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Preface

This book provides an introduction to the basic principles &mols for the design
and analysis of feedback systems. It is intended to serveeasd audience of
scientists and engineers who are interested in undersigadd utilizing feedback
in physical, biological, information and social systems Néve attempted to keep
the mathematical prerequisites to a minimum while beingfcémnot to sacrifice
rigor in the process. We have also attempted to make use wifgga from a variety
of disciplines, illustrating the generality of many of tlets while at the same time
showing how they can be applied in specific application dogain

A major goal of this book is to present a concise and insightiew of the
current knowledge in feedback and control systems. The fieltbofrol started
by teaching everything that was known at the time and, as meawledge was
acquired, additional courses were developed to cover nelanigues. A conse-
guence of this evolution is that introductory courses haeained the same for
many years, and it is often necessary to take many individoaises in order to
obtain a good perspective on the field. In developing this baekhave attempted
to condense the current knowledge by emphasizing fundainsoricepts. We be-
lieve that itis important to understand why feedback isuis&d know the language
and basic mathematics of control and to grasp the key paredifjat have been
developed over the past half century. It is also importahietable to solve simple
feedback problems using back-of-the-envelope technjgoiescognize fundamen-
tal limitations and difficult control problems and to have alfr available design
methods.

This book was originally developed for use in an experimesualse at Caltech
involving students from a wide set of backgrounds. The cowsas offered to
undergraduates at the junior and senior levels in traditiengineering disciplines,
as well as first- and second-year graduate students in emgigead science. This
latter group included graduate students in biology, compsttience and physics.
Over the course of several years, the text has been classested at Caltech and
at Lund University, and the feedback from many students alidagues has been
incorporated to help improve the readability and accel#tsilof the material.

Because of its intended audience, this book is organizedslightly unusual
fashion compared to many other books on feedback and cohtrparticular, we
introduce a number of concepts in the text that are normabgnved for second-
year courses on control and hence often not available testadvho are not
control systems majors. This has been done at the expensetaihdeaditional
topics, which we felt that the astute student could learejrhdently and are often
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explored through the exercises. Examples of topics that we inaluded are non-
linear dynamics, Lyapunov stability analysis, the matsip@nential, reachability
and observability, and fundamental limits of performancd eobustness. Topics
that we have deemphasized include root locus techniqued/]dg compensation
and detailed rules for generating Bode and Nyquist plotsamdh

Several features of the book are designed to facilitate asfdaction as a basic
engineering text and as an introduction for researcheratural, information and
social sciences. The bulk of the material is intended to bd usgardless of the
audience and covers the core principles and tools in theysisadnd design of
feedback systems. Advanced sections, marked by the “daumgérend” symbol
shown here, contain material that requires a slightly mecéanical background,
of the sort that would be expected of senior undergraduatesdineering. A few
sections are marked by two dangerous bend symbols and ereléd for readers
with more specialized backgrounds, identified at the begmoif the section. To
limit the length of the text, several standard results andresions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here napamion web site
has been developed and is available from the publisher'spagb:

http://www.cds.caltech.edumurray/amwiki

The web site contains a database of frequently asked questigoplemental exam-
ples and exercises, and lecture material for courses bashisdext. The material is
organized by chapter and includes a summary of the majotgioithe text as well
as links to external resources. The web site also contairsoilmee code for many
examples in the book, as well as utilities to implement tlobmégques described in
the text. Most of the code was originally written using MATLAB-files but was
also tested with LabView MathScript to ensure compatibilifftmboth packages.
Many files can also be run using other scripting languagesasi€ttave, SciLab,
SysQuake and Xmath.

The first half of the book focuses almost exclusively on stascspontrol
systems. We begin in Chapt2with a description of modeling of physical, biolog-
ical and information systems using ordinary differentigliations and difference
equations. Chapt& presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the fesftowing this, Chap-
ter 4 looks at the dynamic behavior of models, including definiar stability
and more complicated nonlinear behavior. We provide adz@usections in this
chapter on Lyapunov stability analysis because we find thatiseful in a broad
array of applications and is frequently a topic that is nataduced until later in
one’s studies.

The remaining three chapters of the first half of the book focumear systems,
beginning with a description of input/output behavior inapters. In Chapters,
we formally introduce feedback systems by demonstratingstate space control
laws can be designed. This is followed in Chaptdsy material on output feed-
back and estimators. Chapté&and?7 introduce the key concepts of reachability
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and observability, which give tremendous insight into theice of actuators and
sensors, whether for engineered or natural systems.

The second half of the book presents material that is oftesidered to be
from the field of “classical control.” This includes the tragsfunction, introduced
in Chapter8, which is a fundamental tool for understanding feedbackesys.
Using transfer functions, one can begin to analyze thel#tadi feedback systems
using frequency domain analysis, including the abilitygason about the closed
loop behavior of a system from its open loop characterislibss is the subject of
Chapter9, which revolves around the Nyquist stability criterion.

In Chaptersl0 and 11, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllersdahien on the more general
process of loop shaping. PID control is by far the most comnesigh technique
in control systems and a useful tool for any student. The enamt frequency
domain design introduces many of the ideas of modern cotitealry, including
the sensitivity function. In Chapté2, we combine the results from the second half
of the book to analyze some of the fundamental trade-offgdxen robustness and
performance. This is also a key chapter illustrating the pa@i/the techniques that
have been developed and serving as an introduction for nuwanaed studies.

The book is designed for use in a 10- to 15-week course in fekdbstems
that provides many of the key concepts needed in a varietysofpiines. For a
10-week course, Chaptets2, 4-6 and8-11can each be covered in a week’s time,
with the omission of some topics from the final chapters. A neisurely course,
spread out over 14—15 weeks, could cover the entire boak 2vieeks on modeling
(Chapterg and3)—particularly for students without much background inineaty
differential equations—and 2 weeks on robust performaGtapterl2).

The mathematical prerequisites for the book are modest akdeaping with
our goal of providing an introduction that serves a broadienak. We assume
familiarity with the basic tools of linear algebra, incladi matrices, vectors and
eigenvalues. These are typically covered in a sophomosd-teurse on the sub-
ject, and the textbooks by ApostoApo69, Arnold [Arn87] and Strang $tr8§
can serve as good references. Similarly, we assume basidédgswof differential
eqguations, including the concepts of homogeneous andapkatisolutions for lin-
ear ordinary differential equations in one variable. ApbgApo69 and Boyce and
DiPrima [BDO04] cover this material well. Finally, we also make use of comple
numbers and functions and, in some of the advanced seciioms, detailed con-
cepts in complex variables that are typically covered iméjulevel engineering or
physics course in mathematical methods. Apo#Apid67] or Stewart 5te02 can
be used for the basic material, with AhlfoA{I66], Marsden and HoffmarMIH98]
or Saff and Snider§S02 being good references for the more advanced material.
We have chosen not to include appendices summarizing tlageis topics since
there are a number of good books available.

One additional choice that we felt was important was thedi@cinot to rely
on a knowledge of Laplace transforms in the book. While theé i by far the
most common approach to teaching feedback systems in emgigemany stu-
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dents in the natural and information sciences may lack tbessary mathematical
background. Since Laplace transforms are not required in ssgnéial way, we
have included them only in an advanced section intendecetthiings together
for students with that background. Of course, we make treimes use ofransfer
functions which we introduce through the notion of response to exptalénputs,
an approach we feel is more accessible to a broad array oftistgeand engineers.
For classes in which students have already had Laplace dramsfit should be
quite natural to build on this background in the approprezstetions of the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback gokiemsve grow, respond
to stress and challenge, and regulate factors such as body temperafooel, pressure and
cholesterol level. The mechanisms operate at every level, from thedtiteraf proteins in

cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodsoithe Way Life Works1995 HD95].

In this chapter we provide an introduction to the basic cphoéfeedbackand
the related engineering disciplineadntrol. We focus on both historical and current
examples, with the intention of providing the context forremt tools in feedback
and control. Much of the material in this chapter is adaptedhf[Mur03], and
the authors gratefully acknowledge the contributions aj&drockett and Gunter
Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical systeis a system whose behavior changes over time, oftenin respon
to external stimulation or forcing. The teri@edbackefers to a situation in which
two (or more) dynamical systems are connected together thatreach system
influences the other and their dynamics are thus stronglyledugimple causal
reasoning about a feedback system is difficult because theysstm influences
the second and the second system influences the first, leadicgtolar argument.
This makes reasoning based on cause and effect tricky, amtkitessary to analyze
the systemas awhole. A consequence of thisis that the tudifeedback systems
is often counterintuitive, and it is therefore necessametort to formal methods
to understand them.

Figurel.lillustrates in block diagram form the idea of feedback. Wemlise
the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are inteexbed in a cycle, as
shown in Figurel.1a If we break the interconnection, we refer to the configuratio
as an open loop system, as shown in Figlfda

As the quote at the beginning of this chapter illustratesapnsource of exam-
ples of feedback systems is biology. Biological systemsemese of feedback in an
extraordinary number of ways, on scales ranging from madsaio cells to organ-
isms to ecosystems. One example is the regulation of gluoabe bloodstream
through the production of insulin and glucagon by the paasr&éhe body attempts
to maintain a constant concentration of glucose, which éslixy the body’s cells
to produce energy. When glucose levels rise (after eatingad, for example), the
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= System 1——| System 2 - — System 1, System 2——

Y

(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used aguhefin
system 2, and the output of system 2 becomes the input of system tingr@alosed loop
system. (b) The interconnection between system 2 and system 1 is inaodethe system
is said to be open loop.

hormone insulin is released and causes the body to storesgleose in the liver.
When glucose levels are low, the pancreas secretes the herghacagon, which
has the opposite effect. Referring to Figdr&, we can view the liver as system 1
and the pancreas as system 2. The output from the liver istlcegg concentration
in the blood, and the output from the pancreas is the amounsofin or glucagon
produced. The interplay between insulin and glucagon seasethroughout the
day helps to keep the blood-glucose concentration constaiatbout 90 mg per
100 mL of blood.

An early engineering example of a feedback system is a éegaligovernor,
in which the shaft of a steam engine is connected to a flybalhar@sm that is
itself connected to the throttle of the steam engine, astited in Figurd.2 The
system is designed so that as the speed of the engine ing(pasieaps because of a
lessening of the load on the engine), the flyballs spread apds linkage causes the
throttle on the steam engine to be closed. This in turn slowmsdbe engine, which
causes the flyballs to come back together. We can model thismsyas a closed
loop system by taking system 1 as the steam engine and sysdsiih2 governor.
When properly designed, the flyball governor maintains a teonispeed of the
engine, roughly independent of the loading conditions. Téwrdfugal governor
was an enabler of the successful Watt steam engine, whidhdftlee industrial
revolution.

Feedback has many interesting properties that can be esgblimitdesigning
systems. As in the case of glucose regulation or the flybakgur, feedback can
make a system resilienttoward external influences. It carbalsised to create linear
behavior out of nonlinear components, a common approacleatrenics. More
generally, feedback allows a system to be insensitive lwogixternal disturbances
and to variations in its individual elements.

Feedback has potential disadvantages as well. It can crgadienik instabilities
in a system, causing oscillations or even runaway behasioother drawback,
especially in engineering systems, is that feedback candate unwanted sensor
noise into the system, requiring careful filtering of signétiss for these reasons
that a substantial portion of the study of feedback systerdevoted to developing
an understanding of dynamics and a mastery of techniquegiamngical systems.

Feedback systems are ubiquitous in both natural and engihegstems. Con-
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugahgoven the
left consists of a set of flyballs that spread apart as the speed of gireeeéncreases. The
steam engine on the right uses a centrifugal governor (above andl&gttbéthe flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip THy388].)

trol systems maintain the environment, lighting and poweour buildings and

factories; they regulate the operation of our cars, cons@heetronics and manu-
facturing processes; they enable our transportation andremications systems;
and they are critical elements in our military and spaceesgst For the most part
they are hidden from view, buried within the code of embeduéttoprocessors,
executing their functions accurately and reliably. Feellfas also made it pos-
sible to increase dramatically the precision of instruraesuch as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintainsrthk chemical and
biological conditions through feedback. At the other endhef size scale, global
climate dynamics depend on the feedback interactions legtthe atmosphere, the
oceans, the land and the sun. Ecosystems are filled with exswidfleedback due
to the complex interactions between animal and plant liferEte dynamics of
economies are based on the feedback between individuat®gnarations through
markets and the exchange of goods and services.

1.2 What Is Control?

The termcontrol has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms anddfaeklin engineered
systems. Thus, control includes such examples as feedbaak ilo electronic am-
plifiers, setpoint controllers in chemical and materialscpssing, “fly-by-wire”
systems on aircraft and even router protocols that contaffld flow on the Inter-

net. Emerging applications include high-confidence softwgstems, autonomous
vehicles and robots, real-time resource management systacbiologically en-
gineered systems. At its core, control isiaformationscience and includes the
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external disturbances

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| Clock :
! Y y v |
| D/IA |« Computer AD | Filter |« :
e IContro"er

operator input

Figure 1.3: Components of a computer-controlled system. The upper dasheép@sents
the process dynamics, which include the sensors and actuators in adulitiendynamical
system being controlled. Noise and external disturbances can pertudyilamics of the
process. The controller is shown in the lower dashed box. It consiatfltdr and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a compiltarimplements
the control algorithm. A system clock controls the operation of the contrsij@chronizing
the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

use of information in both analog and digital representetio

A modern controller senses the operation of a system, caspbagainst the
desired behavior, computes corrective actions based ondalnod the system'’s
response to external inputs and actuates the system ta #féedesired change.
This basideedback loopf sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic emsuring that the
dynamics of the closed loop system are stable (boundedilstoes give bounded
errors) and that they have additional desired behaviordghsturbance attenua-
tion, fast responsiveness to changes in operating poujt, Btese properties are
established using a variety of modeling and analysis tegtes that capture the
essential dynamics of the system and permit the explorafipossible behaviors
in the presence of uncertainty, noise and component failure

Atypical example of a control system is shown in Figlir@ The basic elements
of sensing, computation and actuation are clearly seenotfenm control systems,
computation is typically implemented on a digital computequiring the use of
analog-to-digital (A/D) and digital-to-analog (D/A) coenters. Uncertainty enters
the system through noise in sensing and actuation subsystetarnal disturbances
that affect the underlying system operation and uncertgirachics in the system
(parameter errors, unmodeled effects, etc). The algoritiatrcomputes the control
action as a function of the sensor values is often calledrarol law. The system
can be influenced externally by an operator who introdwcgsmand signalfo
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the system.

Control engineering relies on and shares tools from phy&ygeamics and
modeling), computer science (information and software) @perations research
(optimization, probability theory and game theory), buisitalso different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control aeddisiciplines is in
the modeling of physical systems, which is common acrossa#ls of engineering
and science. One of the fundamental differences betweemotaniented mod-
eling and modeling in other disciplines is the way in whictemctions between
subsystems are represented. Control relies on a type dfaypput modeling that
allows many new insights into the behavior of systems, ssatisiurbance attenu-
ation and stable interconnection. Model reduction, whesienpler (lower-fidelity)
description of the dynamics is derived from a high-fidelitydah is also naturally
described in an input/output framework. Perhaps most inaptgt, modeling in a
control context allows the design adbustinterconnections between subsystems,
a feature that is crucial in the operation of all large engiad systems.

Control is also closely associated with computer sciermeeesiirtually all mod-
ern control algorithms for engineering systems are implaegkin software. How-
ever, control algorithms and software can be very diffefearh traditional com-
puter software because of the central role of the dynamit¢keofystem and the
real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. Itsngkessible to design
precise systems from imprecise components and to makearglguantities in a

system change in a prescribed fashion. An unstable systeimecstabilized using

feedback, and the effects of external disturbances candueed. Feedback also
offers new degrees of freedom to a designer by exploitingisgnactuation and

computation. In this section we survey some of the imporggplications and

trends for feedback in the world around us.

