)}, leading to high scores if the parameter has clear
favourites for oyax and oy, but values from its full range are chosen.

As indicated, we consider different strategies for the two synthesis problems.
For threshold synthesis, we favour the impact on the variance as we principally do
not need consistent schedulers. For the max synthesis, we favour the impact on
the consistency, as we need a consistent scheduler inducing the max probability.

Predicate Ay, is based on reducing the variance: The strategy selects T7 C Ty
with |7”| = 3 [|T%|], containing those ¢ for which C% . (t)—CP%, (t) is the largest.
The goal is to get a set of realisations that induce a large probability (the ones

including 7" for parameter k) and the complement inducing a small probability.

Approach 5 (MDP-based abstraction refinement). The methods under-
lying Algorithms 1 and 2, together with the splitting strategies, provide solutions
to the synthesis problems and are referred to as MDP abstraction methods.

5 Experiments

We implemented the proposed synthesis methods as a Python prototype using
Storm [25]. In particular, we use the Storm Python API for model-adaption,
-building, and -checking as well as for scheduler extraction. For SMT solving,
we use Z3 [39] via pySMT [26]. The tool-chain takes a PRISM [38] or JANT [§]
model with open integer constants, together with a set of expressions with possi-
ble values for these constants. The model may include the parallel composition of
several modules/automata. The open constants may occur in guards*, probabil-
ity definitions, and updates of the commands/edges. Via adequate annotations,
we identify the parameter values that yield a particular action. The annota-
tions are key to interpret the schedulers, and to restrict the quotient without
rebuilding.

All experiments were executed on a Macbook MF839LL/A with 8 GB RAM
memory limit and a 12h time out. All algorithms can significantly benefit from
coarse-grained parallelisation, which we therefore do not consider here.

5.1 Research Questions and Benchmarks

The goal of the experimental evaluation is to answer the research question:
How does the proposed MDP-based abstraction methods (Approaches3-5) cope
with the inherent complexity (i.e. the NP-hardness) of the synthesis problems
(c¢f. Problems1 and 2)? To answer this question, we compare their perfor-
mance with Approaches 1 and 2 [18], representing state-of-the-art solutions and
the base-line algorithms. The experiments show that the performance of the

4 Slight care by the user is necessary to avoid deadlocks.
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Table 1. Benchmarks and timings for Approaches 1-3

Bench. Range | K| |D| | Member size Quotient size Run time
Avg. |S| Avg. |T| |S| |A| |T'| | 1-by-1 All-in-1 | Sched.
Enum.
Pole [3.35, 3.82] 17 1327104 5689 16896 | 6793 7897 22416 | 130k™ MO 26k
Maze [9.8, 9800] 20 1048576 134 211 203 277 409 | 28k* TO 2.7k
Herman [1.86, 2.44] 9 576 5287 6948 | 21313 102657 184096 55* 72 246
DPM [68, 210] 9 32768 5572 18147 | 35154 66096 160146 | 2.9k™* MO 7.2k
BSN [0, 0.988] 10 1024 116 196 382 457 762 31* 2 2

MDP abstraction significantly varies for different case studies. Thus, we consider
benchmarks from various application domains to identify the key characteristics
of the synthesis problems affecting the performance of our approach.

Benchmarks description. We consider the following case studies: Maze is a plan-
ning problem typically considered as POMDP, e.g. in [41]. The family describes
all MCs induced by small-memory [14, 35] observation-based deterministic strate-
gies (with a fixed upper bound on the memory). We are interested in the
expected time to the goal. In [35], parameter synthesis was used to find ran-
domised strategies, using [22]. Pole considers balancing a pole in a noisy and
unknown environment (motivated by [2,12]). At deploy time, the controller has
a prior over a finite set of environment behaviours, and should optimise the
expected behavior without depending on the actual (hidden) environment. The
family describes schedulers that do not depend on the hidden information. We
are interested in the expected time until failure. Herman is an asynchronous
encoding of the distributed Herman protocol for self-stabilising rings [33,37].
The protocol is extended with a bit of memory for each station in the ring,
and the choice to flip various unfair coins. Nodes in the ring are anonymous,
they all behave equivalently (but may change their local memory based on local
events). The family describes variations of memory-updates and coin-selection,
but preserves anonymity. We are interested in the expected time until stabilisa-
tion. DPM considers a partial information scheduler for a disk power manager
motivated by [7,27]. We are interested in the expected energy consumption.
BSN (Body sensor network, [43]) describes a network of connected sensors that
identify health-critical situations. We are interested in the reliability. The family
contains various configurations of the used sensors. BSN is the largest software
product line benchmark used in [18]. We drop some implications between fea-
tures (parameters for us) as this is not yet supported by our modelling language.
We thereby extended the family.

Table1 shows the relevant statistics for each benchmark: the benchmark
name, the (approximate) range of the min and max probability /reward for the
given family, the number of non-singleton parameters |K|, and the number of
family members |®|. Then, for the family members the average number of states
and transitions of the MCs, and the states, actions (= ) . |Act(s)|), and transi-
tions of the quotient MDP. Finally, it lists in seconds the run time of the base-line
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Table 2. Results for threshold synthesis via abstraction-refinement

Inst A # Below # Subf # Above # Subf Singles|# Iter Time Build Check Anal. Speedup
below above

Pole 3.37 697 176 1326407 2186 920 | 4723 308 117 60 118 421
3.73 | 1307077 7854 20027 3279 1294 | 22265 1.7k 576 317 396 s
3.76 | 1322181 3140 4923 1025 1022 8329 584 187 114 197 222
3.79 | 1326502 572 602 123 74 1389 58 23 10 23 2.2k

