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Abstract

Diffusion models have shown remarkable success in a
variety of downstream generative tasks, yet remain under-
explored in the important and challenging expressive talk-
ing head generation. In this work, we propose a DreamTalk
framework to fulfill this gap, which employs meticulous de-
sign to unlock the potential of diffusion models in generat-
ing expressive talking heads. Specifically, DreamTalk con-
sists of three crucial components: a denoising network, a
style-aware lip expert, and a style predictor. The diffusion-
based denoising network is able to consistently synthesize
high-quality audio-driven face motions across diverse ex-
pressions. To enhance the expressiveness and accuracy of
lip motions, we introduce a style-aware lip expert that can
guide lip-sync while being mindful of the speaking styles.
To eliminate the need for expression reference video or text,
an extra diffusion-based style predictor is utilized to pre-
dict the target expression directly from the audio. By this
means, DreamTalk can harness powerful diffusion mod-
els to generate expressive faces effectively and reduce the
reliance on expensive style references. Experimental re-
sults demonstrate that DreamTalk is capable of generating
photo-realistic talking faces with diverse speaking styles
and achieving accurate lip motions, surpassing existing
state-of-the-art counterparts.

1. Introduction
Audio-driven talking head generation, which concerns

animating portraits with speech audio, has garnered sig-
nificant interest due to its diverse applications in video
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Figure 1. Leveraging the powerful diffusion models, DreamTalk
is able to generate highly expressive talking heads across diverse
speaking styles. Furthermore, DreamTalk is able to derive person-
alized speaking style directly from input audio, which obviates the
need for additional style references.

games, film dubbing, and virtual avatars. Generating life-
like facial expressions is essential for enhancing the real-
ism of talking heads [19]. These expressions during speech
are termed as speaking styles [12, 46]. GANs [21] cur-
rently hold the state-of-the-art in expressive talking head
generation [20, 30, 37, 46].However, their inherent issues
with mode collapse and unstable training hamper their ef-
ficacy in consistently achieving high performance across
a diverse range of speaking styles. Another issue is that
prior methods often rely on reference videos [30, 37, 78] or
texts [45, 90] to specify speaking styles. Their acquisition
requires extra manual effort and hence is inflexible.

As a new line of generative technique, diffusion mod-
els [26, 62] have recently been shown to produce high-
quality results in numerous generative areas such as im-
age generation [16, 53], video generation [27, 60, 86], and
human motion synthesis [1, 72]. The success of diffusion
models, stemming from their superior properties such as
powerful distribution learning [16, 72], good convergence,
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and stylistic diversity, make them exceptionally promising
for exploring expressive talking head generation. However,
current diffusion-based talking head approaches [58, 66, 96]
primarily concentrate on generating talking heads with
neutral expressions and still struggle to produce satisfac-
tory performance, e.g., suffering from frame jittering prob-
lem [58]. As a result, how to stimulate the full potential of
diffusion models for expressive talking head generation is a
promising yet untapped research direction.

In this paper, we propose DreamTalk, an expressive talk-
ing head generation framework that takes advantage of dif-
fusion models to simultaneously deliver high performance
across diverse speaking styles and reduce the reliance on
expensive style references. Specifically, DreamTalk is com-
posed of a denoising network, a style-aware lip expert, and a
style predictor. The diffusion-based denoising network pro-
duces audio-driven facial motions with the speaking style
specified by a reference video. The great distribution-
learning characteristic of diffusion models endows the de-
noising network with the potential to produce high-quality
results across diverse speaking styles. To harness this po-
tential, we design a style-aware lip expert that drives the
denoising network to produce accurate lip motions with
vivid expressions. Contrasting with previous lip experts that
overlook expression information and thus compromise style
expressiveness, the proposed lip expert not only enhances
lip accuracy but also ensures expressiveness. Finally, to
further eliminate the need for additional style references,
a diffusion-based style predictor is incorporated to predict
personalized speaking styles directly from audio. The style
predictor also incorporates the portrait as input during pre-
diction, leveraging the correlation between speaker identity
and speaking styles, thereby enhancing performance.

Ultimately, DreamTalk can consistently generate photo-
realistic talking faces with precise lip-sync across a wide
range of speaking styles while minimizing the need for ad-
ditional style references. It also enables versatile manipula-
tion of speaking styles and exhibits robust generalization
across varied inputs, including songs, speech in multiple
languages, noisy audio, and out-of-domain portraits. The
effectiveness of DreamTalk is demonstrated through com-
prehensive qualitative and quantitative evaluations, show-
casing its superiority over existing state-of-the-art methods.

2. Related Work
Audio-Driven Talking Head Generation. Audio-driven
methods [14, 22, 67, 80, 81, 102] fall into two main
categories: person-specific and person-agnostic. Person-
specific approaches [18, 29, 41, 68, 82] are constrained to
generating videos for speakers seen during training. Many
of these [29, 34, 35, 64, 70, 74, 94, 97, 98] first craft
3D facial animations, later converting them into realistic
videos. Recent advancements [23, 39, 57, 71, 71, 93]

have employed neural radiance fields for modeling, yielding
high-fidelity, realistic videos. Conversely, person-agnostic
methods [10, 55, 77, 84] target generating videos for un-
seen speakers. Early methods prioritized lip synchroniza-
tion [5, 6, 49, 65, 77, 103]. Later works shifted focus to
natural facial expressions [95, 105] and head poses [7, 83,
100, 101, 104].
Expressive Talking Head Generation. Early methods [13,
20, 24, 29, 61, 69, 82, 90] model expressions in discrete
emotion classes. To model more fine-grained expressions,
most recent methods [30, 37, 46] leverage an expression ref-
erence video and transfer the expressions from that video
to the generated one. However, these GAN-based models
suffer from mode collapse, leading to videos with inferior
lip-sync and style expressiveness. Our work addresses these
issues by using diffusion models.