Early Technological Examples

The proliferation of control in engineered systems occumeaharily in the latter
half of the 20th century. There are some important exceptsuth as the centrifugal
governor described earlier and the thermostat (Figutg, designed at the turn of
the century to regulate the temperature of buildings.

The thermostat, in particular, is a simple example of feekibantrol that every-
one is familiar with. The device measures the temperaturéinlding, compares
that temperature to a desired setpoint and usefetdtback errobetween the two
to operate the heating plant, e.g., to turn heat on when thpdgture is too low
and to turn it off when the temperature is too high. This exalem captures the
essence of feedback, but it is a bit too simple even for a lbsice such as the
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Movement
opens
throttle

Load
Spring

Accelerator
\ Pedal

Speed-
Adjustment

Knob
Governor

Contacts

Latching
Button
Flyball

Governor Speed-

ometer
Adjustment
Spring

(a) Honeywell thermostat, 1953 (b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T87 thermostat originally intrelim
1953. The thermostat controls whether a heater is turned on by complaerturrent tem-
perature in aroom to a desired value that is set using a dial. (b) Chrysige control system
introduced in the 1958 Chrysler Imperi&¢w5§. A centrifugal governor is used to detect
the speed of the vehicle and actuate the throttle. The reference speedifeedghrough an
adjustment spring. (Left figure courtesy of Honeywell Internatiolmal,)

thermostat. Because lags and delays exist in the heating qut@ sensor, a good
thermostat does a bit of anticipation, turning the heatdvefore the error actually
changes sign. This avoids excessive temperature swingsalugeof the heating
plant. This interplay between the dynamics of the processtandperation of the
controller is a key element in modern control systems design

There are many other control system examples that have gedkelver the
years with progressively increasing levels of sophisiicatAn early system with
broad public exposure was teuise controloption introduced on automobiles in
1958 (see Figuré.4b. Cruise control illustrates the dynamic behavior of ctbse
loop feedback systems in action—the slowdown error as thiesyclimbs a grade,
the gradual reduction of that error due to integral actiothécontroller, the small
overshoot at the top of the climb, etc. Later control systemawomobiles such
as emission controls and fuel-metering systems have aghi@ajor reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major driveteahinological
progress in modern society. Much of the early developmenbafrol was driven
by the generation and distribution of electrical power. tCarns mission critical

for power systems, and there are many control loops in iddalipower stations.
Control is also important for the operation of the whole powetwork since it
is difficult to store energy and it is thus necessary to matchuyction to con-
sumption. Power management is a straightforward regulatiolblem for a system
with one generator and one power consumer, but it is more wliffic a highly
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Figure 1.5: A small portion of the European power network. By 2008 Europeanepow
suppliers will operate a single interconnected network covering a regiomthe Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installedrpeagmore
than 700 GW (7 10 W). (Source: UCTE [www.ucte.org])

distributed system with many generators and long distalpe®geen consumption
and generation. Power demand can change rapidly in an unfakd manner and
combining generators and consumers into large networkesiggossible to share
loads among many suppliers and to average consumption amaimg customers.
Large transcontinental and transnational power systenss thavefore been built,
such as the one show in Figuteb.

Most electricity is distributed by alternating current (Aizcause the transmis-
sion voltage can be changed with small power losses usingftramers. Alternating
current generators can deliver power only if the generat@synchronized to the
voltage variations in the network. This means that the ratbedl generators in a
network must be synchronized. To achieve this with locakdé&alized controllers
and a small amount of interaction is a challenging probleror&igic low-frequency
oscillations between distant regions have been observed vegional power grids
have been interconnecteld\jv05].

Safety and reliability are major concerns in power systemerd may be dis-
turbances due to trees falling down on power lines, liglgrminequipment failures.
There are sophisticated control systems that attempt to tkeegpystem operating
even when there are large disturbances. The control acteanbeto reduce volt-
age, to break up the net into subnets or to switch off linespaveker users. These
safety systems are an essential element of power distsibatistems, but in spite
of all precautions there are occasionally failures in lagrg@er systems. The power
system is thus a nice example of a complicated distributstesywhere control is
executed on many levels and in many different ways.



1.3. FEEDBACK EXAMPLES 8

(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6: Military aerospace systems. (a) The F/A-18 aircraft is one of the ficstyrtion
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAVnhmanned aerial
vehicle is capable of autonomous flight, using inertial measurementrseasd the global
positioning system (GPS) to monitor its position relative to a desired traje¢®tgtographs
courtesy of NASA Dryden Flight Research Center.)

Aerospace and Transportation

In aerospace, control has been a key technological cafyatbdicing back to the
beginning of the 20th century. Indeed, the Wright brotheesaorrectly famous
not for demonstrating simply powered flight kedntrolled powered flight. Their
early Wright Flyer incorporated moving control surfaceg{ieal fins and canards)
and warpable wings that allowed the pilot to regulate theraft's flight. In fact,
the aircraft itself was not stable, so continuous pilot ections were mandatory.
This early example of controlled flight was followed by a fasting success story
of continuous improvements in flight control technology,erating in the high-
performance, highly reliable automatic flight control syssewe see in modern
commercial and military aircraft today (Figuie6).

Similar success stories for control technology have ocduimemany other
application areas. Early World War 1l bombsights and fire cadrdervo systems
have evolved into today’s highly accurate radar-guidedsgamd precision-guided
weapons. Early failure-prone space missions have evoltedadntine launch oper-
ations, manned landings on the moon, permanently mannee sfations, robotic
vehicles roving Mars, orbiting vehicles at the outer plaratd a host of commer-
cial and military satellites serving various surveillanc@mmunication, navigation
and earth observation needs. Cars have advanced from ryatwredd mechani-
cal/pneumatic technology to computer-controlled operatif all major functions,
including fuel injection, emission control, cruise comttaraking and cabin com-
fort.

Current research in aerospace and transportation sysseimgestigating the
application of feedback to higher levels of decision makingluding logical regu-
lation of operating modes, vehicle configurations, paylaadigurations and health
status. These have historically been performed by humarmtmsy but today that
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Figure 1.7: Materials processing. Modern materials are processed underlbacefutrolled
conditions, using reactors such as the metal organic chemical vapositien (MOCVD)
reactor shown on the left, which was for manufacturing supercondyttiin films. Using
lithography, chemical etching, vapor deposition and other techniqoelex devices can
be built, such as the IBM cell processor shown on the right. (MOCVD incagetesy of Bob
Kee. IBM cell processor photograph courtesy Tom Way, IBM Caaion; unauthorized use
not permitted.)

boundary is moving and control systems are increasingipgedn these functions.
Another dramatic trend on the horizon is the use of largeectithns of distributed
entities with local computation, global communicationgeations, little regularity
imposed by the laws of physics and no possibility of impogiagtralized control
actions. Examples of this trend include the national airspa@anagement problem,
automated highway and traffic management and command anicfomtfuture
battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable n@sxyin developing
new materials that are key to our modern society. In additidhe continuing need
to improve product quality, several other factors in thecpss control industry
are drivers for the use of control. Environmental statuteginae to place stricter
limitations on the production of pollutants, forcing thews sophisticated pollution
control devices. Environmental safety considerations Heseto the design of
smaller storage capacities to diminish the risk of majonuical leakage, requiring
tighter control on upstream processes and, in some caggsy ®hains. And large
increases in energy costs have encouraged engineersda gémits that are highly
integrated, coupling many processes that used to opedsapamdently. All of these
trends increase the complexity of these processes andrfioerpance requirements
for the control systems, making control system design esirgly challenging.
Some examples of materials-processing technology are simoigurel.7.

As in many other application areas, new sensor technologyeiating new
opportunities for control. Online sensors—including tabackscattering, video
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microscopy and ultraviolet, infrared and Raman spectimgeeare becoming more
robustand less expensive and are appearing in more mamurf@qbrocesses. Many
of these sensors are already being used by current processlcgystems, but
more sophisticated signal-processing and control teciesigre needed to use more
effectively the real-time information provided by thesesars. Control engineers
also contribute to the design of even better sensors, whietstdll needed, for
example, in the microelectronics industry. As elsewhdre,ahallenge is making
use of the large amounts of data provided by these new seimsars effective
manner. In addition, a control-oriented approach to modeiie essential physics
of the underlying processes is required to understand théafmental limits on
observability of the internal state through sensor data.

Instrumentation

The measurement of physical variables is of prime interestience and engineer-
ing. Consider, for example, an accelerometer, where eatyuiments consisted of
a mass suspended on a spring with a deflection sensor. Theignezisuch an
instrument depends critically on accurate calibratiorhef$pring and the sensor.
There is also a design compromise because a weak spring givesdamsitivity but
low bandwidth.

A different way of measuring acceleration is to tisee feedbackThe spring
is replaced by a voice coil that is controlled so that the mas®ins at a constant
position. The acceleration is proportional to the curremukyh the voice coil. In
such aninstrument, the precision depends entirely on theaiion of the voice coll
and does not depend on the sensor, which is used only as theafdesignal. The
sensitivity/bandwidth compromise is also avoided. This wfysing feedback has
been applied to many different engineering fields and hadtegsin instruments
with dramatically improved performance. Force feedbacil$® used in haptic
devices for manual control.

Another important application of feedback is in instrunagion for biological
systems. Feedback is widely used to measure ion currentdisruseng a device
called avoltage clampwhich is illustrated in Figuré.8 Hodgkin and Huxley used
the voltage clamp to investigate propagation of action midés in the giant axon
of the squid. In 1963 they shared the Nobel Prize in Medicirth #ccles for “their
discoveries concerning the ionic mechanisms involved aitation and inhibition
in the peripheral and central portions of the nerve cell nramé.” A refinement of
the voltage clamp called@atch clampmade it possible to measure exactly when a
single ion channel is opened or closed. This was developeahgiNand Sakmann,
who received the 1991 Nobel Prize in Medicine “for their digades concerning
the function of single ion channels in cells.”

There are many other interesting and useful applicationsatliack in scien-
tific instruments. The development of the mass spectrometar &arly example.
In a 1935 paper, Nier observed that the deflection of ions digpen both the
magnetic and the electric fieldblie35. Instead of keeping both fields constant,
Nier let the magnetic field fluctuate and the electric field wasrotied to keep the
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Figure 1.8: The voltage clamp method for measuring ion currents in cells using fekdha
pipet is used to place an electrode in a cell (left and middle) and maintaiotéetal of the
cell at a fixed level. The internal voltage in the celbisand the voltage of the external fluid
is ve. The feedback system (right) controls the curreirtto the cell so that the voltage drop
across the cell membraner = v; — v is equal to its reference valueo, . The current is
then equal to the ion current.

ratio between the fields constant. Feedback was implemeniegl wvecuum tube
amplifiers. This scheme was crucial for the development of rs&stroscopy.

The Dutch engineer van der Meer invented a clever way to usthésk to
maintain a good-quality high-density beam in a particlesta@ator MPTvdM8(.
The idea is to sense particle displacement at one point incitedexator and apply
a correcting signal at another point. This scheme, catedhastic coolingwas
awarded the Nobel Prize in Physics in 1984. The method was &sdsentthe
successful experiments at CERN where the existence of thelparW and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohrénéardesign
of the scanning tunneling microscope—is another exampdsmafinovative use of
feedback. The key idea is to move a narrow tip on a cantile\eamiacross a surface
and to register the forces on the tiBR86. The deflection of the tip is measured
using tunneling. The tunneling current is used by a feedbgsies to control the
position of the cantilever base so that the tunneling ctiissronstant, an example
of force feedback. The accuracy is so high that individualrstaan be registered.
A map of the atoms is obtained by moving the base of the caatileorizontally.
The performance of the control system is directly reflectederimage quality and
scanning speed. This example is described in additionall detahapter3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulatederi©940s and even before,
has been to implement systems capable of exhibiting highlibfieor “intelligent”
responses to changing circumstances. In 1948 the MIT maitigien Norbert
Wiener gave a widely read account of cybernetitsd4g. A more mathematical
treatment of the elements of engineering cybernetics wesepted by H. S. Tsien
in 1954, driven by problems related to the control of miss[lEsi54]. Together,
these works and others of that time form much of the intali@dbasis for modern
work in robotics and control.

Two accomplishments that demonstrate the successes oflthariethe Mars
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Figure 1.9:Robotic systems. (a) Spirit, one of the two Mars Exploratory Rovers thdethon
Mars in January 2004. (b) The Sony AIBO Entertainment Robot, otfeedirst entertainment
robots to be mass-marketed. Both robots make use of feedback besgresors, actuators and
computation to function in unknown environments. (Photographs cqusfeket Propulsion
Laboratory and Sony Electronics, Inc.)

Exploratory Rovers and entertainment robots such as the SB®® ,Ashown in
Figure1.9. The two Mars Exploratory Rovers, launched by the Jet Propulsio
Laboratory (JPL), maneuvered on the surface of Mars for moredlyaars starting
in January 2004 and sent back pictures and measuremengsraititironment. The
Sony AIBO robot debuted in June 1999 and was the first “ententaim” robot to be
mass-marketed by a major international corporation. ltpeaticularly noteworthy
because of its use of artificial intelligence (Al) technokxjihat allowed it to act in
response to external stimulation and its own judgment. Tigtsdr level of feedback
is a key element in robotics, where issues such as obstauteane, goal seeking,
learning and autonomy are prevalent.

Despite the enormous progress in robotics over the lastcealfury, in many
ways the field is still in its infancy. Today’s robots still ek simple behaviors
compared with humans, and their ability to locomote, intetrgomplex sensory
inputs, perform higher-level reasoning and cooperatetb@gen teams is limited.
Indeed, much of Wiener’s vision for robotics and intelligenachines remains
unrealized. While advances are needed in many fields to achiesy vision—
including advances in sensing, actuation and energy sertige opportunity to
combine the advances of the Al community in planning, adaptand learning
with the techniques in the control community for modelingglgsis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning mamgstancluding con-

gestion control, routing, data caching and power managerSemeral features of
these control problems make them very challenging. The damifeature is the
extremely large scale of the system; the Internet is probthig largest feedback
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Figure 1.10: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of cong(tter 1), which in turn
collect information from other computers (tiers 2 and 3). The individealer shown in (b)

has a set of reference parameters set by a (human) system opweititdeedback used to
maintain the operation of the system in the presence of uncertainty. (Badéellerstein et

al. [HDPTO04.)

control system humans have ever built. Another is the deaiered nature of the
control problem: decisions must be made quickly and baskaboriocal informa-
tion. Stability is complicated by the presence of varyingdilags, as information
about the network state can be observed or relayed to clamgronly after a delay,
and the effect of a local control action can be felt throudtloe network only after
substantial delay. Uncertainty and variation in the nekwthrough network topol-
ogy, transmission channel characteristics, traffic demawdeaailable resources,
may change constantly and unpredictably. Other comptigagsues are the diverse
traffic characteristics—in terms of arrival statistics attihe packet and flow time
scales—and the different requirements for quality of sertihat the network must
support.

Related to the control of networks is control of the serviad sit on these net-
works. Computers are key components of the systems of uteb servers and
database servers used for communication, electronic cocemadvertising and
information storage. While hardware costs for computingehdecreased dramati-
cally, the cost of operating these systems has increasedibeof the difficulty in
managing and maintaining these complex interconnectadrsgs The situation is
similar to the early phases of process control when feedwasKirst introduced to
control industrial processes. As in process control, theeeinteresting possibili-
ties for increasing performance and decreasing costs byiagpeedback. Several
promising uses of feedback in the operation of computeesystare described in
the book by Hellerstein et alHDPTO04.

A typical example of a multilayer system for e-commerce ievah in Fig-
urel.10a The system has several tiers of servers. The edge servetasuEpn-
ing requests and routes them to the HTTP server tier where tieegassed and
distributed to the application servers. The processingiftarént requests can vary
widely, and the application servers may also access extsemeers managed by
other organizations.

