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Abstract. We propose two efficient approximations to standard convolutional
neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-
Networks, the filters are approximated with binary values resulting in 32X mem-
ory saving. In XNOR-Networks, both the filters and the input to convolutional
layers are binary. XNOR-Networks approximate convolutions using primarily bi-
nary operations. This results in 58 x faster convolutional operations (in terms of
number of the high precision operations) and 32 x memory savings. XNOR-Nets
offer the possibility of running state-of-the-art networks on CPUs (rather than
GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work
on challenging visual tasks. We evaluate our approach on the ImageNet classifi-
cation task. The classification accuracy with a Binary-Weight-Network version of
AlexNet is the same as the full-precision AlexNet. We compare our method with
recent network binarization methods, BinaryConnect and BinaryNets, and out-
perform these methods by large margins on ImageNet, more than 16% in top-1
accuracy. Our code is available at: http://allenai.org/plato/xnornet.

1 Introduction

Deep neural networks (DNN) have shown significant improvements in several applica-
tion domains including computer vision and speech recognition. In computer vision, a
particular type of DNN, known as Convolutional Neural Networks (CNN), have demon-
strated state-of-the-art results in object recognition [1,2,3,4] and detection [5,6,7].

Convolutional neural networks show reliable results on object recognition and de-
tection that are useful in real world applications. Concurrent to the recent progress in
recognition, interesting advancements have been happening in virtual reality (VR by
Oculus) [8], augmented reality (AR by HoloLens) [9], and smart wearable devices.
Putting these two pieces together, we argue that it is the right time to equip smart
portable devices with the power of state-of-the-art recognition systems. However, CNN-
based recognition systems need large amounts of memory and computational power.
While they perform well on expensive, GPU-based machines, they are often unsuitable
for smaller devices like cell phones and embedded electronics.

For example, AlexNet[|] has 61M parameters (249MB of memory) and performs
1.5B high precision operations to classify one image. These numbers are even higher for
deeper CNNss e.g., VGG [2] (see section 4.1). These models quickly overtax the limited
storage, battery power, and compute capabilities of smaller devices like cell phones.
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Fig. 1: We propose two efficient variations of convolutional neural networks. Binary-
Weight-Networks, when the weight filters contains binary values. XNOR-Networks,
when both weigh and input have binary values. These networks are very efficient in
terms of memory and computation, while being very accurate in natural image classifi-
cation. This offers the possibility of using accurate vision techniques in portable devices
with limited resources.

In this paper, we introduce simple, efficient, and accurate approximations to CNNs
by binarizing the weights and even the intermediate representations in convolutional
neural networks. Our binarization method aims at finding the best approximations of the
convolutions using binary operations. We demonstrate that our way of binarizing neural
networks results in ImageNet classification accuracy numbers that are comparable to
standard full precision networks while requiring a significantly less memory and fewer
floating point operations.

We study two approximations: Neural networks with binary weights and XNOR-
Networks. In Binary-Weight-Networks all the weight values are approximated with bi-
nary values. A convolutional neural network with binary weights is significantly smaller
(~ 32x) than an equivalent network with single-precision weight values. In addition,
when weight values are binary, convolutions can be estimated by only addition and
subtraction (without multiplication), resulting in ~ 2x speed up. Binary-weight ap-
proximations of large CNNs can fit into the memory of even small, portable devices
while maintaining the same level of accuracy (See Section 4.1 and 4.2).

To take this idea further, we introduce XNOR-Networks where both the weights
and the inputs to the convolutional and fully connected layers are approximated with
binary values'. Binary weights and binary inputs allow an efficient way of implement-
ing convolutional operations. If all of the operands of the convolutions are binary, then
the convolutions can be estimated by XNOR and bitcounting operations [ 1]. XNOR-
Nets result in accurate approximation of CNNs while offering ~ 58 x speed up in CPUs
(in terms of number of the high precision operations). This means that XNOR-Nets can
enable real-time inference in devices with small memory and no GPUs (Inference in
XNOR-Nets can be done very efficiently on CPUs).