Specifying desired speaking styles effortlessly is also
important for users. Most previous methods specify speak-
ing styles using reference videos [30, 37, 46] or text [20,
45, 90], which needs human labor. A more user-friendly
approach is to derive speaking styles from the input audio.
Previous methods can only infer a limited number of dis-
crete emotion classes from audio signals [29, 61, 90]. TH-
PAD [95] generates expressions only aligned with the audio
rhythm, not aligning with the emotional content of the au-
dio. Besides, previous methods neglect the information in
the input portrait. In this work, we aim to infer personalized
and emotional expressions using input audio and portraits.
Diffusion Models. Diffusion models [26, 62] have demon-
strated strong performance across multiple vision tasks [16,
53, 86, 99], including text-to-image generation [31, 54], im-
age inpainting [33, 42], human motion generation [1, 72],
3D content generation [43], and video generation [50, 60,
79, 87, 89]. Previous efforts [3, 47, 58, 66] employing
diffusion models in talking head generation only produce
talking heads with neutral emotion and the results are un-
satisfactory. Some methods devise diffusion-based render-
ers [17, 91] or face motion prior [96], yet still use GAN or
regression models to model the audio-motion mapping. In
this work, we endeavor to harness diffusion models for the
generation of expressive talking heads, presenting a more
intricate challenge with greater practical relevance.

3. Method

3.1. Problem Formulation

Given a portrait I , a speech A, and a style reference
video R, our method aims to generate a talking head video
with lip motions synchronized with the speech and the
speaking style reflected in the reference video. The audio
A = [ai]

L
i=1 is parameterized as a sequence of acoustic

features. R is a sequence of video frames.
Besides, to eliminate the need for extra style references,
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Figure 2. Illustration of DreamTalk. A style-aware lip expert (b), which evaluates the lip-audio synchronous probability under a given
speaking style, is first trained to provide lip motion guidance for the denoising network (a). The denoising network is then trained to take
the audio, the style reference video, and noisy face motion as input and predict the unnoised face motion. Then, A style predictor (c) is
trained to predict the style code extracted from a video, taking audio and the speaker in that video as input. During inference process (d),
the speaking style can be specified using style codes that are extracted from videos or derived from audio.

our method also aims to infer the speaking style using solely
the speech and the portrait. The inferred speaking style can
replace the role of style reference videos in controlling the
expressions, which enables our method to generate expres-
sive talking head videos with only speech and portrait input.

3.2. DreamTalk

DreamTalk comprises 3 key components: a denoising
network, a style-aware lip expert, and a style predictor.

The denoising network computes face motion condi-
tioned on the speech and style reference video. The face
motion M = [ml]

L
l=1 is parameterized as a sequence

of expression parameters from 3D Morphable Models [4].
The face motion is rendered into video frames by a ren-
derer [52]. The style-aware lip expert provides lip motion
guidance under diverse expressions and thus drives the de-
noising network to achieve accurate lip-sync while ensur-
ing style expressiveness. The style predictor can predict the
speaking style aligned with that conveyed in speech.
Denoising Network. The denoising network synthesizes
face motion sequence frame-by-frame in a sliding window
manner. It predicts a motion frame ml using an audio win-
dow Aw = [ai]

l+w
i=l−w, where w denotes the window size.

The denoising network leverages forward and reverse
diffusion processes. The diffusion process is modeled as
a Markov noising process. Starting from a motion frame
m(0), it incrementally introduces Gaussian noise into the
real data, gradually diffusing towards a distribution resem-
bling N (0, I). Consequently, the distribution evolves as
follows:

q(m(t)|m(t−1)) = N (
√
αnm(t−1), (1− αn)I), (1)

where m(t) is the motion frame sampled at diffusion step
t, t ∈ {1, . . . , T}, and αn is determined by the variance
schedules. Conversely, the reverse diffusion process, or the
denoising process, predicts the added noise in a noisy mo-
tion frame. Starting from a random motion frame m(T ) ∼
N (0, I), the denoising process incrementally removes the
noise and recovers the original motion m(0).

Instead of predicting the noise as formulated by [26], we
follow [51] and predict the signal itself. The denoising net-
work Eθ predicts m(0) based on the noisy motion, the dif-
fusion step, the speech context, and the style reference:

m∗
(0) = Eθ(m(t), t,Aw,R). (2)

The asterisk(∗) indicates quantities that are generated.
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Our denoising network has a transformer architec-
ture [76]. The audio window Aw is first fed into a
transformer-based audio encoder and the output is concate-
nated with the noisy motion m(t) in the channel dimension.
After linearly projected to the same dimension, the con-
catenated results and the timestep t are summed and served
as the key and value of a transformer decoder. To extract
the speaking style from the style reference, a style encoder
first extracts the sequence of 3DMM expression parameters
from R and then feeds them into a transformer encoder. The
output tokens are aggregated using a self-attention pooling
layer [56] to obtain the style code s. The style code is re-
peated 2w + 1 times and added with positional encodings.
The results serve as the query of the transformer decoder.
The middle output token of the decoder is fed into a feed-
forward network to predict the signal m(0).
Style-aware Lip Expert. We observe that using solely the
denoising loss in standard diffusion models results in in-
accurate lip motions. We conjecture that the loss alone is
insufficient for the denoising network to effectively focus
on generating precise lip motions. A typical remedy is to
involve a pre-trained lip expert [49] that provides lip mo-
tion guidance. However, we observe the lip expert reduces
the intensity of expressions. This stems from the fact that
the lip expert merely focuses on a generic speaking style,
which leads to generating face motions in a uniform style.