Control of an individual server in a layer is illustrated irgire1.10h A quan-
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tity representing the quality of service or cost of operatiesuch as response time,
throughput, service rate or memory usage—is measured totheuter. The con-
trol variables might represent incoming messages acceptiedities in the oper-
ating system or memory allocation. The feedback loop thesngits to maintain
quality-of-service variables within a target range of esu

Economics

The economy is a large, dynamical system with many actorergovents, orga-
nizations, companies and individuals. Governments cbtiteoeconomy through
laws and taxes, the central banks by setting interest rates@mpanies by setting
prices and making investments. Individuals control theneaay through purchases,
savings and investments. Many efforts have been made tolriwdsystem both
at the macro level and at the micro level, but this modelirgjffecult because the
system is strongly influenced by the behaviors of the diffeaetors in the system.

Keynes Key36 developed a simple model to understand relations amorgsgro
national product, investment, consumption and governspariding. One of Keynes’
observations was that under certain conditions, e.g.nduhie 1930s depression,
an increase in the investment of government spending ceattitb a larger increase
in the gross national product. This idea was used by sevevargments to try to
alleviate the depression. Keynes' ideas can be capturedsbhyde model that is
discussed in Exercis24.

A perspective on the modeling and control of economic systeam be obtained
from the work of some economists who have received the S\&Rgesbank Prize
in Economics in Memory of Alfred Nobel, popularly called thelbél Prize in
Economics. Paul A. Samuelson received the prize in 1970 fersdentific work
through which he has developed static and dynamic econdmeary and actively
contributed to raising the level of analysis in economiesce.” Lawrence Klein
received the prize in 1980 for the development of large dyoalhmodels with
many parameters that were fitted to historical d&&%5], e.g., a model of the
U.S. economy in the period 1929-1952. Other researchersadeled other
countries and other periods. In 1997 Myron Scholes sharegrihe with Robert
Merton for a new method to determine the value of derivatid®y ingredient was
a dynamic model of the variation of stock prices that is wydeded by banks and
investment companies. In 2004 Finn E. Kydland and Edward C. ¢atesthared
the economics prize “for their contributions to dynamic ne@conomics: the time
consistency of economic policy and the driving forces beéMtdnsiness cycles,” a
topic that is clearly related to dynamics and control.

One of the reasons why it is difficult to model economic systesribat there
are no conservation laws. A typical example is that the valua company as
expressed by its stock can change rapidly and erraticalbreTare, however, some
areas with conservation laws that permit accurate modefdmg example is the
flow of products from a manufacturer to a retailer as illugtdah Figurel.11 The
products are physical quantities that obey a conservatigrend the system can be
modeled by accounting for the number of products in the diffeinventories. There
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Figure 1.11: Supply chain dynamics (after Forrest&of61]). Products flow from the pro-
ducer to the customer through distributors and retailers as indicated bylithéres. There
are typically many factories and warehouses and even more distribntbrstailers. Multiple
feedback loops are present as each agent tries to maintain the pragreoity level.

are considerable economic benefits in controlling supplynshso that products
are available to customers while minimizing products tmatia storage. The real
problems are more complicated than indicated in the figurausexthere may be
many different products, there may be different factories tre geographically
distributed and the factories may require raw material bassemblies.

Control of supply chains was proposed by Forrester in 186161 and is now
growing in importance. Considerable economic benefits cavbbened by using
models to minimize inventories. Their use accelerated diiaaily when infor-
mation technology was applied to predict sales, keep trapkaglucts and enable
just-in-time manufacturing. Supply chain management hasitoited significantly
to the growing success of global distributors.

Advertising on the Internet is an emerging application afteal. With network-
based advertising it is easy to measure the effect of differarketing strategies
quickly. The response of customers can then be modeled, adtdek strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understandggregate behavior
in complex large-scale systems. This behavior emerges fnenmteraction of a

multitude of simpler systems with intricate patterns obimhation flow. Repre-

sentative examples can be found in fields ranging from embgyadio seismology.

Researchers who specialize in the study of specific compkrisys often develop
an intuitive emphasis on analyzing the role of feedback iiterconnection) in

facilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domauarts for the
analysis of various complex systems, the development @faaus methodology
that can discover and exploit common features and esseratAkematical structure
is just beginning to emerge. Advances in science and teobgalre creating a new
understanding of the underlying dynamics and the impogahteedback in awide
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Figure 1.12: The wiring diagram of the growth-signaling circuitry of the mammalian
cell [HWO0Q]. The major pathways that are thought to play a role in cancer are indicate
in the diagram. Lines represent interactions between genes and piioté¢irescell. Lines
ending in arrowheads indicate activation of the given gene or pathwass énding in a
T-shaped head indicate repression. (Used with permission of Elsadieard the authors.)

variety of natural and technological systems. We briefly jgith three application
areas here.

Biological Systemg\ major theme currently of interest to the biology commu-
nity is the science of reverse (and eventually forward) eegiing of biological
control networks such as the one shown in FigluE2 There are a wide variety
of biological phenomena that provide a rich source of exaspf control, includ-
ing gene regulation and signal transduction; hormonal,umafogical and cardio-
vascular feedback mechanisms; muscular control and lotomactive sensing,
vision and proprioception; attention and consciousness papulation dynamics
and epidemics. Each of these (and many more) provide oppiesito figure out
what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the fratjuse of positive feed-
back to shape the dynamics of the system. Positive feedbadecased to create
switchlike behavior through autoregulation of a gene, amm¢ate oscillations such
as those present in the cell cycle, central pattern gernsrataircadian rhythm.

Ecosystemsdn contrast to individual cells and organisms, emergenp@ries
of aggregations and ecosystems inherently reflect seletig@mmanisms that act on
multiple levels, and primarily on scales well below that lné system as a whole.
Because ecosystems are complex, multiscale dynamicansgsthey provide a
broad range of new challenges for the modeling and analy$&edback systems.
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Recentexperience in applying tools from control and dycahsystems to bacterial
networks suggests that much of the complexity of these n&swvs due to the
presence of multiple layers of feedback loops that prov®ist functionality
to the individual cell. Yet in other instances, events at ¢b# level benefit the
colony at the expense of the individual. Systems level aisatyen be applied to
ecosystems with the goal of understanding the robustnesscbfsystems and the
extent to which decisions and events affecting individy&lcses contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Sciencé.is now indisputable that human activities have altered
the environment on a global scale. Problems of enormous @xityplchallenge
researchers in this area, and first among these is to undes@rfieedback sys-
tems that operate on the global scale. One of the challengis/eloping such an
understanding is the multiscale nature of the problem, détiailed understanding
of the dynamics of microscale phenomena such as microbazbgrganisms be-
ing a necessary component of understanding global pheraysech as the carbon
cycle.

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is usatsiadly in natural
and technological systems. The principle of feedback is leinfgase correcting
actions on the difference between desired and actual peafuze. In engineering,
feedback has been rediscovered and patented many timesyrdiffarent contexts.
The use of feedback has often resulted in vast improvemesigsiem capability,
and these improvements have sometimes been revolutiasdiscussed above.
The reason for this is that feedback has some truly remarkabfeerties. In this
section we will discuss some of the properties of feedbaakdhn be understood
intuitively. This intuition will be formalized in subsequiechapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness tertaicty. By mea-
suring the difference between the sensed value of a regudaral and its desired
value, we can supply a corrective action. If the system wgwks some change that
affects the regulated signal, then we sense this changenatalforce the system
back to the desired operating point. This is precisely thecethat Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feellsgstem shown in
Figurel.13 In this system, the speed of a vehicle is controlled by ditigshe
amount of gas flowing to the engine. Simpportional-integral(P1) feedback
is used to make the amount of gas depend on both the error déretive current
and the desired speed and the integral of that error. The plthe right shows
the results of this feedback for a step change in the degreeidsand a variety of
different masses for the car, which might result from hawardjfferent number of
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the blockaliag
on the left, the speed of the vehicle is measured and compared to theldgsiesl within the
“Compute” block. Based on the difference in the actual and desiregtispéhe throttle (or
brake) is used to modify the force applied to the vehicle by the enginetcain and wheels.
The figure on the right shows the response of the control system to maoded change in
speed from 25 m/s to 30 m/s. The three different curves correspdiffitoing masses of the
vehicle, between 1000 and 3000 kg, demonstrating the robustnessotdsled loop system
to a very large change in the vehicle characteristics.

passengers or towing a trailer. Notice that independetigofrtass (which varies by
a factor of 3!), the steady-state speed of the vehicle ahappsoaches the desired
speed and achieves that speed within approximately 5 s. Tibysetrformance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide rolass is the nega-
tive feedback amplifier. When telephone communications \developed, ampli-
fiers were used to compensate for signal attenuation in loweg.liA vacuum tube
was a component that could be used to build amplifiers. Distodaused by the
nonlinear characteristics of the tube amplifier togethehaimnplifier drift were
obstacles that prevented the development of line amplifeera fong time. A ma-
jor breakthrough was the invention of the feedback amplifiet927 by Harold S.
Black, an electrical engineer at Bell Telephone Laborasoi¢ack usedegative
feedbackwhich reduces the gain but makes the amplifier insensitivatiations
in tube characteristics. This invention made it possibleuibdbstable amplifiers
with linear characteristics despite the nonlinearitiethefvacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a systbrough feed-
back, we can alter the behavior of a system to meet the neeals application:
systems that are unstable can be stabilized, systems éslugigish can be made
responsive and systems that have drifting operating poisbe held constant.
Control theory provides a rich collection of techniquesnalsize the stability and
dynamic response of complex systems and to place bounde deltavior of such
systems by analyzing the gains of linear and nonlinear opexthat describe their
components.

An example of the use of control in the design of dynamics cofren the area
of flight control. The following quote, from a lecture presehtey Wilbur Wright
to the Western Society of Engineers in 19McF53), illustrates the role of control
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in the development of the airplane:

Men already know how to construct wings or airplanes, whittem
driven through the air at sufficient speed, will not only sirsthe
weight of the wings themselves, but also that of the engind, &t
the engineer as well. Men also know how to build engines arehsc

of sufficient lightness and power to drive these planes aasusy
speed ... Inability to balance and steer still confrontsletiis of the
flying problem ... When this one feature has been worked ost, th
age of flying will have arrived, for all other difficulties are ofinor
importance.

The Wright brothers thus realized that control was a key iss@mable flight.
They resolved the compromise between stability and manahiligy by building
an airplane, the Wright Flyer, that was unstable but maneiner The Flyer had
a rudder in the front of the airplane, which made the plang waneuverable. A
disadvantage was the necessity for the pilot to keep adg#tie rudder to fly the
plane: if the pilot let go of the stick, the plane would craétther early aviators
tried to build stable airplanes. These would have been e@sflyt but because of
their poor maneuverability they could not be brought up thair. By using their
insight and skillful experiments the Wright brothers mduefirst successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, therg stiaong motiva-
tion to find a mechanism that would stabilize an aircraft. Sudénvace, invented by
Sperry, was based on the concept of feedback. Sperry used-atggitized pendu-
lum to provide an indication of the vertical. He then arrashgéeedback mechanism
that would pull the stick to make the plane go up if it was pioigidown, and vice
versa. The Sperry autopilot was the first use of feedback in aatimal engineer-
ing, and Sperry won a prize in a competition for the safestamgin Paris in 1914.
Figure1l.14shows the Curtiss seaplane and the Sperry autopilot. Theiknitisp
a good example of how feedback can be used to stabilize aahlestystem and
hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of imedéyvthat it
allows for increased modularity in the overall system desBy using feedback
to create a system whose response matches a desired profitgnwieide the
complexity and variability that may be present inside a gatesn. This allows us
to create more complex systems by not having to simultargturee the responses
of a large number of interacting components. This was oneeatlvantages of
Black’s use of negative feedback in vacuum tube amplifiersrésulting device
had a well-defined linear input/output response that did epédd on the individual
characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to kigkvels of situational
awareness and decision making. This includes not only toadit logical branch-
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a sdbof
gyros coupled to a set of air valves that controlled the wing surfaces19h2 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able iataalevel
flight as a mechanic walked on the wing (rightjg93.

ing based on system conditions but also optimization, adi@pt, learning and even
higher levels of abstract reasoning. These problems aresiddmain of the arti-
ficial intelligence community, with an increasing role of @ynics, robustness and
interconnection in many applications.

One ofthe interesting areas of research in higher levels@$tn is autonomous
control of cars. Early experiments with autonomous drivirgrevperformed by
Ernst Dickmanns, who in the 1980s equipped cars with camemd®other sen-
sors Pic07]. In 1994 his group demonstrated autonomous driving witiman su-
pervision on a highway near Paris and in 1995 one of his cargedtutonomously
(with human supervision) from Munich to Copenhagen at spaddup to 175
km/hour. The car was able to overtake other vehicles and ehiamngs automati-
cally.

This application area has been recently explored througib&RPA Grand
Challenge, a series of competitions sponsored by the U.&rgment to build ve-
hicles that can autonomously drive themselves in desertigmah environments.
Caltech competed in the 2005 and 2007 Grand Challengesasioglified Ford E-
350 offroad van nicknamed “Alice.” It was fully automatewiciuding electronically
controlled steering, throttle, brakes, transmission gnition. Its sensing systems
included multiple video cameras scanning at 10-30 Hz, aklager ranging units
scanning at 10 Hz and an inertial navigation package capdpl®viding position
and orientation estimates at 5 ms temporal resolution. @oatipnal resources in-
cluded 12 high-speed servers connected together througbtdsiEthernet switch.
The vehicle is shown in Figurg.15 along with a block diagram of its control
architecture.

The software and hardware infrastructure that was develepatled the ve-
hicle to traverse long distances at substantial speedsstimg, Alice drove itself
more than 500 km in the Mojave Desert of California, with tb#ity to follow dirt
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Figure 1.15:DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 ar@i720
competitions and its networked control architect @&{G+06. The feedback system fuses
data from terrain sensors (cameras and laser range finders) toihetex digital elevation
map. This map is used to compute the vehicle’s potential speed over thatemnd an
optimization-based path planner then commands a trajectory for the véhifddow. A
supervisory control module performs higher-level tasks suchradling sensor and actuator
failures.

roads and trails (if present) and avoid obstacles alongatte Speeds of more than
50 km/h were obtained in the fully autonomous mode. Subsitiamting of the al-
gorithms was done during desert testing, in part because dditk of systems-level
design tools for systems of this level of complexity. Othempetitors in the race
(including Stanford, which won the 2005 competition) usepbathms for adaptive
control and learning, increasing the capabilities of tisggtems in unknown en-
vironments. Together, the competitors in the Grand Chgéetemonstrated some
of the capabilities of the next generation of control systamd highlighted many
research directions in control at higher levels of decisiaking.

Drawbacks of Feedback

While feedback has many advantages, it also has some drisvi@@isief among
these is the possibility of instability if the system is na&s@yned properly. We
are all familiar with the effects opositive feedbackvhen the amplification on
a microphone is turned up too high in a room. This is an exampfeeaxslback
instability, something that we obviously want to avoid. Tisigricky because we
must design the system not only to be stable under nominaiwomns but also to
remain stable under all possible perturbations of the dyceam

In addition to the potential for instability, feedback imaetly couples different
parts of a system. One common problem is that feedback aifjects measurement
noise into the system. Measurements must be carefully fil®sehat the actuation
and process dynamics do not respond to them, while at thetsamensuring that
the measurement signal from the sensor is properly couptedthe closed loop
dynamics (so that the proper levels of performance are aethje

Another potential drawback of control is the complexity ofteedding a control
system in a product. While the cost of sensing, computatimhegtuation has de-
creased dramatically in the past few decades, the fact narttzat control systems
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are often complicated, and hence one must carefully baléeamsts and benefits.
An early engineering example of this is the use of micropseoe-based feedback
systems in automobiles.The use of microprocessors in atit@rapplications be-
gan in the early 1970s and was driven by increasingly strigsgions standards,
which could be met only through electronic controls. Earlsteyns were expensive
and failed more often than desired, leading to frequenbeost dissatisfaction. It
was only through aggressive improvements in technology ttteaperformance,
reliability and cost of these systems allowed them to be usadransparent fash-
ion. Even today, the complexity of these systems is such thaifficult for an
individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before coreeatitions are taken.
However, in some circumstances it is possible to measurstardance before it
enters the system, and this information can then be used¢actarective action
before the disturbance has influenced the system. The efféloe afisturbance is
thus reduced by measuring it and generating a control sipahlcounteracts it.
This way of controlling a system is calléeledforward Feedforward is particularly
useful in shaping the response to command signals becaoseamd signals are
always available. Since feedforward attempts to match tgmeds, it requires good
process models; otherwise the corrections may have theygine or may be badly
timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward artwgoas to a market-
based economy versus a planned economy. In business, areadf strategy
corresponds to running a company based on extensive stralagning, while a
feedback strategy corresponds to a reactive approacholioglyi feedforward has
been suggested as an essential element for motion contrahians that is tuned
during training. Experience indicates that it is often adageous to combine feed-
back and feedforward, and the correct balance requireghihand understanding
of their respective properties.

