
Robowaifu Design Document

t. The /robowaifu/ Community
Chobitsu, general editor

English translation
version v200428

Abstract

This document describes the specification, design, engineering, im-
plementation, capabilities, and usage of the Robowaifu Reference
Model A Series. It is intended for designers, technicians, engineers
and developers rather than for general lay audience consumption.

This manual is a living research and design document, and is in addition
to the general Robowaifu User’s Guide. It will be constantly changing
and being updated for the forseeable future. Each published revision
will have a unique version number (based on date). The /robowaifu/
community at large (as well as it’s neighboring communities) contributed
to the design ideas and specifications herein. Without them, this work
would not have been possible.

Contents

I Basic assumptions 11

1 Introduction 12

1.1 Implementer requirements 12

1.2 Engineering requirements 12

1.3 Design requirements . 12

1.4 Sociological considerations 12

2 The art of robowaifu engineering & design 13

2.1 Common rules . 13

2.1.1 Technical design documents 13

2.2 Special note for technical-description style documents . . 14

II Physical considerations 15

3 Physical safety General 16

3.1 Human safety . 16

3.2 Robowaifu safety . 16

3.2.1 Avoiding environmental hazards 16

3.2.2 Self-preservation vs. self-sacrifice 16

3.3 Environment safety . 16

3.4 Detecting mechanical error-conditions 16

4 Mechanical 16

4.1 Kinematic considerations 16

4.1.1 Structural geometry considerations 16

4.1.2 Mass is everything 16

4.1.3 Thrown mass . 16

4.1.4 Inboard mass . 16

4.1.5 Bipedal locomotion 16

4.1.6 Eye-hand coordination, &tc. 16

4.2 Armatures & frameworks 17

4.2.1 Head . 17

4.2.1.1 Face . 17

4.2.1.1.1 Eyes & eyelids 17

4.2.1.1.2 Eyebrows 17

4.2.1.1.3 Mouth 17

4.2.1.2 Neck . 17

4.2.2 Torso . 17

4.2.3 Arms . 17

4.2.3.1 Shoulder joints 17

4.2.3.2 Elbow joints 17

4.2.3.3 Wrist joints 17

4.2.4 Hands . 17

4.2.4.1 Palm . 18

4.2.4.2 Thumb 18

4.2.4.3 Fingers 18

4.2.5 Legs . 18

4.2.5.1 Hip joints 18

4.2.5.2 Knee joints 18

4.2.5.3 Ankle joints 18

4.2.6 Feet . 18

4.2.6.1 Toes . 18

4.3 Actuators, force-transfer, & control mechanisms 18

4.3.1 Electrical motors 18

2 Robowaifu Design Document v200428

4.3.2 Cable-based actuators 18

4.3.2.1 Bowden cables 18

4.3.2.2 Simple (pull) cables 19

4.3.3 Screw (linear) actuators 19

4.3.4 Lever (pushrod) actuators 19

4.3.5 Pneumatic (artificial muscle) actuators 19

4.3.6 Hydraulic actuators 19

4.3.7 Unconventional actuators 19

4.4 Lubrication & joints . 19

4.4.1 Fluid-distribution manifolds, pipes, & tubing . . . 19

4.4.2 Circulatory pumps & mechanisms 19

4.4.3 Filtering & cooling 19

4.4.4 Reservoirs . 19

4.4.5 Access & replenishment 19

4.4.6 Joints servicing & replacement 19

5 External shell & ‘skin’ 19

5.1 Hard-surface materials . 19

5.2 Soft-surface materials . 20

5.3 External shell & cooling-systems symbiosis 20

6 Cooling 20

6.1 Passive cooling . 20

6.1.1 Materials . 20

6.2 Active cooling . 20

6.2.1 Fans . 20

6.2.2 Refrigeration . 20

6.3 Cooling-fluids & distribution 20

6.3.1 Fluid-distribution manifolds, pipes, & tubing . . . 20

6.3.2 Circulatory pumps & mechanisms 20

6.3.3 Reservoirs . 20

6.3.4 Access & replenishment 20

7 Power 20

7.1 Power aquisition & production 20

7.1.1 Household current 21

7.1.2 RF induction . 21

7.1.3 Generative braking 21

Robowaifu Design Document v200428 3

7.1.4 Solar trickle . 21

7.2 Power switching systems 21

7.2.1 Automatic & failover switching 21

7.2.2 Manual switching 21

7.3 Power storage . 21

7.3.1 Batteries . 21

7.3.1.1 LiPo . 21

8 Electrical, controls, & wiring 21

8.1 Electrical . 21

8.1.1 Safety . 21

8.1.2 Busses . 21

8.1.3 Wiring . 21

8.1.4 Transformers . 22

8.1.5 Inverters . 22

8.2 Control . 22

8.2.1 Electronics . 22

8.2.1.1 Analog 22

8.2.1.2 Digital 22

8.2.2 Relays . 22

8.2.2.1 Light-duty 22

8.2.2.2 Heavy-duty 22

8.3 Networking . 22

8.3.1 Network gear . 22

8.3.2 Network wiring . 22

8.3.3 Wireless networking 22

9 Computing resources 22

9.1 Onboard computing resources 23

9.1.1 Single-board computers (SBCs) 23

9.1.1.1 Beaglebone Blue 23

9.1.1.2 RaspberryPi & clones 23

9.1.2 Microcontrollers 23

9.1.2.1 Arduino Nano 23

9.2 External computing resources 23

9.2.1 Home servers & clusters 23

9.2.2 Internet cloud providers 23

4 Robowaifu Design Document v200428

10 Sensors 23

10.1 Visual . 23

10.1.1 Stereo & multipoint 23

10.1.2 Acuity . 23

10.1.3 Infrared & ultraviolet considerations 23

10.2 Audio . 24

10.2.1 Stereo & multipoint 24

10.2.2 Distinctiveness & spatial discrimination 24

10.2.3 Frequency response considerations 24

10.3 Tactile . 24

10.3.1 Haptic-response systems 24

10.3.2 Sensorimotor & inertial 24

10.3.3 Overall system responses 24

10.4 Other sensors . 24

10.4.1 SONAR . 24

10.4.2 LIDAR . 24

10.4.3 GPS . 24

10.4.4 EM & RF, other 24

10.4.5 Particulate & ‘olfactory’ 24

11 Mechanical construction approaches 24

11.1 Safety . 25

11.2 Reading & creating mechanical schematics 25

11.3 Using the right tools . 25

11.3.1 Hand tools . 25

11.3.2 Power tools . 25

11.3.3 Technical instruments 25

11.3.3.1 Multimeters, power, & electronics 25

11.3.3.2 Micrometers & lengths 25

11.3.3.3 Scales & masses 25

11.4 Designing, creating, & using construction rigs 25

11.4.1 Using woods . 25

11.4.2 Using plastics, synthetics, & rubber 25

11.4.3 Using metals . 25

11.4.4 Using pipes, cables & ropes 25

11.4.5 Presses & other deformation rigs 26

11.5 Manufacturing parts . 26

11.5.1 3D printing . 26

Robowaifu Design Document v200428 5

11.5.2 Choosing stocks 26

11.5.2.1 Plastics, synthetics, & rubber 26

11.5.2.2 Metals 26

11.5.2.3 Fabrics & cords 26

11.5.3 Ensuring compatibility 26

11.6 Fastening parts together 26

11.6.1 Screws, rivets, & mechanical fasteners 26

11.6.2 Glueing & bonding 26

11.6.3 Welding & brazing 26

11.7 Wiring parts together . 26

11.7.1 Electrical connections 26

11.7.1.1 Electrical tapes 27

11.7.1.2 Wiring-nuts & other fasteners 27

11.7.2 Electronics connections 27

11.7.3 Soldering . 27

11.7.4 Crafting & securing wiring-harnesses 27

11.7.4.1 Safety conduits 27

11.7.4.2 Rigidity considerations 27

11.7.4.3 Range-of-motion considerations 27

11.7.4.4 Servicing considerations 27

11.8 Functional testing . 27

11.9 Stress & load-testing . 27

11.9.1 Testing individual components 27

11.9.2 Testing subsystems 27

11.9.3 Testing the overall system 27

11.10Fit & finish . 28

III Software considerations 29

12 Software safety General 30

12.1 Human safety . 30

12.2 Robowaifu safety . 30

12.2.1 Avoiding environmental hazards 30

12.2.2 Self-preservation vs. self-sacrifice 30

12.3 Environment safety . 30

12.4 Software error-detection & fault-tolerance 30

6 Robowaifu Design Document v200428

13 Software construction approaches 30

13.1 The Python programming language 30

13.2 The C++ programming language 30

13.3 The C programming language 30

13.4 IDEs . 30

13.5 Software-testing systems 30

13.6 Debugging . 30

14 Realtime performance considerations 30

14.1 Realtime subsystems . 31

14.2 Non-realtime subsystems 31

15 IPCNet 31

15.1 Introduction . 31

15.2 Data requirements . 32

15.3 Security . 33

15.4 Compromised systems . 34

15.5 Feature set . 34

15.6 Implementation . 34

15.7 Discussion, further Q&A 35

16 Control & communications UI 36

16.1 Onboard C&C UI . 36

16.2 External C&C UI . 36

17 AI & Machine Learning 36

17.1 Foundations, briefly . 36

17.2 Current AI/ML frameworks 36

17.2.1 TensorFlow . 36

17.2.2 PyTorch . 36

17.2.3 Keras . 36

17.3 Compute-resource considerations 36

17.4 3rd-party APIs & cloud-based systems 37

17.4.1 Wolfram|Alpha . 37

17.4.2 Microsoft CNTK 37

17.4.3 Amazon AI Services 37

17.4.4 Google AI . 38

17.5 Our general robowaifu ML approach 38

17.5.1 Reinforcement Learning (RL) 38

Robowaifu Design Document v200428 7

17.5.2 Deep Neural-Networks (DNNs) 38

IV Design considerations 39

V Reference, appendices, etc 40

18 How to change a LATEX layout? 41

18.1 Advantages and disadvantages of LATEX 41

18.2 Input files and class files 41

18.3 Class files and packages 41

18.4 Changing the layout, step by step 42

18.4.1 Differences between desired and available layout . 42

18.4.2 Finding the original definition 42

18.4.3 Writing a new package file 43

18.4.4 Using the new package 43

18.5 A simple example (Equation numbers) 43

18.6 A more complex example (Reference Manual) 44

18.6.1 Page layout . 44

18.6.2 Section headings 45

18.6.3 Setting the margin notes 46

18.6.4 Extensions . 46

Appendix 47

A The page structure in LATEX 47

B Description of the refman-class family 50

B.1 Invocation . 50

B.2 Options . 50

B.3 Layout changes . 50

B.3.1 Page design . 50

B.3.2 Section headings 51

B.3.3 Paragraphs . 51

B.4 Footnotes . 51