To address this issue, we introduce a style-aware lip ex-
pert. The proposed lip expert is trained to evaluate lip-sync
under diverse speaking styles. Therefore, it can provide lip
motion guidance under diverse speaking styles and strike
a better balance between style expressiveness and lip-sync.
The lip expert E computes the probability that a clip of au-
dio and lip motions are synchronous conditioned on style
reference R:

Psync = E([ai]
l+n
i=l , [mi]

l+n
i=l ,R), (3)

where n denotes the clip length.
The style-aware lip expert encodes the lip motions and

audio into respective embeddings conditioned on style ref-
erence and then computes the cosine similarity to represent
the sync probability. To obtain lip motion information from
face motion m, we first convert m into the correspond-
ing face mesh and select vertices in the mouth area as the
representation of the lip motion [46]. The lip motion and
audio encoders are mainly implemented by MLPs and 1D-
convolutions, respectively. The style condition is fused into
embeddings by first extracting style features from style ref-
erence using a style encoder, which mirrors the architecture
of the one in the denoising network, and then concatenating
the style features with intermediate feature maps from em-
bedding encoders. The style encoder in the lip expert and
the generator do not share parameters.
Style Predictor. Specifically, the style predictor Sϕ pre-

dicts the style code s extracted by the style encoder in the
trained denoising network. Observing the correlation be-
tween speaker identity and style codes (Sec. 4.4), the style
predictor also integrates the portrait as input. The style pre-
dictor is instantiated as a diffusion model and is trained to
predict the style code itself:

s∗(0) = Sϕ(s(t), t,A, I), (4)

where s(t) is the style code sampled at diffusion step t.
The style predictor Sϕ is a transformer encoder on a se-

quence consisting of, in order: audio embeddings, an em-
bedding for the diffusion timestep, a speaker info embed-
ding, the noised style code embedding, and a final embed-
ding called learned query whose output is used to predict the
unnoised style code. Audio embeddings are audio features
extracted using self-supervised pre-trained speech models.
To obtain the speaker info embedding, our method first ex-
tracts the 3DMM identity parameters, which include the
face shape information but removes irrelevant information,
such as expressions, from the portrait, and then embeds it
into a token using an MLP.

3.3. Training and Inference

Training. The style-aware lip expert is first pre-trained by
determining whether randomly sampled audio and lip mo-
tion clips are synchronous as in [49] and then frozen during
training the denoising network.

The denoising network Eθ is trained by sampling ran-
dom tuples (m(0), t,Aw,R) from dataset, corrupting m(0)

into m(t) by adding Gaussian noises, executing denoising
steps to m(t), and optimizing the loss:

Lnet = λdenoiseLdenoise + λsyncLsync. (5)

Specifically, the ground-truth motion m(0), and the speech
audio window Aw are extracted from the training video of
the same moment. t is drawn from the uniform distribution
U{1, T}. The style reference R is a video clip randomly
drawn from the same video containing m(0).

We first compute the denoising loss of the diffusion mod-
els [26] defined as:

Ldenoise = ∥m(0) − Eθ(m(t), t,Aw,R)∥22. (6)

Then, the denoising network maximizes the synchronous
probability via a sync loss on generated clips:

Lsync = −log(Psync). (7)

Classifier-free guidance [25] is used to train our model.
Specifically, Eθ is trained to learn both the style-conditional
and unconditional distributions via randomly setting R =
∅ by 10% chance during training. ∅ is implemented as a
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Methods MEAD / HDTF / Voxceleb2
SSIM↑ CPBD↑ F-LMD↓ M-LMD↓ Syncconf ↑

MakeItTalk [105] 0.73 / 0.57 / 0.52 0.11 / 0.24 / 0.24 3.97 / 5.12 / 6.29 5.32 / 4.55 / 5.15 2.10 / 3.16 / 2.17
Wav2Lip [49] 0.80 / 0.63 / 0.54 0.18 / 0.30 / 0.30 2.72 / 4.53 / 5.85 4.05 / 3.60 / 4.64 5.26 / 5.83 / 5.70
PC-AVS [104] 0.50 / 0.42 / 0.36 0.07 / 0.13 / 0.09 5.83 / 9.71 / 12.9 4.97 / 4.17 / 7.42 2.18 / 4.85 / 4.73

AVCT [84] 0.83 / 0.76 / 0.64 0.14 / 0.22 / 0.23 2.92 / 2.86 / 3.62 5.52 / 3.57 / 3.71 2.53 / 4.27 / 3.89
GC-AVT [37] 0.34 / 0.36 / - 0.14 / 0.28 / - 8.04 / 10.2 / - 7.10 / 6.23 / - 2.42 / 4.72 / -
EAMM [30] 0.40 / 0.40 / 0.43 0.08 / 0.14 / 0.20 6.70 / 7.03 / 6.36 6.48 / 6.86 / 4.89 1.41 / 2.54 / 2.24

StyleTalk [46] 0.84 / 0.81 / 0.66 0.16 / 0.30 / 0.29 2.12 / 1.96 / 2.92 3.25 / 2.41 / 2.96 3.47 / 4.82 / 4.51
SadTalker [100] 0.69 / 0.77 / 0.44 0.16 / 0.24 / 0.19 4.12 / 5.99 / 9.12 4.37 / 4.07 / 6.11 2.76 / 4.35 / 4.38
PD-FGC [78] 0.49 / 0.41 / 0.35 0.05 / 0.13 / 0.12 5.50 / 9.50 / 12.5 4.10 / 4.23 / 8.19 2.27 / 4.68 / 4.64

EAT [20] 0.53 / 0.59 / 0.47 0.15 / 0.26 / 0.20 5.54 / 3.86 / 5.53 4.79 / 4.03 / 5.88 2.16 / 4.54 / 4.35
DreamTalk 0.86 / 0.85 / 0.69 0.16 / 0.31 / 0.30 1.93 / 1.80 / 2.69 2.91 / 2.15 / 2.72 3.78 / 5.17 / 4.90

Ground Truth 1 / 1 / 1 0.22 / 0.31 / 0.33 0 / 0 / 0 0 / 0 / 0 4.13 / 5.44 / 5.23
Table 1. Quantitative comparisons on MEAD, HDTF, and Voxceleb2. Since we only receive GC-AVT samples on MEAD and HDTF,
GC-AVT is not evaluated on Voxceleb2.

sequence of face motions [mi] with all zero values. For
inference, the predicted signal is computed by

m∗
(0) = ωEθ(m(t), t,Aw,R)

+ (1− ω)Eθ(m(t), t,Aw,∅),
(8)

instead of Equation 2. This approach enables controlling the
effectiveness of the style reference R through adjustment of
the scale factor ω.