Positive Feedback

In most of this text, we will consider the role akgative feedbachkn which we
attempt to regulate the system by reacting to disturbamcasnay that decreases
the effect of those disturbances. In some systems, paatlgudiological systems,
positive feedbackan play an important role. In a system with positive feetbac
the increase in some variable or signal leads to a situatiavhich that quantity
is further increased through its dynamics. This has a déiialyi effect and is
usually accompanied by a saturation that limits the grothequantity. Although
often considered undesirable, this behavior is used irgiohl (and engineering)
systems to obtain a very fast response to a condition orlsigna

One example of the use of positive feedback is to create lsingcbehavior,
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Figure 1.16: Input/output characteristics of on-off controllers. Each plot showsnieat on
the horizontal axis and the corresponding output on the vertical axial toh-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (@fe that for on-off
control with hysteresis, the output depends on the value of past inputs.

in which a system maintains a given state until some inpussa® a threshold.
Hysteresis is often present so that noisy inputs near tlesliotd do not cause the
system to jitter. This type of behavior is callbdtability and is often associated
with memory devices.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on fiieeettice between
the desired and the actual values of a quantity can be implesdé many different
ways. The benefits of feedback can be obtained by very simpdbée laws such
as on-off control, proportional control and proportioiaiegral-derivative control.
In this section we provide a brief preview of some of the tepiat will be studied
more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

ife>0
uz[umax if e >

11

where thecontrol error e=r — y is the difference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figurel.16ashows the relation between error and control. This contvoltaplies
that maximum corrective action is always used.

The feedback in equatiord (1) is calledon-off control One of its chief advan-
tages is that it is simple and there are no parameters to eh@osoff control often
succeeds in keeping the process variable close to the mefersuch as the use of
a simple thermostat to maintain the temperature of a rootgpitally results in
a system where the controlled variables oscillate, whialften acceptable if the
oscillation is sufficiently small.

Notice that in equationl(1) the control variable is not defined when the error
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is zero. It is common to make modifications by introducing esith dead zone or
hysteresis (see Figufel6bandl1.169.

PID Control

The reason why on-off control often gives rise to oscillasios that the system
overreacts since a small change in the error makes the edtvatiable change over
the fullrange. This effect is avoidedpmoportional contro] where the characteristic
of the controller is proportional to the control error for @lirerrors. This can be
achieved with the control law

Umax If € > €max
Umin if e < €min,

wherek, is the controller gaingmin = Umin/Kp andeémax = Umax/ Kp. The interval
(emin, €max) IS called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=Kkp(r —y) =kpe if emin < €< emax (1.3)

While avastimprovement over on-off control, proportiocahtrol has the draw-
back that the process variable often deviates from itseafas value. In particular,
if some level of control signal is required for the system &imbain a desired value,
then we must have # 0 in order to generate the requisite input.

This can be avoided by making the control action proportitm#ie integral of
the error:

t
u(t) = ki/o e(r)dr. (1.4)

This control form is calledntegral control andk; is the integral gain. It can be
shown through simple arguments that a controller with irgkegction has zero
steady-state error (Exerci&eb). The catch is that there may not always be a steady
state because the system may be oscillating.

An additional refinement is to provide the controller with anticipative abil-
ity by using a prediction of the error. A simple predictiongisen by the linear
extrapolation

de(t)

dt °
which predicts the errofy time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be egpeel mathematically as
! de(t
u(t) = kpe(t) + ki / e(r)dr + kd%.
0
The control action is thus a sum of three terms: the past aggepted by the

integral of the error, the present as represented by theogtiopal term and the
future as represented by a linear extrapolation of the d€ther derivative term).

E(t + Td) ~ E(t) + Ty

(1.5)
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Figure 1.17: Action of a PID controller. At time, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedbaelsed on the integral

of the error up to time (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of changiefrror. Ty
represents the approximate amount of time in which the error is projemtedrd (see text).

This form of feedback is called@oportional-integral-derivative (PID) controller
and its action is illustrated in Figute17.

A PID controller is very useful and is capable of solving a widege of con-
trol problems. More than 95% of all industrial control preivis are solved by
PID control, although many of these controllers are actyaityportional-integral
(PI) controllersbecause derivative action is often not includBd/02]. There are
also more advanced controllers, which differ from PID colters by using more
sophisticated methods for prediction.

1.6 Further Reading

The material in this section draws heavily from the reporthef Panel on Future
Directions on Control, Dynamics and Systervf03]. Several additional papers
and reports have highlighted the successes of coni{8Bf] and new vistas in
control [Bro0O, Kum01, Wis07]. The early development of control is described
by Mayr [May7Q and in the books by BennetBgn79 Ben93, which cover the
period 1800—1955. A fascinating examination of some of dréyéhistory of con-
trol in the United States has been written by Mind&ifn02]. A popular book
that describes many control concepts across a wide rangsaplihes isOut of
Control by Kelly [Kel94]. There are many textbooks available that describe con-
trol systems in the context of specific disciplines. For eagis, the textbooks by
Franklin, Powell and Emami-NaeirfFPENO3, Dorf and Bishop PB04], Kuo and
Golnaraghi KG02] and Seborg, Edgar and MellichanEMO04 are widely used.
More mathematically oriented treatments of control theocjude Sontag$on98g
and Lewis Lew03. The book by Hellerstein et alHDPT04 provides a description
of the use of feedback control in computing systems. A nurableooks look at the
role of dynamics and feedback in biological systems, indgdvilhorn [Mil66]
(now out of print), J. D. MurrayMur04] and Ellner and GuckenheimeEG0S.
The book by Fradkovifra07 and the tutorial article by Bechhoefdd¢c0g cover
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many specific topics of interest to the physics community.

Exercises

1.1(Eye motion) Perform the following experiment and explainiy@sults: Hold-
ing your head still, move one of your hands left and right onfrof your face,
following it with your eyes. Record how quickly you can moveuy hand before
you begin to lose track of it. Now hold your hand still and shgkur head left to
right, once again recording how quickly you can move befosing track of your
hand.

1.2 Identify five feedback systems that you encounter in youryalagr environ-
ment. For each system, identify the sensing mechanismatimiumechanism and
control law. Describe the uncertainty with respect to whioh feedback system
provides robustness and/or the dynamics that are changadyththe use of feed-
back.

1.3(Balance systems) Balance yourself on one foot with yous el@sed for 15 s.
Using Figurel.3as a guide, describe the control system responsible foi@gpu
from falling down. Note that the “controller” will differ fsm that in the diagram
(unless you are an android reading this in the far future).

1.4(Cruise control) Download the MATLAB code used to produce dations for
the cruise control system in Figutel3from the companion web site. Using trial
and error, change the parameters of the control law so thaiwbrshoot in speed
is not more than 1 m/s for a vehicle with mams= 1000 kg.

1.5(Integral action) We say that a system with a constant ingarthmes steady state
if the output of the system approaches a constant value asroreases. Show that
a controller with integral action, such as those given inagigms (.4) and (.5),
gives zero error if the closed loop system reaches steatty sta

1.6 Search the web and pick an article in the popular press abagdiéck and
control system. Describe the feedback system using therelogy given in the
article. In particular, identify the control system and ciédse (a) the underlying
process or system being controlled, along with the (b) sefspactuator and (d)
computational element. If the some of the information isawvatilable in the article,
indicate this and take a guess at what might have been used.



Chapter Two
System Modeling

... | asked Fermi whether he was not impressed by the agreemawtdre our calculated
numbers and his measured numbers. He replied, “How many arbifrargmeters did you use
for your calculations?” | thought for a moment about our cut-off prdaees and said, “Four.”
He said, “I remember my friend Johnny von Neumann used to say, witp&oameters | can
fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953Dys04.

A modelis a precise representation of a system’s dynaméesstasanswer ques-
tions via analysis and simulation. The model we choose depemdhe questions
we wish to answer, and so there may be multiple models forggesitynamical sys-
tem, with different levels of fidelity depending on the phemom of interest. In this
chapter we provide an introduction to the concept of modedind present some
basic material on two specific methods commonly used in fesdhad control
systems: differential equations and difference equations

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicahformation
system. Models allow us to reason about a system and makéetwad about
how a system will behave. In this text, we will mainly be irgsted in models of
dynamical systems describing the input/output behavi@ystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which theceffef actions
do not occur immediately. For example, the velocity of a caesinot change
immediately when the gas pedal is pushed nor does the tetapeiaa room rise
instantaneously when a heater is switched on. Similarlyad&ehe does not vanish
right after an aspirin is taken, requiring time for it to tak#ect. In business systems,
increased funding for a development project does not isereavenues in the short
term, although it may do so in the long term (if it was a goodestment). All
of these are examples of dynamical systems, in which thevibmhaf the system
evolves with time.

In the remainder of this section we provide an overview of safthe key
concepts in modeling. The mathematical details introduesd are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the massiteden
by g, with g = 0 corresponding to the rest position of the spring. The forces on the anas
generated by a linear spring with spring constaand a damper with force dependent on the
velocity g.

The Heritage of Mechanics

The study of dynamics originated in attempts to describegtéag motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plansdsild be well described
by ellipses. Newton embarked on an ambitious program tatexplain why the
planets move in ellipses, and he found that the motion coeléxplained by his
law of gravitation and the formula stating that force equadss times acceleration.
In the process he also invented calculus and differentizhgons.

One of the triumphs of Newton’s mechanics was the obsenvétiat the motion
of the planets could be predicted based on the current positind velocities of
all planets. It was not necessary to know the past motion stdteof a dynamical
system is a collection of variables that completely chamdmts the motion of a
system for the purpose of predicting future motion. For @esysof planets the
state is simply the positions and the velocities of the gan&e call the set of all
possible states thstate space

A common class of mathematical models for dynamical systesnesdinary
differential equations (ODES). In mechanics, one of the &stsuch differential
equations is that of a spring—mass system with damping:

mg + c(q) + kg = 0. (2.2)

This system is illustrated in Figug&l The variableg € R represents the position
of the massn with respect to its rest position. We use the notatjdo denote the
derivative ofg with respect to time (i.e., the velocity of the mass) grid represent
the second derivative (acceleration). The spring is assuonsatisfy Hooke’s law,
which says that the force is proportional to the displacenigme friction element
(damper) is taken as a nonlinear functioiq), which can model effects such as
stiction and viscous drag. The positigand velocityg represent the instantaneous
state of the system. We say that this system s&eond-order systeince the
dynamics depend on the first two derivativesjof

The evolution of the position and velocity can be describaxgusither a time
plot or a phase portrait, both of which are shown in Fig2u2 Thetime plot on



2.1. MODELING CONCEPTS 29

2 T
— Position
- — - Velocity |

Positiong [m], velocity g [m/s]
o
|
1
[
Velocity g [m/s]

0 5 10 15 -1 -05 0 0.5 1
Timet [s] Positiong [m]

Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statiiaction of
time. The plot on the right shows the evolution of the states relative to eaeh wtith the
velocity of the state denoted by arrows.

the left, shows the values of the individual states as a fondf time. Thephase
portrait, on the right, shows theector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in theestpaice. In addition,
we have superimposed the traces of some of the states frégnedif conditions.
The phase portrait gives a strong intuitive representatitimeoequation as a vector
field or a flow. While systems of second order (two states) carepeesented in
this way, unfortunately it is difficult to visualize equat®nof higher order using
this approach.

The differential equation2(1) is called anautonomousystem because there
are no external influences. Such a model is natural for use @st&l mechanics
because it is difficult to influence the motion of the planetanbmy examples, it
is useful to model the effects of external disturbances atrotled forces on the
system. One way to capture this is to replace equagdb) by

mg + ¢(q) + kg =u, (2.2)

whereu represents the effect of external inputs. The mo#4) (s called aforced

or controlled differential equatianit implies that the rate of change of the state
can be influenced by the inputt). Adding the input makes the model richer and
allows new questions to be posed. For example, we can exammatinfluence
external disturbances have on the trajectories of a systenin the case where
the input variable is something that can be modulated in &ralbed way, we can
analyze whether it is possible to “steer” the system frompmiet in the state space
to another through proper choice of the input.

The Heritage of Electrical Engineering

Adifferent view of dynamics emerged from electrical engineg, where the design
of electronic amplifiers led to a focus on input/output bebavA system was
considered a device that transforms inputs to outputs|uesriited in Figure.3.
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthemight is its
representation as a block diagram.

Conceptually an input/output model can be viewed as a géoie tof inputs and
outputs. Given an input signalt) over some interval of time, the model should
produce the resulting outpytt).

The input/output framework is used in many engineering dises since it
allows us to decompose a system into individual componesrtisected through
their inputs and outputs. Thus, we can take a complicate@rmsystich as a radio
or a television and break it down into manageable pieces aadine receiver,
demodulator, amplifier and speakers. Each of these piecesde©ainputs and
outputs and, through proper design, these components caridoeonnected to
form the entire system.

The input/output view is particularly useful for the spedass oflinear time-
invariant systemsT his term will be defined more carefully later in this chapiber,
roughly speaking a system is linear if the superpositioritaxh) of two inputs
yields an output that is the sum of the outputs that wouldespond to individual
inputs being applied separately. A system is time-invaiifathe output response
for a given input does not depend on when that input is applied

Many electrical engineering systems can be modeled byrli@e-invariant
systems, and hence a large number of tools have been dede¢topralyze them.
One such tool is thetep responsewnhich describes the relationship between an
input that changes from zero to a constant value abruptlye@ isput) and the
corresponding output. As we shall see later in the text, thp esponse is very
useful in characterizing the performance of a dynamicdksgsand it is often used
to specify the desired dynamics. A sample step responsevasim Figure2.4a

Another way to describe a linear time-invariant system iefiresent it by its
response to sinusoidal input signals. This is calledftbguency responsend a
rich, powerful theory with many concepts and strong, usefslilts has emerged.
The results are based on the theory of complex variables arlddeapyansforms.
The basic idea behind frequency response is that we can catypdbaracterize
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Figure 2.4: Input/output response of a linear system. The step response (& gimautput
of the system due to an input that changes from 0 to 1 at time 5 s. The frequency
response (b) shows the amplitude gain and phase change due to ésihnpat at different
frequencies.

the behavior of a system by its steady-state response teadal inputs. Roughly
speaking, this is done by decomposing any arbitrary sigrtal a linear combi-
nation of sinusoids (e.g., by using the Fourier transforng #nen using linearity
to compute the output by combining the response to the iddalifrequencies. A
sample frequency response is shown in Figlidd

The input/output view lends itself naturally to experimémtatermination of
system dynamics, where a system is characterized by regpitdi response to
particular inputs, e.g., a step or a set of sinusoids ovengeraf frequencies.