To the best of our knowledge this paper is the first attempt to present an evalua-
tion of binary neural networks on large-scale datasets like ImageNet. Our experimental

! fully connected layers can be implemented by convolution, therefore, in the rest of the paper,
we refer to them also as convolutional layers [10].



XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 3

results show that our proposed method for binarizing convolutional neural networks
outperforms the state-of-the-art network binarization method of [ 1] by a large margin
(16.3%) on top-1 image classification in the ImageNet challenge ILSVRC2012. Our
contribution is two-fold: First, we introduce a new way of binarizing the weight val-
ues in convolutional neural networks and show the advantage of our solution compared
to state-of-the-art solutions. Second, we introduce XNOR-Nets, a deep neural network
model with binary weights and binary inputs and show that XNOR-Nets can obtain sim-
ilar classification accuracies compared to standard networks while being significantly
more efficient. Our code is available at: http://allenai.org/plato/xnornet

2 Related Work

Deep neural networks often suffer from over-parametrization and large amounts of re-
dundancy in their models. This typically results in inefficient computation and memory
usage[12]. Several methods have been proposed to address efficient training and infer-
ence in deep neural networks.

Shallow networks: Estimating a deep neural network with a shallower model re-
duces the size of a network. Early theoretical work by Cybenko shows that a network
with a large enough single hidden layer of sigmoid units can approximate any decision
boundary [13]. In several areas (e.g.,vision and speech), however, shallow networks
cannot compete with deep models [14]. [15] trains a shallow network on SIFT features
to classify the ImageNet dataset. They show it is difficult to train shallow networks
with large number of parameters. [16] provides empirical evidence on small datasets
(e.g.,CIFAR-10) that shallow nets are capable of learning the same functions as deep
nets. In order to get the similar accuracy, the number of parameters in the shallow net-
work must be close to the number of parameters in the deep network. They do this by
first training a state-of-the-art deep model, and then training a shallow model to mimic
the deep model. These methods are different from our approach because we use the
standard deep architectures not the shallow estimations.

Compressing pre-trained deep networks: Pruning redundant, non-informative
weights in a previously trained network reduces the size of the network at inference
time. Weight decay [!7] was an early method for pruning a network. Optimal Brain
Damage [18] and Optimal Brain Surgeon [19] use the Hessian of the loss function to
prune a network by reducing the number of connections. Recently [20] reduced the
number of parameters by an order of magnitude in several state-of-the-art neural net-
works by pruning. [21] proposed to reduce the number of activations for compression
and acceleration. Deep compression [22] reduces the storage and energy required to run
inference on large networks so they can be deployed on mobile devices. They remove
the redundant connections and quantize weights so that multiple connections share the
same weight, and then they use Huffman coding to compress the weights. HashedNets
[23] uses a hash function to reduce model size by randomly grouping the weights, such
that connections in a hash bucket use a single parameter value. Matrix factorization has
been used by [24,25]. We are different from these approaches because we do not use a
pretrained network. We train binary networks from scratch.
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Designing compact layers: Designing compact blocks at each layer of a deep net-
work can help to save memory and computational costs. Replacing the fully connected
layer with global average pooling was examined in the Network in Network architec-
ture [26], GoogLenet[3] and Residual-Net[4], which achieved state-of-the-art results
on several benchmarks. The bottleneck structure in Residual-Net [4] has been proposed
to reduce the number of parameters and improve speed. Decomposing 3 x 3 convo-
lutions with two 1 x 1 is used in [27] and resulted in state-of-the-art performance on
object recognition. Replacing 3 x 3 convolutions with 1 X 1 convolutions is used in
[28] to create a very compact neural network that can achieve ~ 50x reduction in the
number of parameters while obtaining high accuracy. Our method is different from this
line of work because we use the full network (not the compact version) but with binary
parameters.