When training the style predictor, we draw a random
video, then extract audio A and style code s(0) (using the
trained style encoder) from it. Since 3DMM identity pa-
rameters may leak expression information, the portrait I is
sampled from another video with the same speaker identity.
The style predictor Eϕ is trained by optimizing the loss:

Lpred = ∥s(0) − Sϕ(s(t), t,A, I)∥22, (9)

We utilize PIRenderer [52] as the renderer and meticu-
lously fine-tune it to empower the renderer with emotional
expression generation capabilities.
Inference. Our method enables the specification of speak-
ing styles using either reference videos or solely through in-
put audio and portrait. In the case of reference videos, style
codes are derived using the style encoder in the denoising
network. When relying solely on input audio and portrait,
these inputs are processed by the style predictor, which em-
ploys a denoising procedure to obtain the style code.

With the style code, the denoising network utilizes the
sampling algorithm of DDPM [26] to produce face motions.
It first samples a random motion m∗

(T ) ∼ N (0, I) then
computes denoised sequences {m∗

(t)}, t = T − 1, . . . , 0 by
incrementally removing the noise from m∗

(t). Finally, the
motion m∗

(0) is the generated face motion. The sampling
process can be accelerated by leveraging DDIM [63]. The
output face motions are then rendered into videos by the
renderer PIRenderer.

4. Experiments

4.1. Experimental Setup

Datasets. We train and evaluate the denoising network on
MEAD [82], HDTF [101], and Voxceleb2 [11]. Since Vox-
celeb2 official videos are of low resolution, we redownload
the original YouTube videos and re-crop the videos. The
style-aware lip expert is trained on MEAD and HDTF. We
train the style predictor on MEAD and evaluate it on MEAD
and RAVEDESS [40].
Baselines. We compare our method with previous meth-
ods including: MakeitTalk [105], Wav2Lip [49], PC-
AVS [104], AVCT [84], GC-AVT [37], EAMM [30],
StyleTalk [46], DiffTalk [58], SadTalker [100], PD-
FGC [78], and EAT [20]. For DiffTalk, since the released
model is incomplete and unable to generate reasonable re-
sults until submission, we perform qualitative comparisons
using videos from its released demo. For other methods, we
generate the samples using released models or with the help
of the authors.
Metrics. We utilize widely used metrics: SSIM [88], the
Cumulative Probability of Blur Detection (CPBD) [48], the
SyncNet confidence score (Syncconf) [9], the Landmark Dis-
tance around mouth area (M-LMD) [6], the Landmark Dis-
tance on the full face (F-LMD).

4.2. Main Results

Quanitative Comparisons. As shown in Tab. 1, our
method outperforms previous methods across most met-
rics. Wav2Lip’s training with SyncNet as a discriminator
explains its high SyncNet confidence score, even surpass-
ing the ground truth. Notably, our method’s SyncNet con-
fidence score closely aligns with the ground truth, and it
achieves the best M-LMD scores, which indicates its capa-
bility for precise lip synchronization. Furthermore, our su-
perior performance in the F-LMD metric demonstrates our
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Figure 3. Qualitative comparisons with previous methods.

method’s proficiency in generating facial expressions con-
sistent with the reference speaking style.

Qualitative comparisons. Fig. 3 shows the qualitative
comparisons. The portraits, style references, and au-
dio are all unseen during training. It can be seen that
MakeItTalk and AVCT struggle with accurate lip synchro-
nization. While Wav2Lip and PC-AVS synchronize lips ac-
curately, their outputs appear blurry. SadTalker, on the other
hand, generally aligns lip movements with audio but occa-
sionally displays unnatural jitters.

EAT’s capability is limited to generating discrete emo-
tions, lacking the finesse for nuanced expressions. For ex-
ample, in the left case, the style reference shows the speaker
narrowing his eyes, but EAT merely produces a generic dis-

gusted look with wide-open glaring eyes. Additionally, as
shown in the right case, EAT struggles to maintain a consis-
tent face shape during speaker head movements.

EAMM, GC-AVT, StyleTalk, and PD-FGC demonstrate
the ability to produce fine-grained expressions. However,
EAMM falls short in lip synchronization, GC-AVT and PD-
FGC struggle with preserving speaker identity, and all three
have issues rendering a plausible background. We observed
that StyleTalk, while capable of generating nuanced expres-
sions, occasionally does so with diminished intensity and
fails to generate accurate lip motion for some words. A no-
table example is shown in the third column of the left case:
when the speaker utters "um"; the expected closed-mouth
motion is replaced by an open mouth in StyleTalk’s output.
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Besides, as shown in Fig. 4, StyleTalk occasionally gener-
ates videos where the face distorts suddenly.

Fig. 5 present comparisons with DiffTalk. DiffTalk
struggles with lip synchronization and introduces jitteriness
and artifacts in the mouth region.

In contrast, DreamTalk excels in producing realistic talk-
ing faces that not only mirror the reference speaking style
but also achieve precise lip synchronization and superior
video quality.
Generalization Capabilities. Supplementary Video

Emotion
Fear

Emotion
Angry

Portrait Ground 
Truth

Generated
results

Results on
same portrait

Figure 7. The results of speaking style prediction. The fourth
column displays samples generated with predicted styles applied
to the same portrait for clearer comparisons.

w/o Lip ExpertPortraitStyle reference FullUncond Lip Expert

Figure 8. Ablation study results

demonstrates our method’s capability to produce realistic
talking head videos for out-of-domain portraits (paintings,
toonified portraits, and sculptures, shown in Fig. 6), speech
in various languages, noisy audio input, and songs. Ap-
pendix B.1 provides more analysis.
Results of Speaking Style Prediction. Fig. 7 presents the
results of speaking style predictions. The speakers with an-
gry emotion are sampled from MEAD while those with fear
emotion are sampled from RAVEDESS. The style predic-
tor, utilizing emotional audio and neutral portraits from test
videos, adeptly deduces personalized speaking styles that
align with those observed in the original videos. It demon-
strates the capacity to discern subtle expressions within the
same emotion. For instance, for samples with angry emo-
tion, the first-row speaker exhibits narrowed eyes, in con-
trast to the second-row speaker’s intense, glaring stare. For
samples with angry emotion, the first-row speaker’s eyes
and mouth are open, whereas the second-row speaker com-
bines narrowed eyes with a contorted facial expression.