The Control View

When control theory emerged as a discipline in the 1940safipgoach to dy-
namics was strongly influenced by the electrical enginedjimgut/output) view.
A second wave of developments in control, starting in the 1850s, was inspired
by mechanics, where the state space perspective was useeméhgence of space
flight is a typical example, where precise control of the odjia spacecraft is
essential. These two points of view gradually merged intotuwétoday the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors dixingtimore general
forms of equations. In control, the model given by equatg)(was replaced by

dx

a = f(X, U), y= h(X, U), (23)
wherex is a vector of state variables,is a vector of control signals arglis a
vector of measurements. The ted/dt represents the derivative pwith respect
to time, now considered a vector, afdndh are (possibly nonlinear) mappings of

their arguments to vectors of the appropriate dimensionntechanical systems,
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the state consists of the position and velocity of the sysserthatx = (q, q) in the
case of adamped spring—mass system. Note thatin the cfamtrallation we model
dynamics as first-order differential equations, but we vé# shat this can capture
the dynamics of higher-order differential equations byrappate definition of the
state and the mapk andh.

Adding inputs and outputs has increased the richness ofdlsical problems
and led to many new concepts. For example, it is natural taf pelssible states
can be reached with the proper choicei¢feachability) and if the measurement
contains enough information to reconstruct the state (@hbéity). These topics
will be addressed in greater detail in Chaptend?7.

A final development in building the control point of view wag thmergence of
disturbances and model uncertainty as critical elementsariheory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals cannot be predicted precisehore realistic ap-
proach is to model disturbances as random signals. This viedvgives a natural
connection between prediction and control. The dual viewsmit/output repre-
sentations and state space representations are paftiaudaful when modeling
uncertainty since state models are convenient to descnbenal model but un-
certainties are easier to describe using input/output tleqdéen via a frequency
response description). Uncertainty will be a constant tngmoughout the text and
will be studied in particular detail in Chapt&2.

An interesting observation in the design of control systésnihat feedback
systems can often be analyzed and designed based on congdasatmple models.
The reason for this is the inherent robustness of feedbatiragsHowever, other
uses of models may require more complexity and more accutawy example is
feedforward control strategies, where one uses a modektmprpute the inputs
that cause the system to respond in a certain way. Anoth&isssgstem validation,
where one wishes to verify that the detailed response ofytbieis performs as it
was designed. Because of these different uses of modetscannmon to use a
hierarchy of models having different complexity and fidelity

Multidomain Modeling @

Modeling is an essential element of many disciplines, laditions and methods
from individual disciplines can differ from each other, figstrated by the previous
discussion of mechanical and electrical engineering. Acdity in systems engi-
neering is that it is frequently necessary to deal with legfeneous systems from
many different domains, including chemical, electricakamanical and informa-
tion systems.

To model such multidomain systems, we start by partitiorangystem into
smaller subsystems. Each subsystem is represented by dalgumations for mass,
energy and momentum, or by appropriate descriptions ofnimétion processing
in the subsystem. The behavior at the interfaces is captyreédxribing how the
variables of the subsystem behave when the subsystemden@mimected. These
interfaces act by constraining variables within the indiial subsystems to be equal
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(such as mass, energy or momentum fluxes). The complete mabdehigbtained
by combining the descriptions of the subsystems and th&actes.

Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational congpdg The procedure
mimics the engineering approach where systems are built$rdosystems that are
themselves built from smaller components. As experiengaiiged, the components
and their interfaces can be standardized and collecteddehibraries. In practice,
it takes several iterations to obtain a good library that lbarreused for many
applications.

State models or ordinary differential equations are noabletfor component-
based modeling of this form because states may disappear edmeponents are
connected. This implies that the internal description of mgonent may change
when it is connected to other components. As an illustratierconsider two ca-
pacitors in an electrical circuit. Each capacitor has a stateesponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens with rotating inertias,
each of which is individually modeled using the angle of tioimand the angular
velocity. Two states will disappear when the inertias anegd by a rigid shatft.

This difficulty can be avoided by replacing differential eqoas bydifferential
algebraic equationswhich have the form

F(z,2) =0,
wherez € R". A simple special case is
x=1f(xy), 9y =0, (2.4)

wherez = (x,y) andF = (X — f(X,Y), g(X, y)). The key property is that the
derivativezis not given explicitly and there may be pure algebraic retstbetween
the components of the vectar

The model 2.4) captures the examples of the parallel capacitors andrikedi
rotating inertias. For example, when two capacitors ar@eoted, we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used as#wc description, and
object-oriented programming is used to structure the nsodébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermofluid and control subsystdvtmdelica is intended
to serve as a standard format so that models arising in éiffedomains can be
exchanged between tools and users. A large set of free anchemial Modelica
component libraries are available and are used by a growingoer of people
in industry, research and academia. For further informagibout Modelica, see
http://www.modelica.or@r Tiller [TilO1].
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2.2 State Space Models

In this section we introduce the two primary forms of modéisttwe use in this
text: differential equations and difference equationghBoake use of the notions
of state, inputs, outputs and dynamics to describe the mhaiva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunmmahe past of a
system for the purpose of predicting the future. For a plysigstem the state is
composed of the variables required to account for storagess, momentum and
energy. A key issue in modeling is to decide how accuratefystorage has to be
represented. The state variables are gathered in a vectoR" called thestate
vector The control variables are represented by another vectorRP, and the
measured signal by the vectgre RY9. A system can then be represented by the
differential equation

dx
9= f(x,u), y = h(x, u), (2.5)

wheref : R" x RP - R"andh : R" x RP — RY are smooth mappings. We call
a model of this form &tate space model

The dimension of the state vector is called trder of the system. The sys-
tem @.5 is calledtime-invariantbecause the functions andh do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of stated controlu, and the
functionh gives the measured values as functions of staiad controlu.

A system is called finear state space system if the functiohgndh are linear
in x andu. A linear state space system can thus be represented by

d
d_i(zAx+ Bu, y =Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tmbar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influeneedhtput directly.
A different form of linear differential equations, geneazaig the second-order
dynamics from mechanics, is an equation of the form
n n-1

d"y n ald _y

dtn dtn-1
wheret is the independent (time) variablg(t) is the dependent (output) variable
andu(t) is the input. The notatiod¥y/dt* is used to denote thigth derivative
of y with respect tat, sometimes also written ag¥. The controlled differential
equation 2.7) is said to be amth-order system. This system can be converted into

+ - Fay=u, (2.7)
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state space form by defining

[ X3 dn_ly/dtn_l‘
X2 dn—Zy/dtn—Z
X = : == . 5
Xn—1 dy/dt
[ Xn L y

and the state space equations become

—alxl_"'_anxn
+ 5 y=xn-
Xn 2
Xn—1

With the appropriate definitions ok, B, C and D, this equation is in linear state
space form.
An even more general system is obtained by letting the olopatlinear com-
bination of the states of the system, i.e.,
y = bixg + boXo + - - - 4 by + du.

This system can be modeled in state space as

o C

[eNe)

X1 [—ay —ay, ... —ah,_1 —a, 1
X 1 0 .. 0 0 0
dlel_| o 1 0 0fxs|0]u
al. z z (2.8)
X 0 0 10 0
y = 'bl b, ... bn]X+dU.

This particular form of a linear state space system is cabedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a type of system that can be modeled using axdutiferential
eqguations is the class b&lance system# balance system is a mechanical system
in which the center of mass is balanced above a pivot pointe®@mmmon examples
of balance systems are shown in Figlré. The Segway® Personal Transporter
(Figure 2.539 uses a motorized platform to stabilize a person standintpprof

it. When the rider leans forward, the transportation depicpels itself along the
ground but maintains its upright position. Another exanpéerocket (Figur@.5b),

in which a gimbaled nozzle at the bottom of the rocket is usesiabilize the body
of the rocket above it. Other examples of balance systenhsdadiumans or other
animals standing upright or a person balancing a stick an hiaed.
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Satket rand (c)
inverted pendulum on a cart. Each of these examples uses forcesatttira of the system
to keep it upright.

Balance systems are a generalization of the spring—matesisye saw earlier.
We can write the dynamics for a mechanical system in the géf@am

M(@)4 + C(q, q) + K(q) = B(Q)u,

where M (q) is the inertia matrix for the systeng(q, ) represents the Coriolis
forces as well as the dampinkj,(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into theuajcs. The
specific form of the equations can be derived using Newtoniaohanics. Note
that each of the terms depends on the configuration of thersystend that these
terms are often nonlinear in the configuration variables.

Figure2.5cshows a simplified diagram for a balance system consisting of a
inverted pendulum on a cart. To model this system, we chdase wriables that
represent the position and velocity of the base of the sygpandp, and the angle
and angular rate of the structure above the bés:déd. We let F represent the
force applied at the base of the system, assumed to be in thehial direction
(aligned withp), and choose the position and angle of the system as outfiits.
this set of definitions, the dynamics of the system can be ctedpsing Newtonian
mechanics and have the form

(M+m) —mlcosf] [p N cp+mlisingé?]  [F 2.9)
—mlcos®? (J+mli?)| |6 y0 —mglsind | — [0]" '

whereM is the mass of the basm,andJ are the mass and moment of inertia of the
system to be balancelis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction amfds the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdefining the
state ax = (p, 6, p, ), the input asi = F and the output ag = (p, 6). If we
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define the total mass and total inertia as
Mi=M+m, J=J+mlp?
the equations of motion then become

P
p . 4 .
d o] | =mis0?+mgmiz/I)sc —cp— (r/Imigo +u
dt [p| — M — m(mi2/ J)cf ’
0

—ml%sycyH? + Miglsy — cleyp — y (M/m)é + Icgu
J(M¢/m) —m(lcy)?

- [2].
where we have used the shorthapd= cosf andsy = sind.

In many cases, the anglewill be very close to 0, and hence we can use the
approximations sii ~ 0 and co® ~ 1. Furthermore, i) is small, we can
ignore quadratic and higher termsiinSubstituting these approximations into our
eguations, we see that we are left withireear state space equation

D 0 0 1 0 D 0
d|o 0 0 0 1 0 0
dt [p| — |0 mi%g/u —cd/u —ylm/u| |P Y b
0 [0 Mimgl/u —clm/u —yM/u) L0 Im/u
_[r 000,
Y=lo 10 0%
wherey = MyJ, — m?l2. Y

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the lomanf the base does

not need to be controlled. This happens, for example, if werdeeested only in
stabilizing a rocket’s upright orientation without wonngi about the location of
base of the rocket. The dynamics of this simplified system aengby

d [el—lmgl yé | I y=0 (2.10)
dt [0] ~ | —==sind — LH+ —coshul’ - '
J J J
wherey is the coefficient of rotational friction), = J + ml? andu is the force
applied at the base. This system is referred to asarted pendulum \%

Difference Equations

In some circumstances, it is more natural to describe thiigwo of a system at
discrete instants of time rather than continuously in titheve refer to each of
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these times by an integkr= 0, 1, 2, ..., then we can ask how the state of the
system changes for eakhJust as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in tlaamer are referred to
asdiscrete-time systems

The evolution of a discrete-time system can be written in tnf

X[k + 1] = f(x[k], uk]), y[Kk] = h(x[K], u[k]), (2.11)

wherex[k] € R" is the state of the system at tirkg(an integer)u[k] € RP is
the input andy[k] € RY is the output. As beforef andh are smooth mappings of
the appropriate dimension. We call equati@nilQ) a difference equatiosince it
tells us howx[k + 1] differs fromx[k]. The statex[k] can be either a scalar- or a
vector-valued quantity; in the case of the latter we wxitgk] for the value of the
jth state at timek.

Just as in the case of differential equations, it is oftercts® that the equations
are linear in the state and input, in which case we can destiribbsystem by

x[k + 1] = Ax[K] + Bu[k], y[k] = Cx[K] + DuK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the control
matrix, the sensor matrix and the direct term. The solutioa bifiear difference
equation with initial conditiorx[0] and inputu[O], ..., u[T] is given by
k—1
x[K] = Ao + D AITBU[]],
j=0
k—1
ylkl = CA%+ > CA<I'BU[j] + DulK],
j=0

k> 0. (2.12)

Difference equations are also useful as an approximatiaifiegiential equa-
tions, as we will show later.

Example 2.3 Predator—prey
As an example of a discrete-time system, consider a simptiehior a predator—
prey system. The predator—prey problem refers to an ecabgystem in which
we have two species, one of which feeds on the other. This tggstem has
been studied for decades and is known to exhibit interestymgmics. Figur®.6
shows a historical record taken over 90 years for a popuatfdynxes versus a
population of hares\lac37. As can been seen from the graph, the annual records
of the populations of each species are oscillatory in nature

A simple model for this situation can be constructed usinigerdte-time model
by keeping track of the rate of births and deaths of each epdogttingH represent
the population of hares arldrepresent the population of lynxes, we can describe
the state in terms of the populations at discrete periodsra.tLettingk be the
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1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadiaiaryl
a snowshoe hare, the lynx’s primary prey. The graph on the rightskiwe populations of
hares and lynxes between 1845 and 1935 in a section of the Canadides{ptac37. The

data were collected on an annual basis over a period of 90 yearso@Pdyoh copyright Tom
and Pat Leeson.)

discrete-time index (e.g., the day or month number), we aatie w
H[k + 1] = H[K] + by (uyH[K] — aL[K]H[K],
L[k + 1] = L[K] + cL[K]H[K] — d¢ L[K],

whereb; (u) is the hare birth rate per unit period and as a function of twal f
supplyu, ds is the lynx mortality rate and andc are the interaction coefficients.
The interaction ternaL[k] H[K] models the rate of predation, which is assumed
to be proportional to the rate at which predators and preyt areetis hence given
by the product of the population sizes. The interaction tetrfk]H[k] in the
lynx dynamics has a similar form and represents the rate @f/thr of the lynx
population. This model makes many simplifying assumptiosgeh as the fact
that hares decrease in number only through predation byegssbut it often is
sufficient to answer basic questions about the system.

To illustrate the use of this system, we can compute the nuwitignxes and
hares at each time point from some initial population. Thfise by starting with
X[0] = (Ho, Lo) and then using equatior2.(l3 to compute the populations in
the following period. By iterating this procedure, we camgmate the population
over time. The output of this process for a specific choice ddipaters and initial
conditions is shown in Figur2.7. While the details of the simulation are different
from the experimental data (to be expected given the siitypbEour assumptions),
we see qualitatively similar trends and hence we can use tiieho help explore
the dynamics of the system. \%

(2.13)

Example 2.4 E-mail server

The IBM Lotus server is an collaborative software system tdatinisters users’
e-mail, documents and notes. Client machines interact evithusers to provide
access to data and applications. The server also handlesdth@istrative tasks.
In the early development of the system it was observed tlegpénformance was
poor when the central processing unit (CPU) was overloadeause of too many
service requests, and mechanisms to control the load wereftine introduced.
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Figure 2.7: Discrete-time simulation of the predator—prey mo@el8). Using the parameters
a=c=0.014,b, (u) = 0.6 andd = 0.7 in equation2.13 with daily updates, the period and
magnitude of the lynx and hare population cycles approximately matchthédgigure2.6.

The interaction between the client and the server is in tha fwrremote pro-
cedure calls (RPCs). The server maintains a log of statistiosropleted requests.
The total number of requests being served, caRe® (RPCs in server), is also
measured. The load on the server is controlled by a paranstedvaxUser s,
which sets the total number of client connections to theeseihis parameter is
controlled by the system administrator. The server can bardeg as a dynami-
cal system withvaxUser s as the input andRl S as the output. The relationship
between input and output was first investigated by explofiegsteady-state per-
formance and was found to be linear.

In [HDPT04 a dynamic model in the form of a first-order difference equati
is used to capture the dynamic behavior of this system. Usiatgm identification
techniques, they construct a model of the form

y[k + 1] = ay[K] + bu[kK],

whereu = MaxUsers — MaxUsers andy = RIS — RI' S. The parameters

a = 0.43 andb = 0.47 are parameters that describe the dynamics of the system
around the operating point, aMhixUser s = 165 andRI' S = 135 represent the
nominal operating point of the system. The number of requesssaveraged over

a sampling period of 60 s. \Y%

Simulation and Analysis

State space models can be used to answer many questions.t@mmofkt common,
as we have seen in the previous examples, involves preglitt@evolution of the
system state from a given initial condition. While for simphodels this can be
done in closed form, more often it is accomplished throughmater simulation.
One can also use state space models to analyze the overalidnedf the system
without making direct use of simulation.