Quantizing parameters: High precision parameters are not very important in achiev-
ing high performance in deep networks. [29] proposed to quantize the weights of fully
connected layers in a deep network by vector quantization techniques. They showed just
thresholding the weight values at zero only decreases the top-1 accuracy on ILSVRC2012
by less than %10. [30] proposed a provably polynomial time algorithm for training a
sparse networks with +1/0/-1 weights. A fixed-point implementation of 8-bit integer
was compared with 32-bit floating point activations in [31]. Another fixed-point net-
work with ternary weights and 3-bits activations was presented by [32]. Quantizing a
network with Lo error minimization achieved better accuracy on MNIST and CIFAR-10
datasets in [33]. [34] proposed a back-propagation process by quantizing the represen-
tations at each layer of the network. To convert some of the remaining multiplications
into binary shifts the neurons get restricted values of power-of-two integers. In [34]
they carry the full precision weights during the test phase, and only quantize the neu-
rons during the back-propagation process, and not during the forward-propagation. Our
work is similar to these methods since we are quantizing the parameters in the network.
But our quantization is the extreme scenario +1,-1.

Network binarization: These works are the most related to our approach. Several
methods attempt to binarize the weights and the activations in neural networks.The per-
formance of highly quantized networks (e.g.,binarized) were believed to be very poor
due to the destructive property of binary quantization [35]. Expectation BackPropaga-
tion (EBP) in [36] showed high performance can be achieved by a network with binary
weights and binary activations. This is done by a variational Bayesian approach, that
infers networks with binary weights and neurons. A fully binary network at run time
presented in [37] using a similar approach to EBP, showing significant improvement in
energy efficiency. In EBP the binarized parameters were only used during inference. Bi-
naryConnect [38] extended the probablistic idea behind EBP. Similar to our approach,
BinaryConnect uses the real-valued version of the weights as a key reference for the
binarization process. The real-valued weight updated using the back propagated error
by simply ignoring the binarization in the update. BinaryConnect achieved state-of-the-
art results on small datasets (e.g.,CIFAR-10, SVHN). Our experiments shows that this
method is not very successful on large-scale datsets (e.g.,ImageNet). BinaryNet[! 1]
propose an extention of BinaryConnect, where both weights and activations are bi-
narized. Our method is different from them in the binarization method and the net-



XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

work structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by a large margin.[39] argued that the noise introduced
by weight binarization provides a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet (Z, W, x). T is a set of ten-
sors, where each element I = Z;;_; . 1 is the input tensor for the ™ layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wik(k=1,.... i) is the k™ weight filter in the /™ layer of the CNN. K is the number of
weight filters in the [ layer of the CNN. x represents a convolutional operation with
I and W as its operands”. I € R¢XWin*hin where (¢, win, hin ) represents channels,
width and height respectively. W € R*“*" where w < w;,, h < h;,. We propose
two variations of binary CNN: Binary-weights, where the elements of WV are binary
tensors and XNOR-Networks, where elements of both Z and WV are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network (Z, W, *) to have binary weights,
we estimate the real-value weight filter W € W using a binary filter B € {+1, —1}¢xwxh
and a scaling factor o € RT such that W =~ aB. A convolutional operation can be ap-
priximated by:

I«W=TIdB)a (1)

where, & indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ~ 32x compared to single-
precision filters. We represent a CNN with binary weights by (Z, B, A, @), where B is
a set of binary tensors and A is a set of positive real scalars, such that B = By is a
binary filter and o = Ay, is an scaling factor and Wy, =~ A; B

Estimating binary weights: Without loss of generality we assume W, B are vectors
in R™, where n = ¢ X w X h. To find an optimal estimation for W ~ aB, we solve the
following optimization:

J(B,a) = [|[W — aB|?

a*,B* = argminJ (B, «) @)
a,B

% In this paper we assume convolutional filters do not have bias terms
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by expanding equation 2, we have
JB,a)=a’B"B-20W'B+W'W 3)

since B € {+1,—1}", BTB = n is a constant . W' W is also a constant because
W is a known variable. Lets define c = WTW. Now, we can rewrite the equation 3 as
follow: J(B,a) = a?n — 2aW B + c. The optimal solution for B can be achieved
by maximizing the following constrained optimization: (note that « is a positive value
in equation 2, therefore it can be ignored in the maximization)