The ablation study and user study for the style predictor
are presented in Appendix A.

4.3. Ablation Study

To analyze the contributions of our designs, we conduct
an ablation study with two variants: (1) remove the style-

7



Method SSIM↑ F-LMD↓ M-LMD↓ Syncconf↑
w/o Lip Expert 0.85 1.90 3.07 2.63

Uncond Lip Expert 0.83 2.19 3.42 4.51
Full 0.86 1.93 2.91 3.78

Table 2. The results of DreamTalk’s ablation study on MEAD.
We omit CPBD scores since there are no significant differences
between variants on CPBD.

Figure 9. t-SNE visualization of style codes from 15 speakers.
Each color stands for style codes from an identical speaker.

aware lip expert (w/o lip expert); (2) trained with uncon-
ditional lip expert (uncond lip expert). Our full model is
denoted as Full.

Fig. 8 and Tab. 2 present our ablation study results. The
variant w/o lip expert exhibits a decline in lip-sync accu-
racy on the emotional dataset MEAD, despite its compet-
itive F-LMD score indicating expressive facial generation.
Conversely, uncond lip expert secures a superior SyncNet
confidence score at the expense of speaking style expres-
siveness. The Full model achieves a harmonious balance,
ensuring both precise lip synchronization and vivid expres-
sions, thanks to the style-aware lip expert directing the dif-
fusion model’s expressive potential.

4.4. Style Code Visualization

Using t-distributed stochastic neighbor embedding (t-
SNE) [75], we map style codes from the MEAD dataset’s
15 speakers into a 2D space. These speakers exhibit 22 dis-
tinct speaking styles, comprising seven emotions at three
intensity levels, alongside a neutral style. For each style,
style codes are extracted from 10 randomly chosen videos.

Fig. 9 reveals that style codes from identical speakers
tend to cluster, despite some codes sharing identical emo-
tion categories. This suggests that the variance in speaking
styles attributable to individual speaker idiosyncrasies out-
weighs that induced by different emotions, thereby under-
pinning the rationale for using portrait information to infer
speaking styles. We also observe that each speaker’s style
code distribution exhibits both common patterns and indi-
vidualized characteristics. We present these intriguing ob-
servations in Appendix B.2.

4.5. Style Manipulation

Adjusting the scale of Classifer-free Guidance. As elab-
orated in Sec. 3.3, the scale factor ω in the classifier-free
guidance scheme modulates the effect of the input style.
Adjusting ω either amplifies or attenuates the designated

! = 0.5! = 0Style reference ! = 1.5! = 1
Figure 10. Effect of the input style controlled by adjusting the
scale ω of the classifier-free guidance.

Style A Style B

Interpolation

Figure 11. The results of speaking style interpolation.

Methods Lip Sync↑ Realness↑ Style Consistency↑
MakeItTalk [105] 1.94 2.03 1.65

Wav2Lip [49] 2.29 1.45 1.14
PC-AVS [104] 2.26 1.81 1.86

AVCT [84] 2.31 2.21 1.72
GC-AVT [37] 2.35 1.20 1.88
EAMM [30] 1.81 1.40 1.78

StyleTalk [46] 2.35 2.29 2.08
SadTalker [100] 2.37 2.38 1.73
PD-FGC [78] 1.95 1.61 2.31

EAT [20] 2.24 1.65 2.29
DreamTalk 2.55 2.60 2.46

Ground Truth 3.03 2.89 1.83
Table 3. User study results.

style, as shown in Fig. 10. When ω = 0, DreamTalk pro-
duces a talking head with a neutral expression. We observed
that when the scale factor ω exceeds 2, there is a noticeable
decline in lip-sync accuracy.
Style Code Interpolation. Leveraging the style space, we
can modify speaking styles via style code manipulation.
Fig. 11 illustrates that linear interpolation between style
codes results in a seamless transition of generated speaking
styles. This interpolation process allows for style intensity
modulation and the generation of novel speaking styles.

4.6. User Study

We conduct a user study of 20 participants. We gener-
ate the test samples covering multiple speaking styles and
speakers. For each method, the participant is required to
score 10 videos sampled from the test samples and is asked
to give a rating (from 1 to 5, 5 is the best) on three aspects:
(1) the Lip sync quality, (2) the realness of results, and (3)
the style consistency between the generated videos and the
style reference. As shown in Tab. 3, our method outper-
forms existing approaches across all aspects, particularly in
style consistency, highlighting its superior capabilities.
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5. Conclusion
In this work, we propose DreamTalk, a novel approach

leveraging diffusion models for generating expressive talk-
ing heads. Our method aims to excel in diverse speaking
styles while minimizing dependence on extra style refer-
ences. We develop a denoising network for creating ex-
pressive, audio-driven facial motions and introduce a style-
aware lip expert to optimize lip-sync without compromis-
ing style expressiveness. Additionally, we devise a style
predictor that infers speaking styles directly from audio,
eliminating the need for video references. The efficacy of
DreamTalk is validated through extensive experiments.
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Figure 12. The qualitative results of style predictor’s ablation
study.