Consider again the damped spring—mass system from Se&cfidout this time
with an external force applied, as shown in Figa:8 We wish to predict the
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous friction The mass is driven with a sinusoidal force of
amplitudeA.

motion of the system for a periodic forcing function, withiaem initial condition,
and determine the amplitude, frequency and decay rate oéthdting motion.

We choose to model the system with a linear ordinary difféakequation.
Using Hooke’s law to model the spring and assuming that thepeéa exerts a force
that is proportional to the velocity of the system, we have

mg + cq + kq=u, (2.14)

wherem is the massq is the displacement of the massijs the coefficient of
viscous friction k is the spring constant andis the applied force. In state space
form, usingx = (q, g) as the state and choosigg= g as the output, we have

- = c ul- = Xi.
dt ——Xp— —X1+ —
m m m

We see that this is a linear second-order differential egnatith one inputu and
one outputy.

We now wish to compute the response of the system to an inpiledform
u = Asinwt. Although it is possible to solve for the response analiliicave
instead make use of a computational approach that does Igairréhe specific
form of this system. Consider the general state space system

dx
— = f )
= fxw

Given the statex at timet, we can approximate the value of the state at a short
timeh > 0 later by assuming that the rate of changd ¢f, u) is constant over the
intervalt tot + h. This gives

X(t 4+ h) = x(t) + hf(x(1), u(t)). (2.15)

Iterating this equation, we can thus solve xaas a function of time. This approxi-
mation is known as Euler integration and is in fact a diffeeeequation if we leh
represent the time increment and wei{&] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, they still have some of the same basic traée-of
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Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The dashed line represents the analytical solution. The sadiddjpresent the
approximate solution via the method of Euler integration, using decreaspgizes.

Returning to our specific example, Fig2e shows the results of computing
x(t) using equationZ.15, along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exadien. The form
of the solution is also worth noticing: after an initial tei@nt, the system settles
into a periodic motion. The portion of the response after thrdient is called the
steady-state responsge the input.

In addition to generating simulations, models can also lee trs answer other
types of questions. Two that are central to the methods itheskin this text concern
the stability of an equilibrium point and the input/outptgduency response. We
illustrate these two computations through the exampleswalnd return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equafiomstion with no
input forcing are given by

dx X2
Tl [_EXZ_EXlI , (2.16)
m m

wherex; is the position of the mass (relative to the rest positiorg =&nis its
velocity. We wish to show that if the initial state of the syfstis away from the
rest position, the system will return to the rest positiorrgually (we will later
define this situation to mean that the rest positioasgmptotically stable While
we could heuristically show this by simulating many, manigiah conditions, we
seek instead to prove that this is true &myinitial condition.

To do so, we construct a function : R" — R that maps the system state to a
positive real number. For mechanical systems, a convedieite is the energy of
the system,

1 1
V(X) = Ekxf + meg. (2.17)
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If we look at the time derivative of the energy function, we deat

dv ) _ c k 2
— = kX1Xg + M¥Xz = KX X2 + M¥(——=Xz — —X1) = —CX5,
dt m m

which is always either negative or zero. Hen¢éx(t)) is never increasing and,
using a bit of analysis that we will see formally later, thdiindual states must
remain bounded.

If we wish to show that the states eventually return to thgioyiwe must use
a slightly more detailed analysis. Intuitively, we can @ass follows: suppose
that for some period of timey (x(t)) stops decreasing. Then it must be true that
V (x(t)) = 0, which in turn implies thak,(t) = 0 for that same period. In that
case Xo(t) = 0, and we can substitute into the second line of equaobg( to
obtain K

0=x Cx X kx
=X= X s X=X

Thus we must have thag also equals zero, and so the only time W&k (t)) can
stop decreasing is if the state is at the origin (and hensesystem is at its rest
position). Since we know thaf (x(t)) is never increasing (because < 0), we
therefore conclude that the origin is stable @oiyinitial condition).

This type of analysis, called Lyapunov stability analyss;onsidered in detail
in Chapte#. It shows some of the power of using models for the analyssgstem
properties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again consigesphing—mass system,
but this time keeping the input and leaving the system inriggimmal form:

md + cq + kg = u. (2.18)
We wish to understand how the system responds to a sinusojmalof the form
u(t) = Asinwt.

We will see how to do this analytically in Chapt@rbut for now we make use of
simulations to compute the answer.

We first begin with the observation thagt) is the solution to equatior2(18
with inputu(t), then applying an inputit) will give a solution 2j(t) (this is easily
verified by substitution). Hence it suffices to look at an inpithwnit magnitude,
A = 1. A second observation, which we will prove in Chagfers that the long-
term response of the system to a sinusoidal input is itselfiassid at the same
frequency, and so the output has the form

a(t) = g(w) sin(wt + ¢(v)),

whereg(w) is called thegain of the system and(w) is called thephase(or phase
offset).

To compute the frequency response numerically, we can atmtihe system
at a set of frequencies,, ..., wy and plot the gain and phase at each of these
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Figure 2.10: A frequency response (gain only) computed by measuring the respafn
individual sinusoids. The figure on the left shows the response of/gtera as a function of
time to a number of different unit magnitude inputs (at different fregies). The figure on
the right shows this same data in a different way, with the magnitude of $pemse plotted
as a function of the input frequency. The filled circles correspond tpahéular frequencies
shown in the time responses.

frequencies. An example of this type of computation is showfigure2.10

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to haveedéfit representations
of the system that capture the essential features and haleviant details. In all
branches of science and engineering it is common practiaegsome graphical
description of systems, callethematic diagramsThey can range from stylistic
pictures to drastically simplified standard symbols. Theseipes make it possible
to get an overall view of the system and to identify the indiiial components.
Examples of such diagrams are shown in Figuid. Schematic diagrams are useful
because they give an overall picture of a system, showiferdift subprocesses and
their interconnection and indicating variables that camiaaipulated and signals
that can be measured.

Block Diagrams

A special graphical representation calletilack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigle the information
flow and to hide details of the system. In a block diagram, dffiéprocess elements
are shown as boxes, and each box has inputs denoted by lithessrvaws pointing
toward the box and outputs denoted by lines with arrows goimgof the box.
The inputs denote the variables that influence a process, anoutputs denote
the signals that we are interested in or signals that influeticer subsystems.
Block diagrams can also be organized in hierarchies, wingiigidual blocks may
themselves contain more detailed block diagrams.
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Figure 2.11: Schematic diagrams for different disciplines. Each diagram is used ttélles
the dynamics of a feedback system: (a) electrical schematics forergsgatemiKun93, (b)

a biological circuit diagram for a synthetic clock circu$MNO03], (c) a process diagram for
a distillation column $EM04 and (d) a Petri net description of a communication protocol.

Figure2.12shows some of the notation that we use for block diagramsaign

uz
U, U; 4+ uy u ku u safu)
(a) Summing junction (b) Gain block (c) Saturation
t
u f(u u / u(t) dt u
(d) Nonlinear map (e) Integrator (f) Input/output system

Figure 2.12:Standard block diagram elements. The arrows indicate the the inputstgudsou
of each element, with the mathematical operation corresponding to thesdltatheled at the
output. The system block (f) represents the full input/output respdresdymamical system.
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Figure 2.13: A block diagram representation of the flight control system for an irfggnt
against the wind. The mechanical portion of the model consists of thebraigt dynamics
of the fly, the drag due to flying through the air and the forces generatétehwings. The
motion of the body causes the visual environment of the fly to changethaminformation
is then used to control the motion of the wings (through the sensory mattarsy, closing
the loop.

arerepresented as lines, with arrows to indicate inputsatpiits. The first diagram
is the representation for a summation of two signals. An ffgquiput response is
represented as a rectangle with the system name (or maibahusscription) in

the block. Two special cases are a proportional gain, whiethes the input by
a multiplicative factor, and an integrator, which outpute integral of the input
signal.

Figure2.13illustrates the use of a block diagram, in this case for modehe
flight response of a fly. The flight dynamics of an insect are inbfgdntricate,
involving careful coordination of the muscles within the fiynhaintain stable flight
in response to external stimuli. One known characteridtities is their ability to
fly upwind by making use of the optical flow in their compound eygs feedback
mechanism. Roughly speaking, the fly controls its orientasio that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsystentsddoky. Referring to
Figure2.13 we can model the insect navigation system through an iohection
of five blocks. The sensory motor system (a) takes the infoomditom the visual
system (e) and generates muscle commands that attempetdretdly so that the
point of contraction is centered. These muscle command®axeded into forces
through the flapping of the wings (b) and the resulting aeradyin forces that are
produced. The forces from the wings are combined with the drathe fly (d) to
produce a net force on the body of the fly. The wind velocity enterough the
drag aerodynamics. Finally, the body dynamics (c) descrivethe fly translates
and rotates as a function of the net forces that are appligdTtbe insect position,
speed and orientation are fed back to the drag aerodynamitsision system
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blocks as inputs.

Each of the blocks in the diagram can itself be a complicatédysiem. For
example, the visual system of a fruit fly consists of two coogiltd compound eyes
(with about 700 elements per eye), and the sensory motamyss about 200,000
neurons that are used to process information. A more ddthlteck diagram of
the insect flight control system would show the interconmastibetween these
elements, but here we have used one block to represent hawaten of the fly
affects the output of the visual system, and a second blaelptesent how the visual
field is processed by the fly’s brain to generate muscle commahdshoice of the
level of detail of the blocks and what elements to separabedifferent blocks often
depends on experience and the questions that one wantsierarsng the model.
One of the powerful features of block diagrams is their gbtl hide information
about the details of a system that may not be needed to gaindarsianding of
the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and acgétisralso possible to
obtain models of system dynamics from experiments on thegs The models
are restricted to input/output models since only theseatsgare accessible to
experiments, but modeling from experiments can also be owdlwith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begissthing the control
signal to a constant value; then when steady state is edtadlithe control signal is
changed quickly to a new level and the output is observed. Ajpergnent gives the
step response of the system, and the shape of the respoaseigaful information
about the dynamics. It immediately gives an indication efrissponse time, and it
tells if the system is oscillatory or if the response is monet

Example 2.5 Spring—mass system
Consider the spring—mass system from SecZdnwhose dynamics are given by

mg + cg + kg = u. (2.19)

We wish to determine the constamts c andk by measuring the response of the
system to a step input of magnituég.

We will show in Chapte that whenc? < 4km, the step response for this
system from the rest configuration is given by

F 1 /k
q(t) = ?0 (1 — aTd\/; exp(—%) sin(wgt + qz))),

N » (m)

g = , = tan
d 2m ¢ C
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Figure 2.14: Step response for a spring—mass system. The magnitude of the stesinpu
Fo = 20 N. The period of oscillatiofT is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittetiay sstate value
g(c0) and the relative decrease between local maxima can be used to estinpateatheters

in a model of the system.

From the form of the solution, we see that the form of the respdas determined
by the parameters of the system. Hence, by measuring céetgtures of the step
response we can determine the parameter values.

Figure2.14shows the response of the system to a step of magnkyde 20
N, along with some measurements. We start by noting that¢laelg-state position
of the mass (after the oscillations die down) is a functiothefspring constari

F
q(c0) = ?0 (2.20)

whereF, is the magnitude of the applied forcEy(= 1 for a unit step input). The
parameter 1k is called thegain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

or  JAKM=—
o _ yemz e (2.21)
T 2m

Finally, the rate of decay of the oscillations is given by tkpanential factor in the
solution. Measuring the amount of decay between two peak$iave
Fo Fo C
|09(Q(t1) - ?) - |09(Q(t2) - ?) = %(tz —1). (2.22)
Using this set of three equations, we can solve for the paemand determine

that for the step response in Figl#d4we havem ~ 250 kg,c ~ 60 N s/m and
k ~ 40 N/m. \%

Modeling from experiments can also be done using many otlyeals. Si-
nusoidal signals are commonly used (particularly for systavith fast dynamics)
and precise measurements can be obtained by exploitinglaton techniques. An
indication of nonlinearities can be obtained by repeatixgeements with input
signals having different amplitudes.
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Normalization and Scaling

Having obtained a model, it is often useful to scale the e by introducing
dimension-free variables. Such a procedure can often dintpk equations for a
system by reducing the number of parameters and reveatgtiieg properties of
the model. Scaling can also improve the numerical conditiprif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose unitsefich indepen-
dent variable and introduce new variables by dividing théatdes by the chosen
normalization unit. We illustrate the procedure with twaeples.

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced e&tégtecting the damping,
the system is described by

mg + kq = u.

The model has two parametarsandk. To normalize the model we introduce
dimension-free variables = q/| andr = wet, wherewg = /k/m andl is the
chosen length scale. We scale forcerbioZ and introduce) = u/(mlwj3). The
scaled equation then becomes

d’°x  d?%q/! 1

— = = —kgq+u) = —x+o,

dz2  d(wopt)? mlw(z)( a+u v
which is the normalized undamped spring—mass system. &libiat the normalized
model has no parameters, while the original model had twarpateram andk.
Introducing the scaled, dimension-free state variabless x = q/l andz, =
dx/dz = q/(lwp), the model can be written as

ai L) =[5 o [2] - [2)

This simple linear equation describes the dynamics of anpgpmass system,
independent of the particular parameters, and hence g&/gssight into the fun-
damental dynamics of this oscillatory system. To recoveptiysical frequency of
oscillation or its magnitude, we must invert the scaling \aeehapplied. \%

Example 2.7 Balance system
Consider the balance system described in Se@idnNeglecting damping by
puttingc = 0 andy = 0 in equation 2.9), the model can be written as

d’p d20 o do,
(M + m)—O|t2 —ml cos@W + m|s|n9(a) =F,
d’p , d%0 .
—ml COS@W + (J + ml )W — mgISInQ =0.

Letwo = /mgl/(J + ml2), choose the length scalelatet the time scale be/v,
choose the force scale @8l + m)lw? and introduce the scaled variables= wot,
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relatiorestdpthe
dashed lines indicate the range of possible uncertainty. The uncertairan [SRPD59 in

(b) is one way to capture uncertainty in dynamical systems emphasizirgyriadel is valid

only in some amplitude and frequency ranges. In (c) a model is remies by a nominal
modelM and another moded representing the uncertainty analogous to the representation
of parameter uncertainty.

x = p/l andu = F/((M + m)lw?). The equations then become

d?x d?0 N A d’x  d?%

— —acosd—; sind{—) =u, —pcoshd— + —;

dr2“ dz2 ta (dr) P dz2 + dz2
wherea = m/(M +m) andg = ml?/(J +ml?). Notice that the original model has
five parameters, M, J, | andg but the normalized model has only two parameters
a andg. If M > mandml? > J, we geta &~ 0 andp ~ 1 and the model can be

approximated by

—sing =0,

d?x d?0

— =u, — —sind = ucoss.

dr? dr?2
The model can be interpreted as a mass combined with an idyestelulum driven
by the same input. \%

Model Uncertainty

Reducing uncertainty is one of the main reasons for usirgjodfeek, and it is there-
fore important to characterize uncertainty. When makingsoeements, there is a
good tradition to assign both a nominal value and a measuvaadrtainty. It is
useful to apply the same principle to modeling, but unfaatety it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be ckeriaed by a func-
tion, uncertainty can be expressed by an uncertainty barnlilasated in Fig-
ure 2.15a At low signal levels there are uncertainties due to senssolution,
friction and quantization. Some models for queuing systentels are based on
averages that exhibit significant variations for small pagiahs. At large signal
levels there are saturations or even system failures. Thalsignges where a model
is reasonably accurate vary dramatically between apmitgtbut it is rare to find
models that are accurate for signal ranges larger than 10
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Characterization of the uncertainty of a dynamic model isimmore difficult.
We can try to capture uncertainties by assigning unceigsimd parameters of the
model, but this is often not sufficient. There may be errors dyghenomena that
have been neglected, e.g., small time delays. In contralltmeate test is how well
a control system based on the model performs, and time detaybe important.
There is also a frequency aspect. There are slow phenomefmaasuaging, that
can cause changes or drift in the systems. There are alsdreiglency effects: a
resistor will no longer be a pure resistance at very highueagies, and a beam
has stiffness and will exhibit additional dynamics whenjsabto high-frequency
excitation. Theuncertainty lemoffGPD59 shown in Figure2.15bis one way to
conceptualize the uncertainty of a system. It illustrates & model is valid only in
certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaiaty in Chapted.2
using figures such as Figueel 5¢ These tools make use of the concept of a transfer
function, which describes the frequency response of antfopiput system. For
now, we simply note that one should always be careful to neizegthe limits of
a model and not to make use of models outside their range dicapjbity. For
example, one can describe the uncertainty lemon and thek thenake sure that
signals remain in this region. In early analog computingysiesn was simulated
using operational amplifiers, and it was customary to givenadawhen certain
signal levels were exceeded. Similar features can be indlunddigital simulation.