B.4.1 Description environment 51

B.4.2 Positioning of margin notes 51

B.4.3 Headers and Footers 52

B.5 Additional commands . 52

8 Robowaifu Design Document v200428

B.5.1 Marginlabel . 52

B.5.2 Attention . 52

B.5.3 Seealso . 53

B.5.4 Maxipage environment 53

B.5.5 Fullpage environment 53

B.5.6 Noparskip . 53

B.5.7 Setleftmarginwidth 53

B.5.8 Descriptioncolon 53

B.5.9 Descriptionleft . 54

B.5.10 Maxipagerule . 54

B.5.11 Condbreak . 54

B.5.12 Example . 54

B.5.13 Pageperchapter . 54

B.5.14 Smallborder . 54

B.5.15 Dvips . 54

B.5.16 Pdftex . 54

B.5.17 Pagesize . 54

B.5.18 Ifpdfoutput . 55

C Robowaifu programming language tutorials 56

C.1 Getting everything ready for software development 56

D Python tutorial 59

E C++ tutorial 60

F C tutorial 61

G Robowaifu electronics tutorials 62

H tutorial A 63

I tutorial B 64

J tutorial C 65

K Robowaifu mechanical & construction tutorials 66

L tutorial A 67

M tutorial B 68

Robowaifu Design Document v200428 9

N tutorial C 69

10 Robowaifu Design Document v200428

I. Basic assumptions

This part of the document is intended to be more or less read in order
from start to finish. There is nothing complicated here, and information
considered fundamental to the rest of the manual is included here.

Here we cover some of the important basics. Where does one even begin
creating a robowaifu? Why, at the beginning of course!

11

1 Introduction

1.1 Implementer requirements

Every form of robowaifu that is created has at least two human roles
involved: Engineers, and Designers. These may be the same man, but
usually many men will be involved in teams, with roles often overlapping.

The engineering will be crafted by the engineer.Engineer:

TBD.

The designs will be crafted by the designer.Designer:

TBD.

1.2 Engineering requirements

When an engineer works to craft a robowaifu, numerous mechanical, elec-
trical, computing, networking and other considerations must be taken
into acount.

1. The robowaifu engineering has to be defined. This is basically a job
for a professional engineer, but for now Anon will have to step in.

2. The engineering has to be detailed with specifics inside engineering
documents so it can be manufactured reliably.

3. TBD.

1.3 Design requirements

When a designer works to craft a robowaifu, numerous aesthetic, social
and other considerations must be taken into acount.

1. The robowaifu design has to be defined. This is basically a job for
a professional designer, but for now Anon will have to step in.

2. The design has to be detailed with specifics inside design documents
so it can be manufactured reliably. §18 contains more information→ § 18 layout

about the software used to create these design documents.

3. TBD.

1.4 Sociological considerations

A Robowaifu has many sociological implications for her Master, and
the designer and engineer must both take all these points into account
when devising the functioning of the robowaifu’s varied systems.

1. The social engagement for the master should be pleasing to him.

2. The social engagement for the master should be productive for him.

3. The social engagement for the master must not be harmful to him.1

4. TBD.

1 This is not to say the robowaifu must never admonish her master when circum-
stances warrant it. For example, in matters of personal health & safety. To neglect
to do so would in fact be harmful to her master. Just don’t let her turn into some
kind of nagging bitch. Therefore, some type of ‘off’ switch for this aspect is needed.

12 Robowaifu Design Document v200428

2 The art of robowaifu engineering & design

2.1 Common rules

There are few common rules because every kind of robowaifu has dif-
ferent requirements and meets a particular Anon’s need. Her design
should therefore take into consideration who will own this specific model
of robowaifu, and why.

An important criteria for consideration is if her master will live with the
robowaifu with her serving him as a mere domestic (a catgirl meido), or
if he wants to find a true partner with the robowaifu in ‘marital’ bliss (a
true waifu) or some other variation (for example as just a simple chatbox).

In addition to that, the designer of the robowaifu has to take into con-
sideration and accomodate certain other domestic conventions, like the
living habits (sexual and otherwise) of her master. 2

The main purpose of a robowaifu design is to ensure the master finds the! →
satisfaction he wants with her, and to be able to enjoy and fully engage
with his pretty robowaifu. However, for the design documents; structure,
readability, and consistency is far more important than “being artsy”. 3

2.1.1 Technical design documents

The following rules of thumb should be valid for most documents:

Line spacing : The spacing between two lines should be larger than the spacing
between two words to guide the eyes of the reader.

Line length : The length of a line – or when using multicolumn layout of a column
– should be about 60 characters. When lines get longer they are
more difficult to read and it is easier to go to the wrong line after
finishing the current one. Increasing the linespacing may help a
little. On no account should code block lines exceed 80 characters.
Conversely, when lines get too short it is difficult to set them as
justified, and you will get lots of hyphenated words.

Page layout : Normal text pages should look the same throughout the document.
Figures, tables and special pages like the index need not appear in
the same layout but should take as much space as needed.

Margin notes : Margin notes are often more suitable than footnotes because they
appear right next to the text they refer to. Special margin notes
are the “attention sign” or the “dangerous bend” that guide the
user to important parts of the text.

Headings and Footings : Headings and footings should make it easier for the reader to orient
himself in the document. If you expect readers to copy single pages
from the document they should contain information about the pa-
per as a whole, just in case you need more information or want to
cite the whole paper.

If you expect the document to change often (like this one will), each
page should contain version information or at least a date.

2 Compare the lifestyles of different types of anons like “Outdoorsmen” and “Hikkis”.
3 Of course, the robowaifu herself should be beautiful, that’s an important part of

what makes her superior. But you, as a designer, should strive for engineering-grade
quality in your documents, not fancifullness. We can save that for marketing.

Robowaifu Design Document v200428 13

2.2 Special note for technical-description style documents

Reference Manual Style : This LATEX design style is suited for our purposes in general, and is
used in this robowaifu design document. We recommend its use. 4

• The text is printed in rather short lines in the right part of
the page. This part is used for continuous reading.

• The wide left margin is used for headings and margin notes.
Since you now have a wide margin it is easier to use long
margin notes to supply additional information and to lead the
reader to important parts of the documents. Please note that
the margin is always on the left side thus two-sided printing
does not look symmetrical. This is done on purpose, because
the reader will always start reading at the left side, and with
this layout section headers really “stand out”. In a symmetri-
cal layout, half the headers would be buried in the text.

• Figures and tables are either inside the text column, inside the
margin or, if necessary, fill the whole page.

§ 18.6 describes how to implement such a layout in LATEX.→ § 18.6 refman ex.

4 The “PostScript Reference Manual” is another document that uses such a design.

14 Robowaifu Design Document v200428

II. Physical considerations

Here we’ll look at the physical, mechanical side of robowaifu engineering.

This part contains mechanical and wiring diagrams, engineering specs,
and other technical descriptions and documentation.

15

3 Physical safety General

TBD.

3.1 Human safety

TBD.

3.2 Robowaifu safety

TBD.

3.2.1 Avoiding environmental hazards

TBD.

3.2.2 Self-preservation vs. self-sacrifice

TBD.

3.3 Environment safety

TBD.

3.4 Detecting mechanical error-conditions

TBD.

4 Mechanical

TBD.

4.1 Kinematic considerations

TBD.

4.1.1 Structural geometry considerations

TBD.

4.1.2 Mass is everything

TBD.

4.1.3 Thrown mass

TBD.

4.1.4 Inboard mass

TBD.

4.1.5 Bipedal locomotion

TBD.

4.1.6 Eye-hand coordination, &tc.

TBD.

16 Robowaifu Design Document v200428

4.2 Armatures & frameworks

TBD.

4.2.1 Head

TBD.

4.2.1.1 Face

TBD.

4.2.1.1.1 Eyes & eyelids

TBD.

4.2.1.1.2 Eyebrows

TBD.

4.2.1.1.3 Mouth

TBD.

4.2.1.2 Neck

TBD.

4.2.2 Torso

TBD.

4.2.3 Arms

TBD.

4.2.3.1 Shoulder joints

TBD.

4.2.3.2 Elbow joints

TBD.

4.2.3.3 Wrist joints

TBD.