B* = argmax{W'B} s.t. Be {+1,—-1}" “4)
B

This optimization can be solved by assigning B; = +1if W; > 0and B; = —1if
W, < 0, therefore the optimal solution is B* = sign(W). In order to find the optimal
value for the scaling factor a*, we take the derivative of JJ with respect to « and set it
to zero:

wTB*
of = &)
n
By replacing B* with sign(W)
. WTsign(W W, 1
n n n

therefore, the optimal estimation of a binary weight filter can be simply achieved by
taking the sign of weight values. The optimal scaling factor is the average of absolute
weight values.

Training Binary-Weights-Networks: Each iteration of training a CNN involves three
steps; forward pass, backward pass and parameters update. To train a CNN with binary
weights (in convolutional layers), we only binarize the weights during the forward pass
and backward propagation. To compute the gradient for sign function sign(r), we fol-
low the same approach as [11], where 25182 — 71|,/<1. The gradient in backward after

or
the scaled sign function is 6‘9—‘% = ?70(% + aaﬁj;/g:l «). For updating the parameters, we

use the high precision (real-value) weights. Because, in gradient descend the parameter
changes are tiny, binarization after updating the parameters ignores these changes and
the training objective can not be improved. [11,38] also employed this strategy to train
a binary network.

Algorithm 1 demonstrates our procedure for training a CNN with binary weights.
First, we binarize the weight filters at each layer by computing 5 and .4. Then we call
forward propagation using binary weights and its corresponding scaling factors, where
all the convolutional operations are carried out by equation 1. Then, we call backward
propagation, where the gradients are computed with respect to the estimated weight
filters W. Lastly, the parameters and the learning rate gets updated by an update rule
e.g.,SGD update with momentum or ADAM [42].

Once the training finished, there is no need to keep the real-value weights. Because,
at inference we only perform forward propagation with the binarized weights.
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Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,'Y), cost function C(Y, Y), current weight W' and
current learning rate .

Output: updated weight W' and updated learning rate 5.

1: Binarizing weight filters:

2: for! =1to L do

3:  for k™ filter in I layer do

4: Ak = 5 |[Wiklle

5: B = sign(Wf,)

6 Wik = AiBix

7Y = BinaryForward(L B s .A) /I standard forward propagation except that convolutions are computed
using equation 1 or 11 ~

8: % = BinaryBackward( g%, W) // standard backward propagation except that gradients are computed
using W instead of W*

9: W'T! = UpdateParameters(\W", %, n¢) // Any update rules (e.g., SGD or ADAM)

10: 17t+1 = UpdateLearningrate(nt, t) /I Any learning rate scheduling function

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the real-
value weights. The inputs to the convolutional layers are still real-value tensors. Now,
we explain how to binarize both weigths and inputs, so convolutions can be imple-
mented efficiently using XNOR and bitcounting operations. This is the key element of
our XNOR-Networks. In order to constrain a convolutional neural network (Z, W, x)
to have binary weights and binary inputs, we need to enforce binary operands at each
step of the convolutional operation. A convolution consist of repeating a shift operation
and a dot product. Shift operation moves the weight filter over the input and the dot
product performs element-wise multiplications between the values of the weight filter
and the corresponding part of the input. If we express dot product in terms of binary
operations, convolution can be approximated using binary operations. Dot product be-
tween two binary vectors can be implemented by XNOR-Bitcounting operations [11].
In this section, we explain how to approximate the dot product between two vectors in
R™ by a dot product between two vectors in {+1, —1}". Next, we demonstrate how to
use this approximation for estimating a convolutional operation between two tensors.