Maze 10 4 3 1048572 92 4 189 5 <1 3 <1 26k
20 4247 2297 1044329 4637 3400 | 13867 114 21 43 29 246
30 18188 9934 1030388 18004 14010/ 55875 608 80 127 270 46
8000 | 1046285 846 2291 1125 969 3941 136 9 106 13 1.0k

Herman 1.9 6 6 570 368 320 747 333 303 11 18 0.2
1.71 0 0 576 258 184 515 232 206 8 17 0.3

DPM 80 160 141 32608 1292 356 2865 1.0k 602 322 64 3
70 6 6 32762 443 40 897 380 190 156 32 8
60 0 0 32768 104 6 207 99 42 48 8 29

BSN .965 544 81 480 81 25 321 2 <1 <1 <1 1
.985 994 41 30 8 5 97 <1 <1 <1 <1

algorithms and the consistent scheduler enumeration®. The base-line algorithms
employ the one-by-one and the all-in-one technique, using either a BDD or a
sparse matrix representation. We report the best results. MOs indicate breaking
the memory limit. Only the all-in-one approach required significant memory. As
expected, the SMT-based implementation provides an inferior performance and
thus we do not report its results.

5.2 Results and Discussion

To simplify the presentation, we focus primarily on the threshold synthesis prob-
lem as it allows a compact presentation of the key aspects. Below, we provide
some remarks about the performance for the max and feasibility synthesis.

Results. Table2 shows results for threshold synthesis. The first two columns
indicate the benchmark and the various thresholds. For each threshold A, the
table lists the number of family members below (above) A, each with the number
of subfamilies that together contain these instances, and the number of singleton
subfamilies that were considered. The last table part gives the number of iter-
ations of the loop in Algorithm 1, and timing information (total, build/restrict
times, model checking times, scheduler analysis times). The last column gives
the speed-up over the best base-line (based on the estimates).

Key observations. The speed-ups drastically vary, which shows that the MDP

abstraction often achieves a superior performance but may also lead to a perfor-
mance degradation in some cases. We identify four key factors.

5 Values with a * are estimated by sampling a large fraction of the family.
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Iterations. As typical for CEGAR approaches, the key characteristic of the
benchmark that affects the performance is the number N of iterations in the
refinement loop. The abstract action introduces an overhead per iteration caused
by performing two MDP verification calls and by the scheduler analysis. The
run time for BSN, with a small |®] is actually significantly affected by the
initialisation of various data structures; thus only a small speedup is achieved.

Abstraction size. The size of the quotient, compared to the average size of
the family members, is relevant too. The quotient includes at least all reachable
states of all family members, and may be significantly larger if an inconsistent
scheduler reaches states which are unreachable under any consistent scheduler.
The existence of such states is a common artefact from encoding families in
high-level languages. Table 1, however, indicates that we obtain a very compact
representation for Maze and Pole.

Thresholds. The most important aspect is the threshold A. If A is closer to the
optima, the abstraction requires a smaller number of iterations, which directly
improves the performance. We emphasise that in various domains, thresholds
that ask for close-to-optimal solutions are indeed of highest relevance as they
typically represent the system designs developers are most interested in [44]. Why
do thresholds affect the number of iterations? Consider a family with T, = {0,1}
for each k. Geometrically, the set R® can be visualised as |K|-dimensional cube.
The cube-vertices reflect family members. Assume for simplicity that one of
these vertices is optimal with respect to the specification. Especially in bench-
marks where parameters are equally important, the induced probability of a
vertex roughly corresponds to the Manhattan distance to the optimal vertex.
Thus, vertices above the threshold induce a diagonal hyperplane, which our
splitting method approximates with orthogonal splits. Splitting diagonally is
not possible, as it would induce optimising over observation-based schedulers.
Consequently, we need more and more splits the more the diagonal goes through
the middle of the cube. FEven when splitting optimally, there is a combinato-
rial blow-up in the required splits when the threshold is further from the optimal
values. Another effect is that thresholds far from optima are more affected by
the over-approximation of the MDP model-checking results and thus yield more
inconclusive answers.

Refinement strategy. So far, we reasoned about optimal splits. Due to the
computational overhead, our strategy cannot ensure optimal splits. Instead, the
strategy depends mostly on information encoded in the computed MDP strate-
gies. In models where the optimal parameter value heavily depends on the state,
the obtained schedulers are highly inconsistent and carry only limited information
for splitting. Consequently, in such benchmarks we split sub-optimally. The sub-
optimality has a major impact on the performance for Herman as all obtained
strategies are highly inconsistent — they take a different coin for each node, which
is good to speed up the stabilisation of the ring.

Summary. MDP abstraction is not a silver bullet. It has a lot of potential in
threshold synthesis when the threshold is close to the optima. Consequently,
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feastbility synthesis with unsatisfiable specifications is handled perfectly well by
MDP abstraction, while this is the worst-case for enumeration-based approaches.
Likewise, max synthesis can be understood as threshold synthesis with a shifting
threshold max*: If the max™ is quickly set close to max, MDP abstraction yields
superior performance. Roughly, we can quickly approximate max* when some of
the parameter values are clearly beneficial for the specification.

6 Conclusion and Future Work

We contributed to the efficient analysis of families of Markov chains. In particu-
lar, we discussed and implemented existing approaches to solve practically inter-
esting synthesis problems, and devised a novel abstraction refinement scheme
that mitigates the computational complexity of the synthesis problems, as shown
by the empirical evaluation. In the future, we will include refinement strategies
based on counterexamples as in [23,34].
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