4.2.4 Hands

TBD.

Robowaifu Design Document v200428 17

4.2.4.1 Palm

TBD.

4.2.4.2 Thumb

TBD.

4.2.4.3 Fingers

TBD.

4.2.5 Legs

TBD.

4.2.5.1 Hip joints

TBD.

4.2.5.2 Knee joints

TBD.

4.2.5.3 Ankle joints

TBD.

4.2.6 Feet

TBD.

4.2.6.1 Toes

TBD.

4.3 Actuators, force-transfer, & control mechanisms

TBD.

4.3.1 Electrical motors

TBD.

4.3.2 Cable-based actuators

TBD.

4.3.2.1 Bowden cables

TBD.

18 Robowaifu Design Document v200428

4.3.2.2 Simple (pull) cables

TBD.

4.3.3 Screw (linear) actuators

TBD.

4.3.4 Lever (pushrod) actuators

TBD.

4.3.5 Pneumatic (artificial muscle) actuators

TBD.

4.3.6 Hydraulic actuators

TBD.

4.3.7 Unconventional actuators

TBD.

4.4 Lubrication & joints

TBD.

4.4.1 Fluid-distribution manifolds, pipes, & tubing

TBD.

4.4.2 Circulatory pumps & mechanisms

TBD.

4.4.3 Filtering & cooling

TBD.

4.4.4 Reservoirs

TBD.

4.4.5 Access & replenishment

TBD.

4.4.6 Joints servicing & replacement

TBD.

5 External shell & ‘skin’

TBD.

5.1 Hard-surface materials

TBD.

Robowaifu Design Document v200428 19

5.2 Soft-surface materials

TBD.

5.3 External shell & cooling-systems symbiosis

TBD.

6 Cooling

TBD.

6.1 Passive cooling

TBD.

6.1.1 Materials

TBD.

6.2 Active cooling

TBD.

6.2.1 Fans

TBD.

6.2.2 Refrigeration

TBD.

6.3 Cooling-fluids & distribution

TBD.

6.3.1 Fluid-distribution manifolds, pipes, & tubing

TBD.

6.3.2 Circulatory pumps & mechanisms

TBD.

6.3.3 Reservoirs

TBD.

6.3.4 Access & replenishment

TBD.

7 Power

TBD.

7.1 Power aquisition & production

TBD.

20 Robowaifu Design Document v200428

7.1.1 Household current

TBD.

7.1.2 RF induction

TBD.

7.1.3 Generative braking

TBD.

7.1.4 Solar trickle

TBD.

7.2 Power switching systems

TBD.

7.2.1 Automatic & failover switching

TBD.

7.2.2 Manual switching

TBD.

7.3 Power storage

TBD.

7.3.1 Batteries

TBD.

7.3.1.1 LiPo

TBD.

8 Electrical, controls, & wiring

TBD.

8.1 Electrical

TBD.

8.1.1 Safety

TBD.

8.1.2 Busses

TBD.

8.1.3 Wiring

TBD.

Robowaifu Design Document v200428 21

8.1.4 Transformers

TBD.

8.1.5 Inverters

TBD.

8.2 Control

TBD.

8.2.1 Electronics

TBD.

8.2.1.1 Analog

TBD.

8.2.1.2 Digital

TBD.

8.2.2 Relays

TBD.

8.2.2.1 Light-duty

TBD.

8.2.2.2 Heavy-duty

TBD.

8.3 Networking

TBD.

8.3.1 Network gear

TBD.

8.3.2 Network wiring

TBD.

8.3.3 Wireless networking

TBD.

9 Computing resources

TBD.

22 Robowaifu Design Document v200428

9.1 Onboard computing resources

TBD.

9.1.1 Single-board computers (SBCs)

TBD.

9.1.1.1 Beaglebone Blue

TBD.

9.1.1.2 RaspberryPi & clones

TBD.

9.1.2 Microcontrollers

TBD.

9.1.2.1 Arduino Nano

TBD.

9.2 External computing resources

TBD.

9.2.1 Home servers & clusters

TBD.

9.2.2 Internet cloud providers

TBD.

10 Sensors

TBD.

10.1 Visual

TBD.

10.1.1 Stereo & multipoint

TBD.

10.1.2 Acuity

TBD.

10.1.3 Infrared & ultraviolet considerations

TBD.

Robowaifu Design Document v200428 23

10.2 Audio

TBD.

10.2.1 Stereo & multipoint

TBD.

10.2.2 Distinctiveness & spatial discrimination

TBD.

10.2.3 Frequency response considerations

TBD.

10.3 Tactile

TBD.

10.3.1 Haptic-response systems

TBD.

10.3.2 Sensorimotor & inertial

TBD.

10.3.3 Overall system responses

TBD.

10.4 Other sensors

TBD.

10.4.1 SONAR

TBD.

10.4.2 LIDAR

TBD.

10.4.3 GPS

TBD.

10.4.4 EM & RF, other

TBD.

10.4.5 Particulate & ‘olfactory’

TBD.

11 Mechanical construction approaches

TBD.

24 Robowaifu Design Document v200428

11.1 Safety

TBD.

11.2 Reading & creating mechanical schematics

TBD.

11.3 Using the right tools

TBD.

11.3.1 Hand tools

TBD.

11.3.2 Power tools

TBD.

11.3.3 Technical instruments

TBD.

11.3.3.1 Multimeters, power, & electronics

TBD.

11.3.3.2 Micrometers & lengths

TBD.

11.3.3.3 Scales & masses

TBD.

11.4 Designing, creating, & using construction rigs

TBD.

11.4.1 Using woods

TBD.

11.4.2 Using plastics, synthetics, & rubber

TBD.

11.4.3 Using metals

TBD.

11.4.4 Using pipes, cables & ropes

TBD.

Robowaifu Design Document v200428 25

11.4.5 Presses & other deformation rigs

TBD.

11.5 Manufacturing parts

TBD.

11.5.1 3D printing

TBD.

11.5.2 Choosing stocks

TBD.

11.5.2.1 Plastics, synthetics, & rubber

TBD.

11.5.2.2 Metals

TBD.

11.5.2.3 Fabrics & cords

TBD.

11.5.3 Ensuring compatibility

TBD.

11.6 Fastening parts together

TBD.

11.6.1 Screws, rivets, & mechanical fasteners

TBD.

11.6.2 Glueing & bonding

TBD.

11.6.3 Welding & brazing

TBD.

11.7 Wiring parts together

TBD.

11.7.1 Electrical connections

TBD.

26 Robowaifu Design Document v200428

11.7.1.1 Electrical tapes

TBD.

11.7.1.2 Wiring-nuts & other fasteners

TBD.

11.7.2 Electronics connections

TBD.

11.7.3 Soldering

TBD.

11.7.4 Crafting & securing wiring-harnesses

TBD.

11.7.4.1 Safety conduits

TBD.

11.7.4.2 Rigidity considerations

TBD.

11.7.4.3 Range-of-motion considerations

TBD.

11.7.4.4 Servicing considerations

TBD.

11.8 Functional testing

TBD.

11.9 Stress & load-testing

TBD.

11.9.1 Testing individual components

TBD.

11.9.2 Testing subsystems

TBD.

11.9.3 Testing the overall system

TBD.

Robowaifu Design Document v200428 27

11.10 Fit & finish

TBD.

28 Robowaifu Design Document v200428

III. Software considerations

Here we’ll look at the software side of robowaifu engineering.

This part contains code samples, diagrams, engineering specs, and other
technical descriptions and documentation.

29

12 Software safety General

TBD.

12.1 Human safety

TBD.

12.2 Robowaifu safety

TBD.

12.2.1 Avoiding environmental hazards

TBD.

12.2.2 Self-preservation vs. self-sacrifice

TBD.

12.3 Environment safety

TBD.

12.4 Software error-detection & fault-tolerance

TBD.

13 Software construction approaches

TBD.

13.1 The Python programming language

TBD.

13.2 The C++ programming language

TBD.

13.3 The C programming language

TBD.

13.4 IDEs

TBD.

13.5 Software-testing systems

TBD.

13.6 Debugging

TBD.

14 Realtime performance considerations

TBD.

30 Robowaifu Design Document v200428

14.1 Realtime subsystems

TBD.

14.2 Non-realtime subsystems

TBD.

15 IPCNet

Inter-Process Communication Network Library.

TBD.

15.1 Introduction

Q&A :

What is the project? IPCNet is a proposed parallel computing library that provides
an easy-to-use interface for processes implemented in differ-
ent languages across many platforms to share their data and
provide data services to each other.

Why create this project? Developers require a way to focus on building projects they
find interesting and affordable to make, while others can
quickly drop these components into their own robowaifu
project.

What do processes control? Processes have control over their data and subroutines and
define the permissions and rules which they may be accessed,
modified and executed. Processes may implement their own
whitelists and blacklists, rate limits and usage limits. When
processes query or request data it is just that, a request. Other
processes do not have to fulfill it.

What is it intended for? IPCNet is intended for parallel processes working together in
collaboration, such as the components of a robowaifu plugged
into each other. IPCNet is not intended for programs with
tightly coupled dependencies. When a process requests data
there may be multiple processes available to fulfill the request.

What is the main focus? The main focus is to connect developers’ projects together and
unite them with a single interface.

What’s different? IPC libraries that exist are specific to one or two programming
languages and are not easy for developers to quickly include
into their projects and interface processes across different lan-
guages or even different platforms. Parallel computing and
grid computing software is often tooled for special purposes
and are not intended for general use either. IPCNet provides
a way for all kinds of processes and systems to interact, safely
and quickly.