Binary Dot Product: To approximate the dot product between X, W € R" such that
XTW =~ SHTaB, where H,B € {+1,—1}" and 3,a € R*, we solve the following
optimization:

a*,B*, 8, Hx = argmin|| X © W — faH © B|| @)
«,B,3,H

where © indicates element-wise product. We define Y € R"™ such that Y, = X; W,
C € {+1,—1}" such that C; = H;B; and v € R™ such that ¥ = 3a. The equation 7
can be written as:

~*, C* = argmin||Y — yC]|| 8)
v,C
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Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

the optimal solutions can be achieved from equation 2 as follow
C* =sign(Y) = sign(X) @ sign(W) = H* © B* )

Since |X;|, [W;| are independent, knowing that Y; = X,; W, then,
E[|Y;]] = E[|X;]||W;]] = E[|X;|] E[|W;]] therefore,

Y; X||W; 1 1 -
= 2Bl 2B (L ) (2IWla ) =gt a0)

n n

Binary Convolution: Convolving weight filter W € R°*™“*" (where w;,, > w, hiy, >
h) with the input tensor I € R¢*%in *hin requires computing the scaling factor /3 for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X; and Xs. Due to overlaps between subtensors, comput-
ing (3 for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A = % which is the
average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k € R**" K = A xk, where Vij k;; = —1-. K
contains scaling factors 3 for all sub-tensors in the input I. K;; corresponds to 3 for
a sub-tensor centered at the location ¢j (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor o for the weight
and f for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I+«W = (sign(I) ® sign(W)) © Ka (11)

where ® indicates a convolutional operation using XNOR and bitcount operations. This
is illustrated in the last row in figure 2. Note that the number of non-binary operations
is very small compared to binary operations.
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Fig. 3: This figure contrasts the block structure in our XNOR-Network (right) with a typical
CNN (left).

Training XNOR-Networks: A typical block in CNN contains several different layers.
Figure 3 (left) illustrates a typical block in a CNN. This block has four layers in the
following order: 1-Convolutional, 2-Batch Normalization, 3-Activation and 4-Pooling.
Batch Normalization layer[43] normalizes the input batch by its mean and variance.
The activation is an element-wise non-linear function (e.g.,Sigmoid, ReLU). The pool-
ing layer applies any type of pooling (e.g.,max,min or average) on the input batch.
Applying pooling on binary input results in significant loss of information. For exam-
ple, max-pooling on binary input returns a tensor that most of its elements are equal to
+1. Therefore, we put the pooling layer after the convolution. To further decrease the
information loss due to binarization, we normalize the input before binarization. This
ensures the data to hold zero mean, therefore, thresholding at zero leads to less quanti-
zation error. The order of layers in a block of binary CNN is shown in Figure 3(right).

The binary activation layer(BinActiv) computes K and sign(I) as explained in sec-
tion 3.2. In the next layer (BinConv), given K and sign(I), we compute binary convo-
lution by equation 11. Then at the last layer (Pool), we apply the pooling operations.
We can insert a non-binary activation(e.g.,ReLU) after binary convolution. This helps
when we use state-of-the-art networks (e.g., AlexNet or VGG).

Once we have the binary CNN structure, the training algorithm would be the same
as algorithm 1.

Binary Gradient: The computational bottleneck in the backward pass at each layer
is computing a convolution between weight filters(w) and the gradients with respect of
the inputs (¢*"). Similar to binarization in the forward pass, we can binarize ¢'" in the
backward pass. This leads to a very efficient training procedure using binary operations.
Note that if we use equation 6 to compute the scaling factor for ¢, the direction of
maximum change for SGD would be diminished. To preserve the maximum change in
all dimensions, we use max;(|gi"|) as the scaling factor.

k-bit Quantization: So far, we showed 1-bit quantization of weights and inputs
using sign(z) function. One can easily extend the quantization level to k-bits by using

_ oL@ (] 1y : : L -
qrx(7) = 2(F 55— 5) instead of the sign function. Where [.] indicates rounding

operation and z € [—1,1].