A. Additional Evaluation for Speaking Style
Prediction

A.1. Ablation Study

To evaluate the impact of our design choices, we conduct
an ablation study with three variants: (1) omitting speaker
information and relying solely on audio for prediction (w/o
speaker info); (2) during model training, the speaker info
and audio are both obtained from the same video (w/o
cross-ID training); (3) employing a regression model in-
stead of a diffusion model for prediction (regression). Our
full model is denoted as Full. When generating samples for
evaluation, the facial images and audio we use are sourced
from videos of the same individual expressing different
emotions(e.g. the face image is from a happy video while
the audio is from an angry one.). This generation approach
better aligns with real-world applications.

How to quantitatively evaluate the performance of speak-
ing style prediction has not been explored before. we devise
three metrics:
• Style Code Distance (SCD) We extract the style codes

from the videos that provide the audio input and com-
pute the L2 distance between the predicted style codes
and these style codes.

• Motion Distance (MD) We use the predicted style codes
and the audio used for prediction to generate face motions
and compute the L2 distance between the generated face
motions and the face motions extracted from the ground
truth videos.

• Style Accuracy (SA) We split test videos into differ-
ent speaking styles and train a style classifier to classify
which style a face motion sequence belongs to. Then, We
classify the face motions generated using predicted style
codes and report the accuracy. Specifically, we put the
videos from the same speaker, emotion, and intensity into
one style. We evaluate this metric on MEAD only since
the number of RAVEDESS videos for each style is inad-
equate to train a style classifier. The ground truth testing

Method SCD↓ MD↓ SA↑
w/o speaker info 0.49 0.28 64.3

w/o cross-ID training 0.68 0.45 28.1
regression 0.56 0.32 55.1

Full 0.42 0.23 78.6
Table 4. The ablation study results of the style predictor.

set gets 92.5% accuracy.
We refrain from devising image-level metrics, such as train-
ing an image classifier for speaking style classification, due
to several critical considerations. Firstly, factors in images
that are irrelevant to expression, such as the speaker’s iden-
tity and background elements, can adversely impact the ac-
curate prediction of nuanced speaking styles. Secondly, in-
accuracies introduced by the rendering process may further
additionally hinder the accurate discernment of these subtle
speaking styles.

The results are shown in Tab. 4 and Fig. 12. The w/o
speaker info variant successfully predicts emotions from
audio but occasionally fails to maintain consistency be-
tween the predicted speaking style and speaker identity,
leading to poor identity preservation. This underscores the
importance of speaker information in predicting speaking
styles. Although in experiments, we observed that w/o
cross-ID training achieves slightly better performance than
Full when the input portrait and audio are from the same
video, it underperformed, often failing to predict the cor-
rect emotion, when inputs were from different videos. This
suggests that identity 3DMM parameters may convey some
expression information, and without cross-ID training, the
model might derive emotional cues from this leaked infor-
mation rather than the audio. The regression variant strug-
gles to generate accurate expressions for certain data, high-
lighting the superior distribution-learning capability of dif-
fusion models in facilitating speaking style prediction.

A.2. User Study

In our user study, we evaluate the alignment between the
original and predicted speaking styles. Directly assessing
the alignment of speaking styles can be somewhat ambigu-
ous, so we employ a comparative approach for evaluation.
Specifically, we create a series of video triplets. Each triplet
consisted of a test video from our dataset and two generated
videos. The first video was generated using a style code
predicted from an input portrait, sharing the same speaker
identity as in the test video but displaying a neutral emo-
tion, combined with the audio from the test video. The sec-

13



Portrait BPortrait ASame Audio Predicted Style A Predicted Style B

Figure 13. Analyzing the influence of portraits on style prediction.
The audio conveys surprised emotion.

ond video is generated using the style code extracted from
videos with the same emotion but from a speaker different
from the one in the test video. We recruit 20 participants.
Each participant is then asked to evaluate 20 triplets and
identify which of the generated videos most accurately re-
flected the speaking style of the test video. The videos gen-
erated using predicted style codes are preferred in 75.8% of
all ratings. This indicates that the style predictor is able to
infer personalized speaking styles that are aligned with the
audio.

A.3. Analyzing the Influence of Portraits

We analyze the influence of portraits on speaking style
prediction by predicting speaking styles with an audio clip
and different input portraits. The predicted styles are sub-
sequently applied to an identical portrait for a clearer com-
parison. As shown in Fig. 13, the predicted speaking styles
match the subtle identity characteristics, such as gender, of
the input portraits. The predicted style A generated more
feminine results. This validates the necessity of integrating
portrait information during style prediction.

B. Additional Results for Expressive Talking
Head Generation

B.1. Analysis on Generalization Capabilities

Songs. As demonstrated in Supplementary Video, our
method successfully generates reasonable results for songs,
even those with accompaniment, despite this being signifi-
cantly different from the training dataset’s data distribution.
A noticeable decline in lip-sync accuracy is observed when
the accompaniment volume is excessively high. We conduct
a comparative analysis of lip-sync performance between
songs with accompaniment and songs with removed accom-
paniment (using data from the SingFace Dataset [38]). It
is found that the accompaniment adversely affects lip-sync,
leading to mouth movements resembling mumbling. Ad-
dressing the negative impact of accompaniment on lip-sync
accuracy presents an interesting avenue for future research.
Speech in Multiple Languages. Supplementary Video
shows that our method generates satisfactory results with
speech in French, Chinese, Spanish, German, Italian,
Japanese, and Korean. The versatility of wav2vec features
aids application across various languages. Additionally, the

(a)

(b)

(c)

Figure 14. t-SNE visualization of style codes for 3 speakers, with
darker hues representing increased emotional intensity.

inclusion of multilingual talking head videos from Vox-
celeb2 enhances generalization.
Noisy Audio. Supplementary Video demonstrates that our
method yields satisfactory outcomes when processing audio
mixed with multiple noise types and intensities. We em-
ploy noise recordings from typical talking head application
environments—meetings, offices, and cafeterias—sourced
from the DEMAND dataset [73]. Using a publicly avail-
able tool1, we blend the audio with noise at SNRs of 20 dB,
10 dB, and 0 dB. Remarkably, our method maintains perfor-
mance even at 0 dB SNR, where the noise is as loud as the
speech and significantly impairs speech intelligibility and
clarity.