Development Philosophy :

Simple design IPCNet should be simple in its implementation and its inter-
face. The interface should work the same across all platforms
and programming languages and parse communicated data
into a proper format that the receiving process can readily

Robowaifu Design Document v200428 31

use. The library and processes that use it should not obfus-
cate their subroutines beyond what is sensible for security and
failsafety.

“Relying on complex tools to manage and build your system
is going to hurt the end users. [...] If you try to hide the
complexity of the system, you’ll end up with a more complex
system. Layers of abstraction that serve to hide internals are
never a good thing. Instead, the internals should be designed
in a way such that they NEED no hiding.” — Aaron Griffin

Robust and fail-safe IPCNet needs to be robust, fault tolerant and fail-safe. Data
coming in through various input methods may contain errors
from interference or malice and need to be corrected or dis-
carded. Errors and failures should be handled gracefully and
degrade the system in a way that will cause minimal harm to
the equipment, other equipment, to the environment and to
people. The library and processes implementing the library
should consider the following questions:

1. How critical is the component/process?

2. How likely is the component/process to fail?

3. How can the component/process be made fault tolerant?

4. How can the component/process be designed to reduce
impact and damage to the rest of the system in the event
of failure?

TBD.

15.2 Data requirements

TBD.

Data Transfer : All forms of data should be transmittable over the network with
low-latency and high throughput. Some forms of data that need
careful consideration:

• Function parameters passed on the call-stack

• General data structures, such as stack and heap C-arrays

• AI tensor data (different libraries need to be able to exchange
tensor data)

• Streaming video, raw and encoded

• Streaming audio, raw and encoded

• Other sensor data, such as haptic sensors, SONAR, LIDAR
&tc.

• General files

Beyond function parameters, data types will need to be properly
annotated with further metadata, describing the encoding of the
data so it can be properly decoded and read by other processes.

Data validation : All data transmitted over the network needs to be checked for in-
tegrity. It must be free from errors, both ones caused by potential
interference sources, and ones devised through malicious intent. It

32 Robowaifu Design Document v200428

is expected that ongoing pentesting will be a normal, regular part
of the robowaifu engineering processes.

Data should be traceable to its source and (optionally) cryptograph-
ically tagged historically, indicating which processes/devices mod-
ified it, and in what order, so that data pipelines can be quickly
inspected and debugged. This approach needs to function under
normal runtime conditions to allow for realistic validations.

Modularity : Processes connected together through IPCNet should be easily sep-
arated and recombined, with the benefit of flexibility and variety of
choice in data and service providers. However, in the spirit of sim-
ple design these processes should not hide their complexity behind
the interface beyond what is reasonable for security and safety, to
ensure the reusability and versatility of these programs.

Fault tolerance : • No single point of failure – If a system experiences a failure,
it must continue to operate without interruption during the
repair process.

• Fault isolation to the failing component – When a failure oc-
curs, the system must be able to isolate the failure to the
offending component.

• Fault containment to prevent propagation of the failure – Some
failure mechanisms can cause a system to fail by propagating
the failure to the rest of the system. Mechanisms that can
isolate a rogue component or failing component when it is
unable to contain a fault are required to protect the system.

• Availability of reversion modes – the abandonment of one or
more recent changes in favor of a return to a previous version.
If a component update breaks the system, it should revert back
to the last working version.

15.3 Security

If a malicious entity successfully alters the data of an IPC socket,
it/they are effectively tampering with a low-level mechanism part
of the core operating system. If an attacker is able to do this–or
even if they just manage to intercept the internal data–then that
device has already been compromised.

Any processes with direct access to the Internet could potentially
be exploited to create malicious requests within the IPC network
or even become fully compromised by arbitrary code execution.
Direct connection of the robowaifu with the Internet–or bridged
connections out the Internet–is therefore highly discouraged. Use
air-gapped systems at the least. Strongly validated data sources,
&tc. are instead encouraged.

Additionally, any process could connect to the IPCNet and send
malicious requests not created through the IPCNet library. Poten-
tially rogue processes need to be identified, mitigated and isolated.
Inputs from requests need to be sanitized and bad requests refused.

Permissions : Process routines registered on the network should have explicitly
defined read, write and execution permissions for processes and
process groups.

TBD.

Robowaifu Design Document v200428 33

Process Groups : Processes can register processes into groups and give them their
own permissions.

TBD.

Denial of Service mitigation : TBD.

• Identify normal conditions for network traffic

• Filter malicious traffic (connection tracking, component repu-
tation lists, black/whitelisting, or rate limiting)

TBD.

15.4 Compromised systems

If a robowaifu subsystem is compromised by an attacker there is no rea-
sonable way to verify the trustworthiness of processes thereafter. Data
may be modified or processes abruptly shutdown by an attacker with
intent to cause damage or harm.

This effectively implies the entire robowaifu system is compromised as
well. Automatic checks (and backups) should be in place to detect com-
promised states and immediately shutdown gracefully & safely. Diagnos-
tic information similar to the infamous BSOD must be made available to
the robowaifu’s Master to assist with the technical remediation efforts.

TBD.

15.5 Feature set

General features : TBD.

• P2P networking for processes – connected processes form a
mesh network and can communicate with each other even if
they’re not directly connected.

• Announce data – processes can announce to the network their
data and data services.

• Find data and data services – processes can search the network
for data and other processes providing data services.

• Query data – processes can query data that other processes
already have in memory or on disk and have made available.

• Subscribe to data and data services – processes can subscribe
to data and receive new updates whenever it is changed, or
subscribe to services that provide a stream of data, continu-
ously or at regular or irregular intervals.

• Offer service – processes can provide data services to other
processes to execute and produce new data on request. These
services may be public or private.

• Request service – processes can request data providers to ex-
ecute subroutines that produce new data.

15.6 Implementation

TBD.

Booting :

34 Robowaifu Design Document v200428

Event-driven interface :

Functions & returns :

Arguments & parameters :

Metadata :

IPC sockets :

Network sockets :

Security :

Status Codes : • Success

– 100 OK

– 101 Created

– 102 Accepted

– 103 No Data

– 104 Partial Data

• Client errors

– 200 Bad Request

– 201 Unauthorized

– 202 Forbidden

– 203 Not Found

– 204 Method Not Allowed

– 205 Too Many Requests

– 206 Upgrade Required

• Service errors

– 300 Internal Process Error

– 301 Not Implemented

– 302 Bad Gateway

– 303 Service Unavailable

– 304 Gateway Timeout

– 305 IPCNet Version Not Supported

– 306 Insufficient Storage

– 307 Insufficient Memory

– 308 Loop Detected

– 309 Network Authentication Required

15.7 Discussion, further Q&A

TBD.

1. How can we gracefully shutdown the system? A robowaifu may
need to move to a safe location and shutdown in a way that does
not cause damage to the components, other equipment near it, the
environment or nearby people.

Robowaifu Design Document v200428 35

2. How can we gracefully shutdown a compromised system? An at-
tacker who has compromised a device in the network may modify
data or shut it down with intent to cause damage or harm.

3. How critical is the component/process?

4. How likely is the component/process to fail?

5. How can the component/process be made fault tolerant?

6. How can the component/process be designed to reduce impact and
damage to the rest of the system in the event of failure?

7. How can we gracefully shutdown the system?

8. How can we gracefully shutdown a compromised system?

16 Control & communications UI

TBD.

16.1 Onboard C&C UI

TBD.

16.2 External C&C UI

TBD.

17 AI & Machine Learning

TBD.

17.1 Foundations, briefly

TBD.

17.2 Current AI/ML frameworks

TBD.

17.2.1 TensorFlow

TBD.

17.2.2 PyTorch

TBD.

17.2.3 Keras

TBD.

17.3 Compute-resource considerations

TBD.

36 Robowaifu Design Document v200428

17.4 3rd-party APIs & cloud-based systems

-Note: This subsection will be deleted entirely in the future. -Chobitsu

While we don’t recommend this approach in general, and certainly not
in the long-term, the simple fact is that for today, this approach is the
most expedient way for a robowaifu technician to include relatively so-
phisticated AI capabilities into his robowaifu. While the learning curve
required for these tools varies, in each case it is substantially less than
that required for implementations ‘rolled by hand’.

The mandatory cautionary notes:

• Invasive – your privacy is compromised. You have no control (or
even knowledge of) what is done with your data (for example, the
questions you may ask your robowaifu). Whatever it is, you can be
assured it won’t serve your best interests, but rather the provider’s
and those they answer to (for example; governments, investors,
and secondary 3rd-party commercial partners). Remember the old
adage: “When something is free, you are the product”.

• Fragile – you can be deplatformed (or worse) at a moment’s notice
for wrongthink, etc. Remember Tay.ai, as well as the many and
overt abuses by companies such as YouTube, Facebook & Twitter?

• Survelliance state – your data can be (and likely is being) sub-
mitted to the authorities–by law–when you use these services.

With these highly-negative consequences in mind, we strongly urge you
to only consider these vendor services simply as a stop-gap measure if you
must use them, and to seek more permanant solutions that are both open
and far more private, secure, and stable for you and your robowaifu in the
future. Rest assured you are not alone in this and that we are working
towards solutions for these basic needs together as a unified community.

If all this isn’t enough to dissuade you, then be warned a last time:
remember, it is in the commercial & other interests of these ven-
dors to have you become addicted to their services. Over time, it
will become increasingly easier for you to compromise on your principles,
and to simply ignore the fundamental evils and disservice happening to
both you and your robowaifu ‘behind the scenes’ by using these facilities.