4 Experiments

We evaluate our method by analyzing its efficiency and accuracy. We measure the ef-
ficiency by computing the computational speedup (in terms of number of high preci-
sion operation) achieved by our binary convolution vs. standard convolution. To mea-
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Fig.4: This figure shows the efficiency of binary convolutions in terms of memory(a) and
computation(b-c). (a) is contrasting the required memory for binary and double precision weights
in three different architectures(AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by
binary convolution under (b)-different number of channels and (c)-different filter size

sure accuracy, we perform image classification on the large-scale ImageNet dataset.
This paper is the first work that evaluates binary neural networks on the ImageNet
dataset. Our binarization technique is general, we can use any CNN architecture. We
evaluate AlexNet [ 1] and two deeper architectures in our experiments. We compare our
method with two recent works on binarizing neural networks; BinaryConnect [38] and
BinaryNet [11]. The classification accuracy of our binary-weight-network version of
AlexNet is as accurate as the full precision version of AlexNet. This classification ac-
curacy outperforms competitors on binary neural networks by a large margin. We also
present an ablation study, where we evaluate the key elements of our proposed method;
computing scaling factors and our block structure for binary CNN. We shows that our
method of computing the scaling factors is important to reach high accuracy.

4.1 Efficiency Analysis

In an standard convolution, the total number of operations is c/Nvww Ny, where c is the
number of channels, Nw = wh and N1 = w;,, h;,,. Note that some modern CPUs can
fuse the multiplication and addition as a single cycle operation. On those CPUs, Binary-
Weight-Networks does not deliver speed up. Our binary approximation of convolution
(equation 11) has cNw Ny binary operations and /N1 non-binary operations. With the
current generation of CPUs, we can perform 64 binary operations in one clock of CPU,

_ cNw N1 __ _64cNw
therefore the speedup can be computed by S = T oNw N N; — cNw 164

The speedup depends on the channel size and filter size but not the input size. In fig-
ure 4-(b-c) we illustrate the speedup achieved by changing the number of channels and
filter size. While changing one parameter, we fix other parameters as follows: ¢ = 256,
nr = 142 and nw = 32 (majority of convolutions in ResNet[4] architecture have this
structure). Using our approximation of convolution we gain 62.27x theoretical speed
up, but in our CPU implementation with all of the overheads, we achieve 58x speed
up in one convolution (Excluding the process for memory allocation and memory ac-
cess). With the small channel size (¢ = 3) and filter size (Nw = 1 x 1) the speedup
is not considerably high. This motivates us to avoid binarization at the first and last
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layer of a CNN. In the first layer the chanel size is 3 and in the last layer the filter size
is 1 x 1. A similar strategy was used in [I1]. Figure 4-a shows the required memory
for three different CNN architectures(AlexNet, VGG-19, ResNet-18) with binary and
double precision weights. Binary-weight-networks are so small that can be easily fitted
into portable devices. BinaryNet [1 1] is in the same order of memory and computation
efficiency as our method. In Figure 4, we show an analysis of computation and memory
cost for a binary convolution. The same analysis is valid for BinaryNet and BinaryCon-
nect. The key difference of our method is using a scaling-factor, which does not change
the order of efficiency while providing a significant improvement in accuracy.

4.2 Image Classification

We evaluate the performance of our proposed approach on the task of natural im-
age classification. So far, in the literature, binary neural network methods have pre-
sented their evaluations on either limited domain or simplified datasets e.g.,CIFAR-10,
MNIST, SVHN. To compare with state-of-the-art vision, we evaluate our method on
ImageNet (ILSVRC2012). ImageNet has ~1.2M train images from 1K categories and
50K validation images. The images in this dataset are natural images with reasonably
high resolution compared to the CIFAR and MNIST dataset, which have relatively small
images. We report our classification performance using Top-1 and Top-5 accuracies.
We adopt three different CNN architectures as our base architectures for binarization:
AlexNet [1], Residual Networks (known as ResNet) [4], and a variant of GoogLenet
[3].We compare our Binary-weight-network (BWN) with BinaryConnect(BC) [38] and
our XNOR-Networks(XNOR-Net) with BinaryNeuralNet(BNN) [ | ]. BinaryConnect(BC)
is a method for training a deep neural network with binary weights during forward
and backward propagations. Similar to our approach, they keep the real-value weights
during the updating parameters step. Our binarization is different from BC. The bina-
rization in BC can be either deterministic or stochastic. We use the deterministic bina-
rization for BC in our comparisons because the stochastic binarization is not efficient.
The same evaluation settings have been used and discussed in [I!]. BinaryNeural-
Net(BNN) [!1] is a neural network with binary weights and activations during infer-
ence and gradient computation in training. In concept, this is a similar approach to our
XNOR-Network but the binarization method and the network structure in BNN is dif-
ferent from ours. Their training algorithm is similar to BC and they used deterministic
binarization in their evaluations.