B.2. More Results of Style Code Visualization

We observe that each speaker’s style code distribution
exhibits both common patterns and individualized charac-
teristics. Common patterns include: Firstly, speaking styles
of different emotions cluster together first, with styles of
lower intensity being closer to neutral and those of higher
intensity being further away. Secondly, speaking styles of
anger and disgust, as well as fear and surprise, often cluster
together, as shown in Fig. 14 (b) and (c). Note that unlike
Ma et al. [46], our method does not incorporate losses to
constrain style space.

Fig. 14 (a) illustrates an example of individualized char-
acteristics. The speaker’s manifestation of fear closely re-
sembles sadness, lacking the characteristic wide-eyed and
open-mouthed expression, thereby positioning the speaking
styles of fear nearer to those of sadness rather than surprise.
Even within the same emotion, a speaker’s speaking style

1https://github.com/Sato-Kunihiko/audio-SNR
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can exhibit notable variation. In Fig. 14 (c), the speaker’s
dual expression of sadness—once with clenched teeth, sim-
ilar to happy expressions, and another with depressed lip
corners, akin to disgust—results in style codes close to the
respective emotions. This observation diminishes the ratio-
nale for manually categorizing styles based on emotion and
intensities in Ma et al. [46].

C. Implementation Details
C.1. Architectual Details

Denoising Network.The audio encoder processes an input
window of 11 sequential audio features, each of dimension
1024. These features undergo dimension reduction to 256
via a linear layer and then are fed to a transformer encoder
comprising three 8-head transformer encoder layers, each
with a hidden size of 256. Subsequently, a linear layer trans-
forms the output tokens to yield audio tokens sized 11×256.
The audio tokens are concatenated with noisy motion and
then added with the encoded diffusion step.

The style encoder ingests sequential expression param-
eters from style reference videos, each sequence sized
N × 64. These sequences, ranging in length from 64 to
256 frames, are initially expanded to 256 dimensions via a
linear layer. Subsequently, they are introduced into a trans-
former encoder, composed of three 8-head layers, each with
a hidden size of 256. The resulting output tokens, each with
a dimension of 256, are aggregated through self-attention
pooling [56], yielding a style code of dimension 256.

Within the decoder, the style code is repeated 11 times,
subsequently added with positional embedding to produce
style tokens. These tokens, in conjunction with audio to-
kens, are processed by a transformer decoder, encompass-
ing three 8-head layers, each with a hidden dimension of
256. Here, style tokens serve as the query, while audio to-
kens serve as both key and value. The middle output token
is fed into a linear layer to predict facial motion.
Style-aware Lip Expert. The face mesh is obtained by
adding the mean shape to the product of the expression pa-
rameters and expression bases. Fig. 15 shows the architec-
ture of the audio embedder and the mouth embedder.
Style Predictor. The style predictor is implemented as a
transformer encoder comprising six 8-head transformer en-
coder layers, each with a hidden size of 256. The input
features are all linearly projected to 256.

C.2. Data Details

C.2.1 Datasets

MEAD. The dataset, an in-lab talking-face corpus, features
60 speakers articulating eight emotions at three different in-
tensity levels. When dividing the MEAD dataset into train-
ing and test subsets, we adhere to previously established
methodologies [30].
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Figure 15. The architecture of mouth embedder and audio embed-
der. ConvBlock consists of a 1D CNN layer and a batch normal-
ization layer. "k3, 32, s2" means that the kernel size is 3, the output
dimension is 32, and the stride is 2. ConvRBlock is a ConvBlock
with residual connection.

HDTF. The dataset stands out as a high-resolution, in-the-
wild audio-visual dataset. We designate 10% of HDTF
videos for testing and reserve the remainder for training.
Voxceleb2. Voxceleb2 is a large-scale talking head dataset
with videos collected from YouTube. We redownload and
recrop the videos to improve their resolution to 256 × 256.
Subsequently, approximately 80000 high-quality videos are
selected, with 400 allocated for testing and the rest for train-
ing.
RAVDESS. The dataset features 24 professional actors (12
female, 12 male) vocalizing two lexically matched state-
ments in a neutral North American accent. It encompasses
a range of expressions in both speech and song, each articu-
lated at two levels of emotional intensity, with an additional
neutral expression included. We employ the speech data
from RAVDESS, encompassing eight emotions, for evalua-
tion.

C.2.2 Data Processing

The original videos are cropped and resized to 256×256
pixels, aligning with the specifications in FOMM [59], and
are sampled at 25 FPS. The 3DMM parameters are ex-
tracted by Deep3DFace [15].

Regarding the audio features used in the denoising net-
work and the style-aware lip expert, we downsample the
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speech wave into the sampling rate of 16000 and ex-
tract acoustic features employing a pre-trained Wav2Vec2.0
model [2].

For audio features used in the style predictor, we extract
them using a pre-trained HuBERT model [28]. Besides,
we also utilize low-level audio features including Mel Fre-
quency Cepstrum Coefficients (MFCC), Mel-filterbank en-
ergy features (FBANK), fundamental frequency, and voice
flag. These two type of features are concatenated to repre-
sent the audio features used in the style predictor.

C.3. Training Details

Our framework is implemented on Pytorch. We em-
ploy Adam [32] for optimization, with a learning rate set
to 0.0001. The number of diffusion steps for the denoising
network and style predictor is 1000. The training batch size
for the denoising network, style predictor, and lip expert is
64, 64, and 32, respectively. λdenoise, λsync, n, and w are set
to 1, 1, 5, and 5, respectively. The number of frames for
style reference and audio used in style prediction is limited
to 64− 256, corresponding to a time length of 2.56− 10.24
seconds. The denoising network, style predictor, and lip ex-
pert are trained on one NVIDIA Tesla A100 GPU for about
3, 1, and 10.5 hours, respectively.