Fair warning then, Anon.

17.4.1 Wolfram|Alpha

TBD.

https://products.wolframalpha.com/api/

17.4.2 Microsoft CNTK

TBD.

https://docs.microsoft.com/en-us/cognitive-toolkit/

17.4.3 Amazon AI Services

TBD.

https://aws.amazon.com/machine-learning/ai-services/

Robowaifu Design Document v200428 37

17.4.4 Google AI

TBD.

https://aihub.cloud.google.com/

17.5 Our general robowaifu ML approach

TBD.

17.5.1 Reinforcement Learning (RL)

TBD.

17.5.2 Deep Neural-Networks (DNNs)

TBD.

38 Robowaifu Design Document v200428

IV. Design considerations

Here we’ll look into some of the aesthetic and other aspects of robowaifu
designs.

This part contains design diagrams, design specs, and other design de-
scriptions and documentation.

39

V. Reference, appendices, etc

This part is a grab-bag of general reference information.

40 Robowaifu Design Document v200428

18 How to change a LATEX layout?

18.1 Advantages and disadvantages of LATEX

The big advantage of LATEX is, that it implements a “generic” or “logical”Advantages:
design. This means that the author has to specify the meaning of special
parts of the text like: headings, citations, lists, literature references, and
so on. These logical definitions will be processed by the system and
printed in the “correct” way. The meaning of correct is defined in the
document class and additional packages.

The opposite of this is the “visual” design that most text processors use.
Here the author has to know the correct way to set certain parts of the
text and take care of the correct printing.

The logical design makes it easier for the author to write consistent docu-
ments (i. e., same font and fontsize for section headings of the same level,
same layout for lists and enumerations, . . .).

LATEX is powerful and flexible: you can define arbitrary document de-
sign by changing the definitions in the class files or overwrite them with
packages. This is easier than you probably think.

The main disadvantage of LATEX was that the author originally had onlyDisadvantages:
limited means to change the layout and that he had only four classes to
choose from. This changed a great deal with the improved Koma-Script
classes for LATEX 2ε and today it’s easy to use with a small learning curve.

18.2 Input files and class files

According to the principle of separation of content and design, there are
two kind of files:

• The content and the logical structure of a document are defined in
the LATEX input file.

• The design (layout) is defined in the class files and packages.

Which class and packages files a document will use is defined at the
beginning of the input file. The \documentclass command selects the
class and the \usepackage command specifies additional packages.

To generate a document you need at least two files, the input file and a
class file.

• Similar documents (that appear in a series) have the same layout
because the layout is defined in a file of its own and not part of the
document (this is similar in concept to the way CSS works).

• You can output the same content without much rework using dif-
ferent layouts, e. g., as an article for a magazine and as a chapter
for a dissertation.

18.3 Class files and packages

LATEX supports a hierarchy of layout definitions.

• The first file processed is the class file that is specified inside the
curly braces of the \documentclass command. This defines the
kind of document you want to write.

Robowaifu Design Document v200428 41

• The optional argument of the \documentclass command inside
the square brackets defines class options which select variants of
the basic layout, such as different font sizes.

• The last step is reading the packages specified by the \usepackage

command. This command again takes options to select the layout.

• You can change layout parameters in the input file, but this is
discouraged because it violates the principle of separation of content
and design.

There are some important differences between class and package files and
“normal” input files:

• Class and package files should only contain definitions. They must
not output text.

• The “at”-sign @ is treated as a letter and therefore may appear in
command names. Most internal commands of LATEX contain an @

to prevent the author from using them accidentally.

• The extension of the file is .cls, .clo or .sty instead of .tex.

18.4 Changing the layout, step by step

First off Anon, it’s much simpler to begin with an already-existing docu-
ment that is close to your needs (e. g., just making a copy of and mod-! :-)
ifying this robowaifu design document would be a good place to start,
and then you can basically just skip the rest of this section).

-It’s how I did it, using the refman LATEX package. -Chobitsu

It also is usually easier to change existing class files instead of writing a
new one from scratch. In many cases it is even sufficient so replace some
definitions and put them into a package instead of creating a new class.

Please note that you are not allowed to change the standard classes dis-
tributed with LATEX. You have to change the name when you want to
make changes. That is another reason to put small changes in packages.

18.4.1 Differences between desired and available layout

The first step is to determine the difference between the layout you have
and the layout you want.

18.4.2 Finding the original definition

The next step is to find out where the original layout is defined. It is
best to search the files in the following order:

1. the LATEX manual by Leslie Lamport,

2. the LATEX documentations files *.dtx for the classes or packages

3. the LATEX documentations files *.dtx for the kernel,

4. the TEXbook by Donald E. Knuth.

The files are usually documented quite well so you should be able to
change things even if you don’t understand everything.

42 Robowaifu Design Document v200428

https://www.ctan.org/pkg/refman

18.4.3 Writing a new package file

The third step is to create a new package. You choose an appropriate
name for the package (like mysty) and create a filename by adding the
extension .sty.

This file will only contain the definitions you want to change or the new
commands you want to define.

If you want to change definitions or certain parameters, the best way is
to copy them from the original file and modify them according to your
liking.

Defining new commands is easier when you find similar commands in the
original files which you can change.

It is always a good idea to include the reason you wrote the package, the
changes it makes and the new commands it defines in the file. You should
include the date of the last change and the LATEX version it works with,
just in case some internal LATEX commands you use will change.

When writing larger packages, it is an even better idea to use the
docstrip program which is used to document the LATEX 2ε files. Thus
you have your code and documentation in one file and it’s easier to keep
them from going out of sync.

18.4.4 Using the new package

To use the new package, you call it with the \usepackage command.
This command executes the code of your package and changes the layout
as desired.

Example:

\documentclass[11pt,twoside,a4paper]{article}

\usepackage{mysty} %<- This calls the package "mysty"

You shouldn’t need to change anything else in your input file, unless you
defined new commands or environments that are not available in standard
LATEX.

When you copy your input file to a different computer you have to include! →
your new packages as well. Otherwise the document can’t be processed.

18.5 A simple example (Equation numbers)

Let’s assume that you want to write an article where the equations are
numbered separately in every section. In the LATEX manual you find a
notice that the report class does something similar for every chapter.

Looking into the file report.cls you will find the following commands
that deal with equation numbers:

\@addtoreset{equation}{chapter}

\def\theequation{\thechapter .\arabic{equation}}

% or in LaTeX2e since 1995/06/01:

\renewcommand\theequation{

\thechapter.\@arabic\c@equation

}

You don’t necessarily need to understand these two commands in detail.

Robowaifu Design Document v200428 43

Now you create an new file with the name eqpersec.sty5 and copy the
commands above into that file. After that you replace every occurrence
of chapter with section and add some comments.

% This is equation_per_section.sty

% Short name: eqpersec.sty

% Original file by Hubert Partl 1988

% Modified by Axel Kielhorn 1996/01/01

% to support LaTeX 1995/06/01 and later

%

% reset the equation counter at the start

% of a new section

%

\@addtoreset{equation}{section}

% Equationnumber = sectionnummer.equationnummer

% Use only one of the below

% depending on you LaTeX version

%

%\def\theequation{\thesection .\arabic{equation}}

% or in more recent versions of LaTeX

\renewcommand\theequation{

\thesection.\@arabic\c@equation

}

Whenever you use a \usepacakge{eqpersec} command as in

\documentclass[11pt]{article}

\usepackage{eqpersec}

you will get equations numbered according to your conventions.

18.6 A more complex example (Reference Manual)

We want to create a layout similar to the one used in the PostScript
Reference Manual, with a wide left margin for headings and margin notes
and a small margin at the right and bottom.

18.6.1 Page layout

To define the new layout we use the commands described in the LATEX
manual. For full details see the file refman.dtx.

First we define two new names for length that we will use often:Horizontal:

\fullwidth is the width of the whole page minus a margin of 1 inch on
every side.

fullwidth = paperwidth− 2 inch

From this the width of the text is calculated.

textwidth = fullwidth× textfraction

\leftmarginwidth is the width of the left margin that will be used for
headings and margin notes.

leftmarginwidth = fullwidth− textwidth

5 Depending on the computer you are using the name may be different like
EQPERSEC STY on a CYBER running NOS/VE. But note that you must not use
spaces in the filename.

44 Robowaifu Design Document v200428

This is a little more difficult in reality because the lengths have to be
rounded to full points and a possible two column layout – as used in the
index – must be taken into consideration.

The vertical layout is a little more difficult because you have to deal withVertical:
the page header and footer.

textheight = paperheight− 2.5 inch

The result of this calculation is rounded to full lines. Depending on the
page style – headings or footings – it is shifted up or down by one line.

18.6.2 Section headings

The headings have to be modified to make them extend into the left
margin.

In file classes.dtx we find the \@startsection command that defines
the layout of the headings. Only parameters 4 to 6 are relevant for us:
parameter 4 is the space above and parameter 5 the space below the
section. The 6th parameter does the actual formatting.

This is the original definition:

\newcommand\section{\@startsection

{section}{1}{\z@}%

{-3.5ex plus -1ex minus -.2ex}%

{2.3ex plus .2ex}%

{\normalfont\Large\bfseries}}

The commands for sub- and subsubsections are similar. Note that the
measures are all in ex, thus depending on the font size used.

We define a new command \secshape to format the headings. This
command uses the whole width of the page for the heading. To discourage
hyphenation of the heading we give it a high penalty. This still allows
hyphenation when absolutely necessary.