CIFAR-10 : BC and BNN showed near state-of-the-art performance on CIFAR-
10, MNIST, and SVHN dataset. BWN and XNOR-Net on CIFAR-10 using the same
network architecture as BC and BNN achieve the error rate of 9.88% and 10.17% re-
spectively. In this paper we explore the possibility of obtaining near state-of-the-art
results on a much larger and more challenging dataset (ImageNet).

AlexNet: [1] is a CNN architecture with 5 convolutional layers and two fully-
connected layers. This architecture was the first CNN architecture that showed to be
successful on ImageNet classification task. This network has 61M parameters. We use
AlexNet coupled with batch normalization layers [43].

Train: In each iteration of training, images are resized to have 256 pixel at their
smaller dimension and then a random crop of 224 x 224 is selected for training. We run



12 Rastegari et al.

Top-1, Binary-Weight Top-1, Binary-Weight-Input Top-5, Binary-Weight Top-5, Binary-Weight-Input
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Fig.5: This figure compares the imagenet classification accuracy on Top-1 and Top-5 across
training epochs. Our approaches BWN and XNOR-Net outperform BinaryConnect(BC) and Bi-
naryNet(BNN) in all the epochs by large margin(~17%).

Classification Accuracy(%)
Binary-Weight Binary-Input-Binary-Weight||Full-Precision
BWN BC[11] XNOR-Net | BNNJ[I1] AlexNet[1]
Top-1|Top-5|Top-1|Top-5||Top-1|Top-5|Top-1| Top-5 ||Top-1| Top-5
568|794 (354 161.044.269.2|27.9 | 5042 || 56.6 | 80.2
Table 1: This table compares the final accuracies (Top1 - Top5) of the full precision network with
our binary precision networks; Binary-Weight-Networks(BWN) and XNOR-Networks(XNOR-
Net) and the competitor methods; BinaryConnect(BC) and BinaryNet(BNN).

the training algorithm for 16 epochs with batche size equal to 512. We use negative-log-
likelihood over the soft-max of the outputs as our classification loss function. In our
implementation of AlexNet we do not use the Local-Response-Normalization(LRN)
layer’. We use SGD with momentum=0.9 for updating parameters in BWN and BC.
For XNOR-Net and BNN we used ADAM [42]. ADAM converges faster and usually
achieves better accuracy for binary inputs [ 1]. The learning rate starts at 0.1 and we
apply a learning-rate-decay=0.01 every 4 epochs.

Test: At inference time, we use the 224 x 224 center crop for forward propagation.

Figure 5 demonstrates the classification accuracy for training and inference along
the training epochs for top-1 and top-5 scores. The dashed lines represent training ac-
curacy and solid lines shows the validation accuracy. In all of the epochs our method
outperforms BC and BNN by large margin (~17%). Table 1 compares our final accu-
racy with BC and BNN. We found that the scaling factors for the weights («) is much
more effective than the scaling factors for the inputs (3). Removing 3 reduces the ac-
curacy by a small margin (less than 1% top-1 alexnet).

Binary Gradient: Using XNOR-Net with binary gradient the accuracy of top-1 will
drop only by 1.4%.

Residual Net : We use the ResNet-18 proposed in [4] with short-cut type B.*

Train: In each training iteration, images are resized randomly between 256 and
480 pixel on the smaller dimension and then a random crop of 224 x 224 is selected
for training. We run the training algorithm for 58 epochs with batch size equal to 256

3 Our implementation is followed by https:/gist.github.com/szagoruyko/dd032c529048492630fc
* We used the Torch implementation in https://github.com/facebook/fb.resnet.torch
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ResNet, Top-1 ResNet, Top-5

Accuray(%)

Number of epochs Number of epochs
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Fig. 6: This figure shows the classification accuracy; (a)Top-1 and (b)Top-5 measures across
the training epochs on ImageNet dataset by Binary-Weight-Network and XNOR-Network using
ResNet-18.