C.3.1 Finetuning PIRender

The renderer is fine-tuned with the losses in Ren
et al. [52] using MEAD. Instead of training with the self-
reconstruction protocol where the source frame and target
frame are from the same video, we select the source frame
and target frame from the same speaker with different emo-
tions. This enables the renderer to generate emotions differ-
ent from the input portrait. This also allows our method to
utilize portraits with emotions, unlike previous approaches
that are confined to using neutral portraits [30]. We also ob-
served that when fine-tuned only on the emotional talking
head dataset, the renderer struggles with identity preserva-
tion. We argue that this problem stems from the fact that
the number of speakers in the emotional dataset is limited.
Therefore, we incorporate some neutral videos in Voxceleb
into the data used for fine-tuning. This enhances the perfor-
mance in identity preservation.

C.3.2 Training Style-aware Lip Expert

The style-aware lip expert is trained to discriminate
whether the input audio and face motions are synchro-
nized. We use cosine-similarity with binary cross-entropy
loss to train the lip expert. Specifically, we compute cosine-
similarity for the face motion embedding em and audio em-
bedding ea to represent the probability that the input audio-
motion pair is synchronized. The training loss of the lip

expert is:

Lexpert = BCE(
em · ea

max(||em||2 · ||ea||2, ϵ)
), (10)

where ϵ is a small number for avoiding the division-by-zero
error.

C.4. Inference Details

The inference of the denoising network can be acceler-
ated with DDIM. We generate samples with 10 DDIM steps
and observe no performance drop. Generating a 30-second
video offline takes 15.61 seconds, with the face motion gen-
eration only taking 1.24 seconds. During evaluation, the
scale factor ω of classifier-free guidance is set to 1. The
style predictor uses the sampling algorithm of DDPM to
predict style codes.

The emotion conveyed in the style reference (video or
audio), should remain consistent to avoid confusing the
model.

The head pose information, which is fed into the ren-
derer, can be derived from real videos or generated using
existing methods [83].

D. Limitations and Future Work
Despite DreamTalk’s promising advancements in ex-

pressive talking head generation, it encounters several chal-
lenges that open avenues for future research.

Firstly, the method occasionally produces artifacts, such
as teeth flickering, around the mouth area, particularly dur-
ing intense expressions. Generating teeth is a long-standing
challenge in talking head generation since the algorithm
needs to inpaint the teeth area that are often occluded in the
input portrait. This problem is exacerbated under intense
expressions where the teeth area expands. The issue can be
mitigated by incorporating modules [36, 44, 92] proposed
recently that enhance the teeth quality. A more comprehen-
sive solution involves developing an emotion-specific ren-
derer, as current renderers [20, 30, 46, 90] are mainly adap-
tations of existing facial reenactment methods with minimal
modifications. An emotion-aware renderer would not only
address the teeth generation issue but also enhance the over-
all expressiveness of emotions.

Secondly, DreamTalk does not account for the tempo-
ral variability in speaking styles. In real-life scenarios, a
speaker’s style evolves over time, a feature our method cur-
rently overlooks. For instance, at the end of a speech, our
method might still produce expressions of intense emotion,
such as a wide-open mouth in surprise, instead of a more
neutral, closed-mouth expression. Introducing a module
that dynamically predicts speaking style over time could ad-
dress this limitation.

Thirdly, the style predictor sometimes struggles with ac-
curately identifying emotions in low-intensity audio clips
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from the MEAD dataset (some audio in MEAD intensity
level 1 videos). The emotion conveyed in these audio clips
is very similar to neutral emotion and thus confusing the
prediction. We also observed that although the videos in the
MEAD dataset clearly express emotions due to the good
training and supervision of the speakers, sometimes the au-
dio does not correspond with the emotions that should be
expressed. Therefore, To enhance prediction accuracy, em-
ploying a dataset where the audio closely aligns with the
expressed emotions could be beneficial. Another solution
is to incorporate textual information from audio during pre-
diction, a strategy commonly employed in speech emotion
recognition [8, 85].

Despite these challenges, DreamTalk marks a significant
stride in the realm of high-quality, expressive talking head
generation, setting a foundation for further innovations.

E. Ethical Consideration
DreamTalk is able to generate realistic talking head

videos. This positions DreamTalk with a broad spectrum
of potential applications, each carrying intricate societal
implications. While DreamTalk holds significant potential
in amplifying and enriching human creative endeavors and
may pave the way for innovative tools for creative profes-
sionals, its capabilities also harbor risks. There’s a pos-
sibility for DreamTalk to generate content that might en-
compass or imply sexual themes, promote hatred, or de-
pict violence. Misuse of DreamTalk could lead to negative
repercussions on individuals or groups, potentially erasing
or maligning them, perpetuating stereotypes, and subject-
ing them to disrespect. Other concerns include the potential
for harassment, intimidation, or exploitation. Furthermore,
DreamTalk’s capabilities might be harnessed to mislead or
spread misinformation.

Before releasing DreamTalk, we have implemented and
plan to introduce several safeguards to curb potential mis-
use. We’ve purged detrimental content from the training
dataset and incorporated visual filters to deter users from
creating harmful outputs. To counteract biases in the gener-
ated results, we’re enhancing the dataset’s diversity by man-
ually ensuring balance, which will reduce instances of era-
sure, stereotype perpetuation, indignity, and uneven quality
across inputs. Users will be advised against using images
without the depicted individuals’ consent to combat harass-
ment and bullying. To prevent the spread of misinforma-
tion, all DreamTalk outputs will bear watermarks indicat-
ing their synthetic nature. Our pre-release strategy involves
a thorough risk assessment, leveraging a growing suite of
safety evaluations and red teaming techniques. We’ll also
scrutinize the findings from pilot tests centered on new use
cases and conduct in-depth post-release assessments. Both
automated and manual monitoring mechanisms are in de-
velopment to preempt misuse. Our commitment remains

steadfast in continuously researching ways to minimize ad-
verse societal effects.
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