\newcommand\secshape{%

\leftskip=-\leftmarginwidth%

\rightskip=\@flushglue%

\hyphenpenalty=2000}

This command is inserted into the 6th parameter of \@startsection.

Since the headings now extend into the left margin, we can use a smaller
font and reduce the space between the text and the heading. The new
definition looks like the following:

\newcommand\section{\@startsection

{section}{1}{\z@}%

{-2ex plus -1ex minus -.2ex}%

{0.5ex plus .2ex}%

{\secshape\normalfont\large\bfseries}}

Robowaifu Design Document v200428 45

18.6.3 Setting the margin notes

The margin notes should always appear on the left side of the text. The
normal layout puts them into the outer margin in twoside layout.

The file latex.dtx contains the definition of the \@addmarginpar com-
mand which is responsible for the margin notes. We don’t have to un-
derstand the whole definition; the important part is the internal variable
\@tempcnta that is either \@ne (1) when the note should appear on the
right side of the text or \m@ne (−1) when it should appear on the left
side.

This is done by the following lines:

\@tempcnta\@ne

\if@twocolumn

\if@firstcolumn \@tempcnta\m@ne \fi

\else

\if@mparswitch

\ifodd\c@page \else\@tempcnta\m@ne \fi

\fi

\if@reversemargin \@tempcnta -\@tempcnta \fi

\fi

which we simply replace by:

\@tempcnta\m@ne

The remaining lines that handle the setting of the margin note depending
on the parameter \@tempcnta are left unchanged.

18.6.4 Extensions

The definitions described above are sufficient for simple applications but
in practical use one may want some additional commands.

You will find the description for the whole new class in the appendix B.→ Appendix B

46 Robowaifu Design Document v200428

Appendix

A The page structure in LATEX

This appendix describes how the actual page is build from its components
and how they are influenced by TEX’s parameters. (Figure 1 has been→ Fig. 1

created by Nelson Beebe at the University of Utah.)

text area : The normal text area (“Body”) contains the running text including
footnotes, tables and figures. The headings, footer and margin
notes do not belong to the text area.

The text area has the width \textwidth and the height \text-

height.

In a two column layout the text area is split into two columns, with
the width \columnwidth each and a space of \columnsep between
them. Thus the \columnwidth is a little bit smaller than half the
\textwidth.

\textwidth and \columnwidth should be a multiple of the width
of one character in the tt font.

\textheight should be multiple of the line height \baselineskip,
increased by the constant value of \topskip.

Indentations inside the text area are defined with \leftskip and
\rightskip. These parameters should not be changed explicitly
by the user but rather implicitly through environments.

left margin : The left margin is either \odd- or \evensidemargin plus 1 inch.
Both parameters have the same value, unless the twoside option
is given.

top margin : The top margin is the sum of \topmargin, \headheight and
\headsep plus 1 inch.

right margin : The right margin is the paper width minus the left margin and the
text area.

bottom margin : The bottom margin is the paper height minus the top margin and
the text area.

heading : The heading is inside the top margin with a space of \headsep

between the lower border of the header and the upper border of the
text area. Above the header is a free space of \topmargin increased
by 1 inch.

footing : The footer is inside the bottom margin with a space of \footskip
between the lower border of the text area and the lower border of
the footer.

margin notes : Margin notes are inside the left or right margin. They have a width
of \marginparwidth and a space of \marginparsep between the
margin note and the text area. The vertical space between two
margin notes is \marginparpush.

The paperheight consists of the following elements (from top to bottom):

Robowaifu Design Document v200428 47

1 inch

\topmargin

\headheight

\headsep

\textheight

\footskip

remaining page.

On pages with margin notes in the right margin the paperwidth consists
of the following elements:

1 inch

\oddsidemargin or \evensidemargin

\textwidth

\marginparsep

\marginparwidth

remaining page

With the option twoside the left pages change to

1 inch

\evensidemargin

\textwidth

remaining page

The parameters \topmargin, \oddsidemargin, and \evensidemarginComments:
may be negative. In this case, the margin will be smaller than 1 inch.
The same is true for \leftskip and \rightskip which leads to text that
is wider than the text area.

Extensive treatment and figures to this subject may be found in the
TUGboat Vol.9, No.1 (April 1988).

The parameter \footheight is no longer defined in LATEX 2ε since no-one
used it.

48 Robowaifu Design Document v200428

Figure 1: Page layout

-�
1in

6

?

1in

A line of text. . .

Next line. . . 6?\baselinestretch×\baselineskip

-�\oddsidemargin-�
\evensidemargin

Page Text

Page Footer6
?

\footheight

6

?

\footskip

-�
\textwidth

6

?

\textheight→

6
?

\headheight

6?\headsep

6

?

\topmargin

Page Header

Margin
note A

6?\marginparpush

Margin
note B

-�
\marginparwidth

-�\marginparsep

Robowaifu Design Document v200428 49

B Description of the refman-class family

The refman.sty was defined at the EDV-Zentrum (computing center) of
the TU6 Wien. This layout is suitable for reference manuals, technical
descriptions and similar applications. It is based on the ideas shown in
previous sections: The layout has a wide left margin for headings and
margin notes and smaller margins on the right side, the top and the
bottom.

In 1994 this layout was re-implemented as a class for the new LATEX 2ε.
This made it possible to include some minor improvements, such as the
support of different paper sizes. The refman.sty was split into two
classes refrep, similar to report and refart, similar to article. These
classes differ in the layout of the header and footer. The refart does not
support the \chapter command.

The current version of both classes is described in this document. It
serves as an example for the layout.

B.1 Invocation

The LATEX local guide (if available) shows if this class is available at your
TEX installation or where to install it. To use the refart class, simply
call it with the \documentclass command:

\documentclass[11pt,a4paper]{refart}

\usepackage{german} % other packages you may want

B.2 Options

The refart class replaces article and refrep replaces report. They
support all options of these classes except for the twocolumn option.

It supports the additional option square which makes the \textheight

equal to the \textwidth.

Neither refart nor refrep support two column layout, thus the com-
mands \twocolumn and \onecolumn must not be used.

The index will be set in two column format and you can’t change it with
the means of this class.

B.3 Layout changes

B.3.1 Page design

In this design the usable area for text (\fullwidth) is calculated asHorizontal:
the paper width minus 2 \papermarginwidth. The default value for
\papermarginwidth is 1 Inch.

The option smallborder reduces \papermarginwidth to 0.25 Inch. This
is more suitable for documents viewed on screen, especially when com-
bined with the a5paper and landscape options.

Only a fraction of this width is used for the running text (\textwidth),
the remaining part forms a wide left margin (\leftmarginwidth)
which is used for headings and margin notes. The \textwidth is
70 % of the \fullwidth by default, but this can be changed with

6 Technical University

50 Robowaifu Design Document v200428

the \settextfraction command which accepts arguments between 0
and 1.

The text height is calculated as the paper height minus 2 \papermarginwidth.Vertical:
The topmargin is modified by some pagestyles. (see B.4.3).

The pages are always set with a ragged bottom.

B.3.2 Section headings

The headings for \section, \subsection, and \subsubsection extend
into the left margin, thus using the full width of the page. They are not
justified and hyphenation is discouraged. A small space is kept free above
and below the heading. Headings for \section and \subsection are set
in a bold font.

The refrep class defines a different layout for the \chapter command:
It always starts a new page and prints the chapter headings in a large
bold font with a thick line above and below. This heading uses the full
width of the page.

A similar heading is created by the \part commands which is available
in both classes. It uses a roman part number instead of the arabic section
number.

The \maketitle commands sets the title of the document in the same
layout when no special title page is requested. (This is the default for
refart. To suppress the title page in a refrep document, you can use
the notitlepage option.) The name of the author and the date is printed
in italic flush right below the document title.

B.3.3 Paragraphs

Paragraphs are separated by a vertical space (\parskip) of half a line
(0.5\baselineskip) plus a stretchable length of 2 pt. Paragraphs are
not indented.

The vertical spacing inside, above and below a list environment is the
same as in the running text.

B.4 Footnotes

The footnote layout consists of a small margin (1em) which contains
the footnote symbol. A small space is set between the symbol and the
footnote text. The paragraphs of the footnote are not indented. There is
currently no space between two footnotes, I’m not sure it this will stay
this way. The footnote symbol is set as a superscript. This may change
in later versions. I’m relying on user feedback to finally solve this.

B.4.1 Description environment

The description environment will use the whole left margin for the
description label.

You will find examples in the section 18.→ Section 18

B.4.2 Positioning of margin notes

Margin notes (\marginpar) are always put into the left margin. They
use the whole width of the margin.

Robowaifu Design Document v200428 51

The minimum space between two margin notes is set to 0 to prevent them
from being shifted around when many margin notes are used.

B.4.3 Headers and Footers

The page style plain puts the page number into the footer in the right
corner. When the option twoside is active, the page number of left pages
is put into the left corner.

The pagestyles headings and myheadings create a header which spans
the whole width of the page. The headings contain the running head
(\section and \subsection in refart and \chapter and \section in
refrep) when headings is used or a fixed text that can defined with the
\markboth command when myheadings is used. The heading will be set
in a slanted font and separated from the body by a thin line.

In addition to the standard classes, refman supports a style for footers,
which is used in this documentation. The information is exactly the same
as in the headings but now printed in the footer with a thin line above.