ResNet-18 GooglLenet
Network Variations top-1 |top-5 |[top-1 |top-5
Binary-Weight-Network 60.8  [83.0 65.5 [86.1
XNOR-Network 512|732 N/A  |N/A
[Full-Precision-Network 693 [892 [71.3 [90.0 |

Table 2: This table compares the final classification accuracy achieved by our binary precision
networks with the full precision network in ResNet-18 and GoogLenet architectures.

images. The learning rate starts at 0.1 and we use the learning-rate-decay equal to 0.01
at epochs number 30 and 40.

Test: At inference time, we use the 224 x 224 center crop for forward propagation.

Figure 6 demonstrates the classification accuracy (Top-1 and Top-5) along the epochs
for training and inference. The dashed lines represent training and the solid lines repre-
sent inference. Table 2 shows our final accuracy by BWN and XNOR-Net.

GoogLenet Variant : We experiment with a variant of GoogLenet [3] that uses a
similar number of parameters and connections but only straightforward convolutions,
no branching’. It has 21 convolutional layers with filter sizes alternating between 1 x 1
and 3 x 3.

Train: Images are resized randomly between 256 and 320 pixel on the smaller di-
mension and then a random crop of 224 x 224 is selected for training. We run the
training algorithm for 80 epochs with batch size of 128. The learning rate starts at 0.1
and we use polynomial rate decay, 8 = 4.

Test: At inference time, we use a center crop of 224 x 224.

4.3 Ablation Studies

There are two key differences between our method and the previous network binariaza-
tion methods; the binararization technique and the block structure in our binary CNN.

> We used the Darknet [44] implementation: http://pjreddie.com/darknet/imagenet/#extraction



14 Rastegari et al.

Binary-Weight-Network XNOR-Network
Strategy for computing «  [|top-1  |top-5 Block Structure top-1  |top-5
Using equation 6 56.8 |794 C-B-A-P 303|575
Using a separate layer 46.2 69.5 B-A-C-P 44.2 69.2
(@) (b)

Table 3: In this table, we evaluate two key elements of our approach; computing the optimal
scaling factors and specifying the right order for layers in a block of CNN with binary input.
(a) demonstrates the importance of the scaling factor in training binary-weight-networks and (b)
shows that our way of ordering the layers in a block of CNN is crucial for training XNOR-
Networks. C,B,A,P stands for Convolutional, BatchNormalization, Acive function (here binary
activation), and Pooling respectively.

For binarization, we find the optimal scaling factors at each iteration of training. For
the block structure, we order the layers in a block in a way that decreases the quantiza-
tion loss for training XNOR-Net. Here, we evaluate the effect of each of these elements
in the performance of the binary networks. Instead of computing the scaling factor «
using equation 6, one can consider «v as a network parameter. In other words, a layer
after binary convolution multiplies the output of convolution by an scalar parameter for
each filter. This is similar to computing the affine parameters in batch normalization.
Table 3-a compares the performance of a binary network with two ways of computing
the scaling factors. As we mentioned in section 3.2 the typical block structure in CNN is
not suitable for binarization. Table 3-b compares the standard block structure C-B-A-P
(Convolution, Batch Normalization, Activation, Pooling) with our structure B-A-C-P.
(A, is binary activation).

5 Conclusion

We introduce simple, efficient, and accurate binary approximations for neural networks.
We train a neural network that learns to find binary values for weights, which reduces
the size of network by ~ 32X and provide the possibility of loading very deep neural
networks into portable devices with limited memory. We also propose an architecture,
XNOR-Net, that uses mostly bitwise operations to approximate convolutions. This pro-
vides ~ 58X speed up and enables the possibility of running the inference of state of
the art deep neural network on CPU (rather than GPU) in real-time.
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