2.4 Modeling Examples

In this section we introduce additional examples thatitate some of the different
types of systems for which one can develop differential @qnaand difference

equation models. These examples are specifically chosen franga of different

fields to highlight the broad variety of systems to which feszkband control

concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiback to control the
movement of a mechanical system. Motion control systemgerdrom nanopo-

sitioning systems (atomic force microscopes, adaptiveEgptto control systems
for the read/write heads in a disk drive of a CD player, to nfiacturing systems

(transfer machines and industrial robots), to automotorgrol systems (antilock
brakes, suspension control, traction control), to air grats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajegtof a vehicle
through an actuator that causes a change in the orientaAtisteering wheel on an
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewelfiale
with four wheels. The wheel basebsand the center of mass at a distaaderward of the
rear wheels. By approximating the motion of the front and rear pairshefelg by a single
front wheel and a single rear wheel, we obtain an abstraction calldxiayee modelshown
on the right. The steering angledsand the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxby) and the
orientation (heading) bg.

automobile and the front wheel of a bicycle are two examplessimilar dynamics
occur in the steering of ships or control of the pitch dynaican aircraft. In many
cases, we can understand the basic behavior of these syhi@mgh the use of a
simple model that captures the basic kinematics of the gyste

Consider a vehicle with two wheels as shown in Fig2uka For the purpose of
steering we are interested in a model that describes howetbeity of the vehicle
depends on the steering angldo be specific, consider the velocityat the center
of mass, a distanca from the rear wheel, and I&tbe the wheel base, as shown
in Figure2.16 Let x andy be the coordinates of the center of masthe heading
angle and the angle between the velocity vectaand the centerline of the vehicle.
Sinceb = rytand anda = ra tana, it follows that tarw = (a/b) tand and we get
the following relation betweea and the steering angée

(2.23)

0.(0) = arctar(atané).

Assume that the wheels are rolling without slip and that tbleaity of the rear
wheel isvg. The vehicle speed at its center of mass is vo/ cosa, and we find
that the motion of this point is given by

% =vcos(a +0) = vo%,

q in( 0) (2.24)
y . __sin(a +

Fri vsin(a +60) = DO—COSa .

To see how the angk is influenced by the steering angle, we observe from Fig-
ure 2.16that the vehicle rotates with the angular veloaityr, around the point

O. Hence do ; B
0 0

— = — = —tand. 2.25

dt ra b ( )
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Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) restits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bnéhéhrust on
the aircraft can be decomposed into a horizontal fétcand a vertical forcd-, acting at a
distance from the center of mass.

Equations2.23—(2.25 can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be approximated by a single wheel at the centdreoédr. The as-
sumption of no slip can be relaxed by adding an extra statahlar giving a more
realistic model. Such a model also describes the steeringnaigs of ships as well
as the pitch dynamics of aircraft and missiles. It is alsosfids to choose coor-
dinates so that the reference point is at the rear wheelsemonding to setting
a = 0), a model often referred to as tBeibins car[Dub57.

Figure2.16 represents the situation when the vehicle moves forwarchasd
front-wheel steering. The case when the vehicle reversdstégsned by changing
the sign of the velocity, which is equivalent to a vehicletwiéar-wheel steering.

Vv

Example 2.9 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such asHheier “jump jet”
shown Figure2.17a The Harrier is capable of vertical takeoff by redirecting it
thrust downward and through the use of smaller maneuvehningters located on
its wings. A simplified model of the Harrier is shown in Figgd7h where we
focus on the motion of the vehicle in a vertical plane throtigd wings of the
aircraft. We resolve the forces generated by the main dowhteiuster and the
maneuvering thrusters as a pair of forégsandF, acting at a distanaebelow the
aircraft (determined by the geometry of the thrusters).

Let (x, y, #) denote the position and orientation of the center of masbtef t
aircraft. Letmbe the mass of the vehicléthe moment of inertigg the gravitational
constant and the damping coefficient. Then the equations of motion for ttécle
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Figure 2.18:Schematic diagram of a queuing system. Messages arrive ataatkare stored

in a queue. Messages are processed and removed from the quetegafThe average size
of the queue is given by € R.

are given by
mX = F; cosf — F, sind — cx,
my = F; sind + F, cosf — mg— cy, (2.26)
JO =rFy.

Itis convenient to redefine the inputs so that the origin iscaildrium point of the
system with zero input. Letting; = F; andu, = F, — mg, the equations become

mX = —mgsind — cX + U3 cosd — U, sind,

my = mg(cosf — 1) — cy + u; Sind + u, cosy, (2.27)
JG =1rUuj.
These equations describe the motion of the vehicle as a $eeef¢oupled second-
order differential equations. \%

Information Systems

Information systems range from communication systemstlikeinternet to soft-
ware systems that manipulate data or manage enterpriseggdarces. Feedback
is presentin all these systems, and designing strategiesfting, flow control and
buffer management is a typical problem. Many results in qugetheory emerged
from design of telecommunication systems and later fronelbg@ment of the In-
ternet and computer communication systeBG 87, Kle75, Sch87. Management
of queues to avoid congestion is a central problem and wethéhefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems
A schematic picture of a simple queue is shown in Figid8 Requests arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates, and the queue length builds up when tivelaate is larger
than the service rate. When the queue becomes too largé&esendenied using
an admission control policy.

The system can be modeled in many different ways. One way i®teheach
incoming request, which leads to an event-based model wihestate is an integer
that represents the queue length. The queue changes wheuestragrives or a
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request is serviced. The statistics of arrival and serviairggtypically modeled as
random processes. In many cases it is possible to determaitigtiss of quantities
like queue length and service time, but the computationdeayuite complicated.
A significant simplification can be obtained by usingl@v model Instead

of keeping track of each request we instead view service aqdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
fluids. Assuming that the average queue length a continuous variable and that
arrivals and services are flows with ratesnd x, the system can be modeled by
the first-order differential equation

‘;—f=z—u:z—umaxf(x), x>0, (2.28)
where imax IS the maximum service rate anfdx) is a number between 0 and 1
that describes the effective service rate as a functionefjtteue length.

Itis natural to assume that the effective service rate dégpen the queue length
because larger queues require more resources. In stedady&davef (x) =
A/ tmax, @and we assume that the queue length goes to zero iyhgixgoes to zero
and that it goes to infinity whef/ 1max goes to 1. This implies thaft(0) = 0 and
that f (c0) = 1. In addition, if we assume that the effective service ratedorates
monotonically with queue length, then the functib¢x) is monotone and concave.
A simple function that satisfies the basic requirementsis) = x/(1+ x), which

gives the model
dx X

a—}h_ﬂmaxx_i_l'
This model was proposed by Agnewdn76q. It can be shown that if arrival and
service processes are Poisson processes, the averageangthéd given by equa-
tion (2.29 and that equatiorn2(29 is a good approximation even for short queue
lengths; see Tipped59d.

To explore the properties of the mod&l29 we will first investigate the equi-
librium value of the queue length when the arrival ratss constant. Setting the
derivatived x/dt to zero in equation?.29 and solving forx, we find that the queue
lengthx approaches the steady-state value

« A

¢ Mmax — A
Figure 2.19ashows the steady-state queue length as a functioty pfax the
effective service rate excess. Notice that the queue lengtkases rapidly as
approacheg max. To have a queue length less than 20 requir@gnax < 0.95. The
average time to service arequeskdis= (X+1)/umax anditincreases dramatically
as/ approaches max-

Figure2.19billustrates the behavior of the server in a typical overlsifwiation.
The maximum service rate jsnax = 1, and the arrival rate starts at= 0.5. The
arrival rate is increased tb = 4 at time 20, and it returns tb = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearsskewly. Since the
response time is proportional to queue length, it meanshieaquality of service

(2.29)

(2.30)
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a functign @
(b) The behavior of the queue length when there is a temporary overidhae system. The
solid line shows a realization of an event-based simulation, and the dasheshbws the
behavior of the flow model(29).

is poor for a long period after an overload. This behavior iledaherush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figur2.19bshows the behavior of the flow model, which
describes the average queue length. The simple model cajiteinavior qualita-
tively, but there are variations from sample to sample whendueue length is
short. \%

Many complex systems use discrete control actions. Suchregstan be mod-
eled by characterizing the situations that correspond th eantrol action, as
illustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systenssapglied in the
operating system OS/VS for the IBM 37BE68 Cro79. The system used virtual
memory, which allows programs to address more memory thalmysically avail-
able as fast memory. Data in current fast memory (randonsaagoemory, RAM)
is accessed directly, but data that resides in slower me(d@l) is automatically
loaded into fast memory. The system is implemented in suchyahed it appears
to the programmer as a single large section of memory. Thersyserformed very
well in many situations, but very long execution times wemeaintered in over-
load situations, as shown by the open circles in Figug9a The difficulty was
resolved with a simple discrete feedback system. The lodukaféntral processing
unit (CPU) was measured together with the number of page shetpgen fast
memory and slow memory. The operating region was classifiediag in one of
three states: normal, underload or overload. The norma &atharacterized by
high CPU activity, the underload state is characterized WwG®U activity and few
page replacements, the overload state has moderate to lolo@&but many page
replacements; see Figu2e20h The boundaries between the regions and the time
for measuring the load were determined from simulationsgusipical loads. The
control strategy was to do nothing in the normal load coaditio exclude a process
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Figure 2.20: lllustration of feedback in the virtual memory system of the IBM/370. (ag T
effect of feedback on execution times in a simulation, followiB&pg. Results with no
feedback are shown with, and results with feedback with Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three statedbtaimed based
on process measurements.

from memory in the overload condition and to allow a new pssoa a previously
excluded process in the underload condition. The crossegurd2.20ashow the
effectiveness of the simple feedback system in simulateddoSimilar principles
are used in many other situations, e.g., in fast, on-chipeatemory. \Y%

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvave to collect
and aggregate information over a region of space using pheilsiensors that are
connected together via a communications network. Examptdsde monitoring
environmental conditions in a geographical area (or inaibailding), monitoring
the movement of animals or vehicles and monitoring the nesoloading across
a group of computers. In many sensor networks the compuotdtiesources are
distributed along with the sensors, and it can be importarthie set of distributed
agentsto reach a consensus about a certain property, sheteagrage temperature
in a region or the average computational load among a setgputers.

We model the connectivity of the sensor network using a grapth nodes
corresponding to the sensors and edges corresponding ¢xigtence of a direct
communications link between two nodes. We use the notatipto represent the
set of neighbors of a node For example, in the network shown in Figte21a
No = {1, 3,4,5) and N3 = (2, 4).

To solve the consensus problem Xebe the state of thigh sensor, correspond-
ing to that sensor’s estimate of the average value that wieyding to compute. We
initialize the state to the value of the quantity measuredhieyindividual sensor.
The consensus protocol (algorithm) can now be realized asshupdate law

xi[k+ 1] =x[Kl +7 D 0GIK] = x[K]). (2.31)
jeM
This protocol attempts to compute the average by updatintpta state of each
agent based on the value of its neighbors. The combined dgsariall agents can
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor etvith
five nodes. In this network, node 1 communicates with node 2 and nodenéhanicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the converggrtbe consensus
protocol @.31) to the average value of the initial conditions.

be written in the form
X[k + 1] = x[K] — y (D — A)X[K], (2.32)

where A is the adjacency matrix anD is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constdascribes the
rate at which the estimate of the average is updated basedfamation from
neighboring nodes. The matrix:= D — Ais called theLaplacianof the graph.
The equilibrium points of equatior2(32 are the set of states such tixatk +
1] = xg[K]. It can be shown thate = (a, «, . . ., a) is an equilibrium state for the
system, corresponding to each sensor having an identigakdeo for the average.
Furthermore, we can show thatis indeed the average value of the initial states.
Since there can be cycles in the graph, it is possible thatt#te of the system
could enter into an infinite loop and never converge to therdésionsensus state.
A formal analysis requires tools that will be introducecktan the text, but it can
be shown that for any connected graph we can always findwch that the states
of the individual agents converge to the average. A simutadiemonstrating this
property is shown in Figurg.21h \%

Biological Systems

Biological systems provide perhaps the richest sourceaaflfack and control ex-
amples. The basic problem of homeostasis, in which a quanidly as temperature
or blood sugar level is regulated to a fixed value, is but onlesoifitany types of com-
plex feedback interactions that can occur in molecular nme&sh cells, organisms
and ecosystems.

Example 2.13 Transcriptional regulation

Transcription is the process by which messenger RNA (mRB&gnerated from a
segment of DNA. The promoter region of a gene allows trangoripo be controlled

by the presence of other proteins, which bind to the promagion and either
repress or activate RNA polymerase, the enzyme that preducsRNA transcript
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Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained s
that the nucleus, actin and chromatin are visible. The figure on the rigés$ gn overview
of the process by which proteins in the cell are made. RNA is transcribed DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by amelig called
aribosome.

mRNA

from DNA. The mRNA is then translated into a protein accordimgs nucleotide
sequence. This process is illustrated in FigRi22
A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJO2 Mur04]. Consider the regulation of a protein A with a
concentration given by, and a corresponding mRNA concentratiog. Let B
be a second protein with concentratippnthat represses the production of protein
A through transcriptional regulation. The resulting dynesrof p, andm, can be
written as
dmg Gab d Pa
dt 14 kappp™ @0 = yalMa, g
whereaa,+ 040 IS the unregulated transcription ragg represents the rate of degra-
dation of MRNA aap, Kap andn,p are parameters that describe how B represses A,
Pa represents the rate of production of the protein from itsesgonding mRNA
andd, represents the rate of degradation of the protein A. The patea,o de-
scribes the “leakiness” of the promoter, amg is called the Hill coefficient and
relates to the cooperativity of the promoter.
A similar model can be used when a protein activates the ptamiuof another
protein rather than repressing it. In this case, the equatiave the form

= ﬁama — Ja Pa, (2-33)

dmy tabKab pgab dpa
dt - 1+ kg pﬂab + a0 — YaMa, at BaMa — 0aPa, (2.34)

where the variables are the same as described previoudly.thit in the case of
the activator, ifpy, is zero, then the production ratedigy (Versusaap + a4 for the
repressor). A9y gets large, the first term in the expressionrigy approaches 1
and the transcription rate becomeg + aao (versusay for the repressor). Thus
we see that the activator and repressor act in oppositeofasiuim each other.