To use a user-defined string you can say:

\pagestyle{myfootings} % or myheadings

\markboth{left title}{right title}

The heading and myheading commands increase the top margin by one
line while the footings and myfootings commands decrease the top
margin by one line. The page styles empty and plain leave the top
margin unchanged. You should not combine headings and footings in
one document.

User feedback has shown that it is not a good idea to combine plain and
(my)heading either. Therefore I changed the layout of the \chapter

page to empty. Maybe it is necessary to define a hplain and fplain

pagestyle or to define some magic to use the correct definition of plain.
Feedback is welcome.

B.5 Additional commands

B.5.1 Marginlabel

The command \marginlabel{xxx} prints the text xxx right justified into
the left margin. Please note that a \marginpar will print it left justified.

The word “Example” in the left margin is printed with the commandExample:
\marginlabel{Example:}

B.5.2 Attention

The command \attention puts an exclamation mark with an ar-
row pointing to the text into the left margin. This is an example for! →
\attention.

Since version 2.0c you can change the symbol used for the \attention:-)

command using a \renewcommand{\attentionsymbol}{\texttt\{:-)\}}
command. To get the default back use \renewcommand{\attentionsymbol}
{\large \bfseries ! \rightarrow}

Since version 2.0c \attention takes an optional argument to define the
symbol used in the margin. Thus you can change the symbol once, with-
out having to restore it later. Do not abuse this feature, it is primarily:-(

52 Robowaifu Design Document v200428

meant as an support for the manfnt package which enables you to use
the “dangerous bend” and “double dangerous bend” signs.

The manfnt package is no longer enclosed with Refman, it has grown and
is now a package of its own.

B.5.3 Seealso

The command \seealso{n} prints an arrow and its argument into the
left margin. You will find examples for this in the left margin and in
chapter 1.→ Chapter 1

B.5.4 Maxipage environment

The maxipage environment is a special kind of minipage which ex-
tends over the full width of the page. It can be used for long formulas
or tabular environments. You may use maxipage environments inside
floats. You cannot use margin notes inside a maxipage and no page break
will occur while in a maxipage. A maxipage is always a paragraph of its
own with a thick line above and below. You can disable these lines with
the \maxipagerulefalse command. They are on by default.

The following paragraph is an example for a maxipage:

This very long line is an example for a maxipage. It extends over the full width of the page, including
the left margin.

This is normal text after the maxipage.

B.5.5 Fullpage environment

The fullpage environment consists of one or more pages where the text
extends over the full width of the page. You cannot use margin notes
inside a fullpage environment. A fullpage will always start and end
on a page of its own. It may be used for large tables, program listings or
anything that does not fit into the normal layout.

Page 49 is an example for a fullpage.→ Page 49

B.5.6 Noparskip

The \noparskip removes the vertical space between two paragraphs. It
is similar to the \noindent command that removes the indent of the first
line of a paragraph.

B.5.7 Setleftmarginwidth

The \setleftmarginwidth command is no longer supported. You can
achieve similar results by using the \settextfraction command.

B.5.8 Descriptioncolon

By default a colon is printed after the description label. The com-
mand \descriptioncolonfalse disables the colon, the \description-

colontrue re-enables it.

Robowaifu Design Document v200428 53

B.5.9 Descriptionleft

The \descriptionlefttrue command sets the description label left jus-
tified into the margin. The default is right justified which will be achieved
with \descriptionleftfalse

B.5.10 Maxipagerule

You can disable the rules before and after a maxipage with the \maxipage-
rulefalse command and re-enable them with the \maxipageruletrue

command. The default is on. You should not mix maxipages with and
without rules in one document.

B.5.11 Condbreak

The command \condbreak{2cm} ensures, that the next 2 cm are either
completely on this page or completely on the next. No page break will
appear in the next 2 cm.

This is really a hack to achieve what the \samepage command often fails
to do.

B.5.12 Example

The example environment acts like a verse environment but uses a tt

font.

B.5.13 Pageperchapter

The command \pageperchapter creates page number that start with 1
for every new chapter. This may be useful for larger manuals. Since it
works with chapters it is only available in the refrep class.

B.5.14 Smallborder

The normal border around the page is 1 Inch. That is fine for a printed
document, but wastes a lot of space when a document is meant for reading
on screen. The option smallborder reduces the margin to 0.25 Inch.

You can redefine the border with \setlength\papermarginwidth {0.25in}.
Call \setpagefraction{0.7} afterwards to recalculate the page layout.

B.5.15 Dvips

The option dvips tells DVIPS about the current page size.

B.5.16 Pdftex

The option pdftex tells PDFTEXabout the current page size.

B.5.17 Pagesize

pagesize chooses the correct \special-command to tell the DVI-driver
about the paper size. It works with DVIPS and DVIPDFMX for DVI
output and PDFTEX for PDF output.

54 Robowaifu Design Document v200428

B.5.18 Ifpdfoutput

You can use \ifpdfoutput{pdftext}{dvitext} to write different text
depending on the output format. This command was necessary to imple-
ment the pagesize option and is available for the user as well.

The last four commands have been taken from KOMA-Script, thanks
Markus.

Robowaifu Design Document v200428 55

C Robowaifu programming language tutorials

In the following three tutorial appendices (one for each programming
language highlighted in this document; Python, C++, & C), we’ll create
sample applications as an aid to learning these languages for newcomers.

• First we’ll devise an application that ‘scrapes’ imageboards, then
writes the JSON, HTML, & media files from each thread into
thread-specific folders on the user’s local drive. You can think of
this utility as kind of like a basic imageboard archiver once you’ve
finished creating it.

UPDATE: I just found out that julay.world is shutting down.
As I was asked to help out with MultiScraper, I may just re-
focus these tutorials around that effort instead. -t. Chobitsu

These exercises are intended to provide enough of an introduction for
each programming language that after completing a language’s section,
an anon will have the basic understanding of it sufficiently well to begin
writing his own software in whichever one he chooses.

C.1 Getting everything ready for software development

Be advised: this process can take days, or even weeks to get right for the
beginner. Just be patient with yourself, and you’ll get there.

The system & compiler : You’ll need both an operating system and a compiler system to
write C++ software for your robowaifu. While there are a lot of
choices out there, I’ll be giving specific tutorial examples here using
my own machine, namely Manjaro Linux (an Arch Linux deriva-
tive, and one good for beginners) and the GCC compiler, g++ (by
far the most commonly used C++ compiler on Linux platforms).

Of course feel free to use other combinations that work for you. But
for the complete beginner, I’d recommend just following along with
the same setup I’m using. It should make a lot of things easier for
you once you get going with it, even if there’s a bit of a learning
curve at first when you’re just getting started.

It’s beyond the scope of this section to describe the operating sys-
tem installation process for your machine. I’d recommend you just
use the official guidelines for doing so. Installing Manjaro separately
on a dedicated machine (if possible) will make your life simpler by
not having to deal with mixed platforms. For example, when dual-
booting or running under a virtual-machine environment.

BTW, my machine is also using a lightweight desktop environment
for Linux called XFCE. If you’d be more comfortable if your envi-
ronment matches the screen-caps that are here, then I’d recommend
you also install the same DE for Manjaro as my system:

Manjaro XFCE

Manjaro first steps

The editor : You need a good way to edit text files. While something as simple
as the windows notepad can technically suffice, it’s far better to
use some type of editor that intentionally offers advantages for the
software developer, and specifically in this case for the C++/C de-
veloper. And as the systems you’re working on grow more complex

56 Robowaifu Design Document v200428

https://www.manjaro.org/download/official/xfce/
https://www.manjaro.org/support/firststeps/

over time, the more you’ll need the assistance of a good editing
environment to help you with that increasingly-arduous task.

There is a huge array of choices in this area, so rather than waste
time attempting some type of comparison here, I’ll just give you
the examples from my own system. This is how I’m doing it ATM,
YMMV. The bottom line: simply find some good, functional way
to edit large collections of complicated text files that you’re com-
fortable with, and then gitgud at it Anon.

The most important initial considerations for me is that the editor
system be freely available, works on Linux, and preferably be open-
source. Emacs and Vim are a couple of good examples that come to
mind, for instance. Further, given my desire for systems that really
hand-hold the developer, I actually have a preference for integrated
development environments (IDEs). Among other features, a good
IDE will include some type of ‘intellisense’ built right in that can
help you quickly see a function’s type or locate a type’s declaration.
Here are a couple of example caps of what I mean by this:

and:

Robowaifu Design Document v200428 57

The important points to notice in these examples are that in both
cases I placed the mouse cursor over the word foobar on line 20:
auto baz{foobar()}; . In the former case I simply hovered over

it (note the b&w ‘I-beam’), and in the latter case I right-clicked
on it, then moved the cursor down to highlight a context-menu
selection.

Hovering over the function name gave me a pop-up rectangle (here
in a kind of blue-gray) that tells me both the function’s type:

int () , as well as any Javadoc brief for it, if present. In this
example there is one: This function helps frobnigate all the foos tbh

Right-clicking brings up a context menu for an object, and these
were the choices available for a foobar() for this editor in this
code. Left-clicking on that selection would immediately jump to
that portion of the codebase, in this case to line 7 of main.cpp.

You might ask “Fine, but why do we need this? I can easily just
look up at the function itself.” Fair point, but ask yourself what will
it be like when you have 200 code-files spread out among numerous,
tiered-directory structures? Being able to easily see an item’s (dis-
tant) details right there on the spot where you’re actually doing the
coding ATM can be a big help both for quickly writing good code,
and in reducing the likelihood of creating errors in the first place.

TBD.

58 Robowaifu Design Document v200428

D Python tutorial

Here’s the canonical Hello World in Python:

hello.py # good to put the filename at top

#

print("Hello World!") # print string to console

TBD.

Robowaifu Design Document v200428 59

E C++ tutorial

Here’s the canonical Hello World in C++:

// main.cpp // good to put the filename at top

#include <iostream> // include the iostream library

//

int main() { // main() function, has int return

std::cout << "Hello World!\n"; // cout & '<<' operator for string

} // function closes, objs destroyed

foobar foobar

#include <iostream>

barfoo barfoo

/**---

@brief This function helps frobnigate all the foos tbh

*/

int foobar() {

int foo{1};

int bar{2};

return foo + bar;

}

/**---

@brief The program's entry point

*/

int main() {

std::cout << "Hello World!\n";

auto baz{foobar()};

}

TBD.

60 Robowaifu Design Document v200428

F C tutorial

Here’s the canonical Hello World in C:

/* main.c */ /* good to put the filename at top */

#include <stdio.h> /* include the standard IO library */

/**/

int main() { /* main() function, has int return */

printf("Hello World!\n"); /* print formatted string to console */

return 0; /* explicit return of success code */

} /* function closes */

TBD.

Robowaifu Design Document v200428 61

G Robowaifu electronics tutorials

62 Robowaifu Design Document v200428

H tutorial A

Robowaifu Design Document v200428 63

I tutorial B

64 Robowaifu Design Document v200428

J tutorial C

Robowaifu Design Document v200428 65

K Robowaifu mechanical & construction tutorials

66 Robowaifu Design Document v200428

L tutorial A

Robowaifu Design Document v200428 67

M tutorial B

68 Robowaifu Design Document v200428

N tutorial C

Robowaifu Design Document v200428 69

Index

attention, 52
attentionsymbol, 52

changing the layout, step by step, 42
condbreak, 54

description environment, 51
descriptioncolon, 53
descriptionleft, 54
design, generic, 41
design, logical, 41
design, visual, 41
designer, 12
dvips, 54

engineer, 12
example, 54

footings, 13, 47, 52
footnote, 51
fullpage, 53

headings, 13, 47, 52

ifpdfoutput, 55
ipcnet design, 31
ipcnet project, 31

line length, 13
line spacing, 13

manfnt, 52
margin notes, 13, 47
marginlabel, 52
maxipage, 53
maxipagerule, 53, 54
myfootings, 52
myheadings, 52

options, 50

page design, horizontal, 50
page design, vertical, 51
page layout, 13
pageperchapter, 54
pagesize, 54
pagestyle, 52
papermarginwidth, 50
pdftex, 54

refart, invocation, 50
refart.cls, 50
refrep, invocation, 50
refrep.cls, 50
robowaifu design, 13
rules, 13

rules of thumb, documents, 13

seealso, 53
setleftmarginwidth, 53
settextfraction, 51
smallborder, 54

70 Robowaifu Design Document v200428

Copyright (2020)

License (MIT) https://opensource.org/licenses/MIT

Robowaifu Design Document v200428 71

	I Basic assumptions
	Introduction
	Implementer requirements
	Engineering requirements
	Design requirements
	Sociological considerations

	The art of robowaifu engineering & design
	Common rules
	Technical design documents

	Special note for technical-description style documents

	II Physical considerations
	Physical safety General
	Human safety
	Robowaifu safety
	Avoiding environmental hazards
	Self-preservation vs. self-sacrifice

	Environment safety
	Detecting mechanical error-conditions

	Mechanical
	Kinematic considerations
	Structural geometry considerations
	Mass is everything
	Thrown mass
	Inboard mass
	Bipedal locomotion
	Eye-hand coordination, &tc.

	Armatures & frameworks
	Head
	Face
	Eyes & eyelids
	Eyebrows
	Mouth

	Neck

	Torso
	Arms
	Shoulder joints
	Elbow joints
	Wrist joints

	Hands
	Palm
	Thumb
	Fingers

	Legs
	Hip joints
	Knee joints
	Ankle joints

	Feet
	Toes

	Actuators, force-transfer, & control mechanisms
	Electrical motors
	Cable-based actuators
	Bowden cables
	Simple (pull) cables

	Screw (linear) actuators
	Lever (pushrod) actuators
	Pneumatic (artificial muscle) actuators
	Hydraulic actuators
	Unconventional actuators

	Lubrication & joints
	Fluid-distribution manifolds, pipes, & tubing
	Circulatory pumps & mechanisms
	Filtering & cooling
	Reservoirs
	Access & replenishment
	Joints servicing & replacement

	External shell & `skin'
	Hard-surface materials
	Soft-surface materials
	External shell & cooling-systems symbiosis

	Cooling
	Passive cooling
	Materials

	Active cooling
	Fans
	Refrigeration

	Cooling-fluids & distribution
	Fluid-distribution manifolds, pipes, & tubing
	Circulatory pumps & mechanisms
	Reservoirs
	Access & replenishment

	Power
	Power aquisition & production
	Household current
	RF induction
	Generative braking
	Solar trickle

	Power switching systems
	Automatic & failover switching
	Manual switching

	Power storage
	Batteries
	LiPo

	Electrical, controls, & wiring
	Electrical
	Safety
	Busses
	Wiring
	Transformers
	Inverters

	Control
	Electronics
	Analog
	Digital

	Relays
	Light-duty
	Heavy-duty

	Networking
	Network gear
	Network wiring
	Wireless networking

	Computing resources
	Onboard computing resources
	Single-board computers (SBCs)
	Beaglebone Blue
	RaspberryPi & clones

	Microcontrollers
	Arduino Nano

	External computing resources
	Home servers & clusters
	Internet cloud providers

	Sensors
	Visual
	Stereo & multipoint
	Acuity
	Infrared & ultraviolet considerations

	Audio
	Stereo & multipoint
	Distinctiveness & spatial discrimination
	Frequency response considerations

	Tactile
	Haptic-response systems
	Sensorimotor & inertial
	Overall system responses

	Other sensors
	SONAR
	LIDAR
	GPS
	EM & RF, other
	Particulate & `olfactory'

	Mechanical construction approaches
	Safety
	Reading & creating mechanical schematics
	Using the right tools
	Hand tools
	Power tools
	Technical instruments
	Multimeters, power, & electronics
	Micrometers & lengths
	Scales & masses

	Designing, creating, & using construction rigs
	Using woods
	Using plastics, synthetics, & rubber
	Using metals
	Using pipes, cables & ropes
	Presses & other deformation rigs

	Manufacturing parts
	3D printing
	Choosing stocks
	Plastics, synthetics, & rubber
	Metals
	Fabrics & cords

	Ensuring compatibility

	Fastening parts together
	Screws, rivets, & mechanical fasteners
	Glueing & bonding
	Welding & brazing

	Wiring parts together
	Electrical connections
	Electrical tapes
	Wiring-nuts & other fasteners

	Electronics connections
	Soldering
	Crafting & securing wiring-harnesses
	Safety conduits
	Rigidity considerations
	Range-of-motion considerations
	Servicing considerations

	Functional testing
	Stress & load-testing
	Testing individual components
	Testing subsystems
	Testing the overall system

	Fit & finish

	III Software considerations
	Software safety General
	Human safety
	Robowaifu safety
	Avoiding environmental hazards
	Self-preservation vs. self-sacrifice

	Environment safety
	Software error-detection & fault-tolerance

	Software construction approaches
	The Python programming language
	The C++ programming language
	The C programming language
	IDEs
	Software-testing systems
	Debugging

	Realtime performance considerations
	Realtime subsystems
	Non-realtime subsystems

	IPCNet
	Introduction
	Data requirements
	Security
	Compromised systems
	Feature set
	Implementation
	Discussion, further Q&A

	Control & communications UI
	Onboard C&C UI
	External C&C UI

	AI & Machine Learning
	Foundations, briefly
	Current AI/ML frameworks
	TensorFlow
	PyTorch
	Keras

	Compute-resource considerations
	3rd-party APIs & cloud-based systems
	Wolfram|Alpha
	Microsoft CNTK
	Amazon AI Services
	Google AI

	Our general robowaifu ML approach
	Reinforcement Learning (RL)
	Deep Neural-Networks (DNNs)

	IV Design considerations
	V Reference, appendices, etc
	How to change a LaTeX layout?
	Advantages and disadvantages of LaTeX
	Input files and class files
	Class files and packages
	Changing the layout, step by step
	Differences between desired and available layout
	Finding the original definition
	Writing a new package file
	Using the new package

	A simple example (Equation numbers)
	A more complex example (Reference Manual)
	Page layout
	Section headings
	Setting the margin notes
	Extensions

	Appendix
	The page structure in LaTeX
	Description of the refman-class family
	Invocation
	Options
	Layout changes
	Page design
	Section headings
	Paragraphs

	Footnotes
	Description environment
	Positioning of margin notes
	Headers and Footers

	Additional commands
	Marginlabel
	Attention
	Seealso
	Maxipage environment
	Fullpage environment
	Noparskip
	Setleftmarginwidth
	Descriptioncolon
	Descriptionleft
	Maxipagerule
	Condbreak
	Example
	Pageperchapter
	Smallborder
	Dvips
	Pdftex
	Pagesize
	Ifpdfoutput

	Robowaifu programming language tutorials
	Getting everything ready for software development

	Python tutorial
	C++ tutorial
	C tutorial
	Robowaifu electronics tutorials
	tutorial A
	tutorial B
	tutorial C
	Robowaifu mechanical & construction tutorials
	tutorial A
	tutorial B
	tutorial C