As an example of how these models can be used, we consideraithel wf a
“repressilator,” originally due to Elowitz and LeibleE[0Q]. The repressilator is
a synthetic circuit in which three proteins each represstemon a cycle. This is
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagfdheo
repressilator, showing the layout of the genes in the plasmid that holdg¢hé as well as
the circuit diagram (center). (b) A simulation of a simple model for theaggilator, showing
the oscillation of the individual protein concentrations. (Figure courtesklbwitz.)

shown schematically in Figur2.23a where the three proteins are TetR;l and
Lacl. The basic idea of the repressilator is that if TetR is@neghen it represses
the production ofi cl. If Acl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thercl is
no longer repressed, and so on. If the dynamics of the ciaceitiesigned properly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equad3By with A and
B replaced by the appropriate combination of TetR, cl and Laké state of the
system is then given by = (Mretr, Pretr, Mel» Pels Miacl, Pract). Figure 2.23b
shows the traces of the three protein concentrations fanpatersy = 2,a = 0.5,
k=625x10%0p=5x10% 7y =58x 1073, =012ands = 1.2 x 1073
with initial conditionsx(0) = (1, 0, 0, 200, 0, 0) (following [ELOQ]). \%

Example 2.14 Wave propagation in neuronal networks

The dynamics of the membrane potential in a cell are a fundeherechanism

in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin—Huxley equations give a simple model for studyimggagation waves in

networks of neurons. The model for a single neuron has the form

dv
CE = —INa_ IK — Ileak+ |inputa

whereV is the membrane potentidl, is the capacitancéy, andlk are the current
caused by the transport of sodium and potassium across theamabrane,l eak
is a leakage current anlgh, is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I =g(V - E),

whereg is the conductance an is the equilibrium voltage. The equilibrium
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voltage is given by Nernst's law,

E= ﬂ log %,
nk Ci
whereRis Boltzmann’s constant, is the absolute temperatuiejs Faraday’s con-
stant,nis the charge (or valence) of the ion annéndc, are the ion concentrations
inside the cell and in the external fluid. At 2@ we haveRT/F =20 mV.

The Hodgkin—Huxley model was originally developed as a mé&apsadict the
guantitative behavior of the squid giant axétH52]. Hodgkin and Huxley shared
the 1963 Nobel Prize in Physiology (along with J. C. Eccles) falgsis of the
electrical and chemical events in nerve cell dischargesvohage clamp described
in Sectionl.3was a key element in Hodgkin and Huxley’'s experiments. V

2.5 Further Reading

Modeling is ubiquitous in engineering and science and hasghiistory in applied
mathematics. For example, the Fourier series was intratogd-ourier when he
modeled heat conduction in solidBqu07. Models of dynamics have been de-
veloped in many different fields, including mechaniésr{78, Gol53, heat con-
duction [CJ59, fluids [BRS6Q, vehicles Pbk69, Bla9l, Ell94], robotics MLS94,
SV89, circuits [Gui63, power systemsqun93, acousticsBer54 and microme-
chanical systemsJen0]. Control theory requires modeling from many differ-
ent domains, and most control theory texts contain sevégters on modeling
using ordinary differential equations and difference digus (see, for example,
[FPENOS3). A classic book on the modeling of physical systems, eisfigane-
chanical, electrical and thermofluid systems, is Canr@anp3. The book by
Aris [Ari94] is highly original and has a detailed discussion of the disimnension-
free variables. Two of the authors’ favorite books on maugtif biological systems
are J. D. Murray Mur04] and Wilson Wil99].

Exercises

2.1 (Chain of integrators form) Consider the linear ordinarffedlential equa-
tion (2.7). Show that by choosing a state space representationxyith vy, the
dynamics can be written as

0 1 0 0
. . 0

A=]0 w0l =], C:[l .0 o].
o ... 0 1 :
—a, —an_1 —a 1

This canonical form is called thehain of integratorgorm.
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2.2(Inverted pendulum) Use the equations of motion for a baaystem to derive
a dynamic model for the inverted pendulum described in Exa2@and verify
that for smallh the dynamics are approximated by equatipri().

2.3 (Disrete-time dynamics) Consider the following discréige system
X[k 4+ 1] = Ax[K] + Bu[kK], y[k] = Cx[K],

where

[ _ |an ar _ |0 _
BN R )

In this problem, we will explore some of the properties o$tiliscrete-time system
as a function of the parameters, the initial conditions d&ednputs.

(a) For the case whem, = 0 andu = 0, give a closed form expression for the
output of the system.

(b) A discrete system is iaquilibriumwhenx[k + 1] = x[K] for all k. Letu =r

be a constant input and compute the resulting equilibriuimtgor the system.
Show that if|la;i| < 1 foralli, all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the systenesponse to a unit
step inputu[k] = 1,k > 0. Plot the response of your system wifd] = 0 andA
given bya;; = 0.5,a;2 = 1 anday, = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an econangyvien by
Y[K] = C[Kk] + I [K] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for ygaiConsumption and investment are modeled
by difference equations of the form

Clk+1]=aY[k], I[k+1]=Db(C[k+1] - C[k]),

wherea andb are parameters. The first equation implies that consumptiveases
with GNP but that the effectis delayed. The second equatipfiésthat investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

1
Ye= a(le‘i‘Ge):

1—
where the parameter/l — a) is the Keynes multiplier (the gain fromor G to
Y). With a = 0.25 an increase of government expenditure will result in aftdd
increase of GNP. Also show that the model can be written a®tlogving discrete-
time state model:

Clk +1] CIK] .
['[k+1]] [ab b ab] [I[k]] + [ab] GK],
= C[K] + I [K] + G[K].
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2.5(Least squares system identification) Consider a nonlinéareintial equation@
that can be written in the form

dx i f.()
- = 2_aiTi(X),
dat &

where fj(x) are known nonlinear functions and are unknown, but constant,
parameters. Suppose that we have measurements (or es}infdtesfull statex

at time instantd,, t, ..., ty, with N > M. Show that the parametess can be
determined by finding the least squares solution to a lineaatéan of the form
Ha = b,

wherea € RM is the vector of all parameters amtl € RN*M andb € RN are
appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped sprimass system with
dynamics
md + cq + kg = F.

Let wp = +/k/m be the natural frequency agd= c/(2~/km) be the damping
ratio.

(&) Show that by rescaling the equations, we can write therdigsin the form
G + 20 w0 + w5 = wiu, (2.35)

whereu = F/k. This form of the dynamics is that of a linear oscillator wititural
frequencywy and damping ratig.

(b) Show that the system can be further normalized and wiiittéme form

d d
84 L, SR 2zt (2.36)
dr dr

The essential dynamics of the system are governed by a siaglpidg parameter
¢. The Q-valuedefined af) = 1/2¢ is sometimes used instead/f

2.7 (Electric generator) An electric generator connected toaagtpower grid can
be modeled by a momentum balance for the rotor of the gemerato

d?%p
dt?
wherel is the effective moment of inertia of the generagothe angle of rotation,
P the mechanical power that drives the generdgis the active electrical power,
E the generator voltag¥, the grid voltage ani the reactance ofthe line. Assuming
that the line dynamics are much faster than the rotor dyrgnflc = VI =
(EV/X) sing, wherel is the current component in phase with the voltagande

is the phase angle between voltagesndV . Show that the dynamics of the electric

EV |
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generator has a normalized form that is similar to the dynawiia pendulum with
forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing systescribed in
Example2.10 The long delays created by temporary overloads can be rédyce
rejecting requests when the queue gets large. This allowestgthat are accepted
to be serviced quickly and requests that cannot be accontawda receive a
rejection quickly so that they can try another server. Gagrsin admission control
system described by

dx X
at =AU — ,Umaxm, u = safo,1)(K(r —x)), (2.37)

where the controller is a simple proportional control wititusation (sat, ) is
defined by equation3(9)) andr is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rusbrleifect and explain
how the choice of affects the system dynamics.

2.9(Biological switch) A genetic switch can be formed by contiregtwo repres-
sors together in a cycle as shown below.

A
- 7\
u1_|</§,_uz LA [ B
B

~~...

LUz

Using the models from Examp®13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach sstatyquickly—show
that the dynamics can be written in normalized coordinates a

dz i dz u

- = n — 21— V1, - = n

dr 1+7 dr 1+27]
wherez; andz, are scaled versions of the protein concentrations andrtteedcale

has also been changed. Show that 200 using the parameters in Exam@lé3
and use simulations to demonstrate the switch-like beha¥ithe system.

— Zp — 02, (238)

2.10(Motor drive) Consider a system consisting of a motor dgviwo masses that
are connected by a torsional spring, as shown in the diagehoab

b1 P2

I Motor

(Y] (2
Ji Js

This system can represent a motor with a flexible shaft thagégi@oad. Assuming
that the motor delivers a torque that is proportional to tineemt, the dynamics of
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the system can be described by the equations

d%p, (d¢1 do2

(=2 — 222 k(g1 — 02) = ki
Jl dt2 +C dt dt ) + (@1 (/’2) | LIPY (2 39)
d2p,  (dp,  do '
Yge +o(gr ) TRe e =T

Similar equations are obtained for a robot with flexible armg fam the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing nber(alized)
state variablesy; = @1, Xo = @2, X3 = w1/wo, andXy = wz/wp, Wherewy =
JK(J1 + J) /(1)) is the undamped natural frequency of the system when the
control signal is zero.




Chapter Three

Examples

... Don't apply any model until you understand the simplifying assumptionwhich it is
based, and you can test their validity. Catch phrase: use only as dirdatedt limit yourself
to a single model: More than one model may be useful for understandiiegedif aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models—Uses and Limitations,” 1930I7Q.

In this chapter we present a collection of examples spanmiagy different
fields of science and engineering. These examples will be usedghout the
text and in exercises to illustrate different concepts.tKimse readers may wish to
focus on only a few examples with which they have had the ntramt@xperience or
insight to understand the concepts of state, input, outpditignamics in a familiar
setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback systeougtered in
everyday life. The system attempts to maintain a constantitglin the presence
of disturbances primarily caused by changes in the slopeadé The controller
compensates for these unknowns by measuring the speed@drthed adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figifle Let v be
the speed of the car and the desired (reference) speed. The controller, which
typically is of the proportional-integral (Pl) type des@ibbriefly in Chapted,
receives the signals ando, and generates a control signakhat is sent to an
actuator that controls the throttle position. The throttiélirn controls the torque
T delivered by the engine, which is transmitted through thergiand the wheels,
generating a forcé that moves the car. There are disturbance fofggdue to
variations in the slope of the road, the rolling resistanue @aerodynamic forces.
The cruise controller also has a human—-machine interfadeattoavs the driver
to set and modify the desired speed. There are also functianslisconnect the
cruise control when the brake is touched.

The system has many individual components—actuator, engaresmission,
wheels and car body—and a detailed model can be very cortgaich spite of
this, the model required to design the cruise controllertEaguite simple.

To develop a mathematical model we start with a force balfordbe car body.
Letv be the speed of the cam the total mass (including passengeis)he force
generated by the contact of the wheels with the road,Frntie disturbance force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torduéhat is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environmestt,asiaerodynamic
drag and gravitational forces on hills, the net force causes the car\e.ribe velocity

of the caro is measured by a control system that adjusts the throttle through an actuation
mechanism. A driver interface allows the system to be turned on andhoffree reference
speed, to be established.

due to gravity, friction and aerodynamic drag. The equatfonation of the car is
simply
m=F—Fo. (3.1)
The forceF is generated by the engine, whose torque is proportionhEetcete
of fuel injection, which is itself proportional to a contrsignal 0 < u < 1 that
controls the throttle position. The torque also depends gimerspeed. A simple
representation of the torque at full throttle is given by tibrgue curve

2
T(w):Tm(l—ﬁ(wﬂm—l) ) (3.2)

where the maximum torqug, is obtained at engine spee#,. Typical parameters
are T, = 190 Nm,wn,, = 420 rad/s (about 4000 RPM) arfd= 0.4. Letn be

the gear ratio and the wheel radius. The engine speed is related to the velocity
through the expression

n
W= —0 =:0p,
r

and the driving force can be written as
nu
F = r—T(a)) = apuT (an0).

Typical values ofx, for gears 1 through 5 are = 40,0, = 25,03 = 16,04 = 12
andas = 10. The inverse of, has a physical interpretation as thfective wheel
radius Figure3.2shows the torque as a function of engine speed and vehiae spe
The figure shows that the effect of the gear is to “flatten” theuergurve so that
an almost full torque can be obtained almost over the whaedpange.

The disturbance forc&y has three major componentsy, the forces due to
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Figure 3.2: Torque curves for typical car engine. The graph on the left showsotigeie
generated by the engine as a function of the angular velocity of the engiile,the curve
on the right shows torque as a function of car speed for differemsgea

gravity; F, the forces due to rolling friction; anfe,, the aerodynamic drag. Letting
the slope of the road b, gravity gives the forcé-; = mgsind, as illustrated in
Figure3.33 whereg = 9.8 m/¢ is the gravitational constant. A simple model of
rolling friction is

F = mgG sgn),

whereC; is the coefficient of rolling friction and sgn) is the sign ofv (1) or
zero ifo = 0. A typical value for the coefficient of rolling friction i€, = 0.01.
Finally, the aerodynamic drag is proportional to the squatbespeed:

1
Fa= EpCdsz,

wherep isthe density of ailC4 is the shape-dependent aerodynamic drag coefficient
andAisthe frontal area of the car. Typical parametergase 1.3 kg/n¥, Cq = 0.32
andA = 2.4 nt.

Summarizing, we find that the car can be modeled by

m% = anuT(an0) — MgG sgn) — %pcd Av? — mgsing, (3.3)

where the functiorT is given by equation3.2). The model 8.3) is a dynamical
system of first order. The state is the car veloeityvhich is also the output. The
input is the signal that controls the throttle position, and the disturbanahés
force Fy4, which depends on the slope of the road. The system is nonlieeause
of the torque curve, the gravity term and the nonlinear attaraf rolling friction
and aerodynamic drag. There can also be variations in thengéees; e.g., the mass
of the car depends on the number of passengers and the loagdagiied in the
car.

We add to this model a feedback controller that attemptsgola¢e the speed
of the car in the presence of disturbances. We shall use aiapal-integral
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diaggam
shown in (a), and (b) shows the response in speed and throttle whareao$l is encoun-
tered. The hill is modeled as a net change ofrdhill angle#, with a linear change in the
angle betweeh = 5 andt = 6. The PI controller has proportional gairkis = 0.5, and the
integral gain is; = 0.1.

controller, which has the form

t
u(t) = kpe(t) +k; /o e(r)dr.

This controller can itself be realized as an input/outputasgital system by defin-
ing a controller state and implementing the differential equation

dz

dt
whereu;, is the desired (reference) speed. As discussed briefly indpels, the
integrator (represented by the stajeensures that in steady state the error will be
driven to zero, even when there are disturbances or modetdings. (The design of
P1 controllers is the subject of ChaptHd.) Figure3.3bshows the response of the
closed loop system, consisting of equatioBs)and 3.4), when it encounters a
hill. The figure shows that even if the hill is so steep that thettte changes from
0.17 to almost full throttle, the largest speed error isteas 1 m/s, and the desired
velocity is recovered after 20 s.

Many approximations were made when deriving the mo8) (It may seem
surprising that such a seemingly complicated system caad®ithed by the simple
model @.3). It is important to make sure that we restrict our use of tlualeh to
the uncertainty lemon conceptualized in Fig@r&5h The model is not valid for
very rapid changes of the throttle because we have ignoesdigtails of the engine
dynamics, neither is it valid for very slow changes becatuseproperties of the
engine will change over the years. Nevertheless the modarisuseful for the
design of a cruise control system. As we shall see in lateptelng, the reason for
thisis the inherent robustness of feedback systems: etlenfiodel is not perfectly

O — 0, u==kp(or —v)+kiz (3.4)
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Figure 3.4: Finite state machine for cruise control system. The figure on the left show
some typical buttons used to control the system. The controller can be iof éour modes,
corresponding to the nodes in the diagram on the right. Transition betweendtles is
controlled by pressing one of the five buttons on the cruise control iotrfan, off, set,
resume or cancel.

accurate, we can use it to design a controller and make use déeédback in the
controller to manage the uncertainty in the system.

The cruise control system also has a human—machine integtfatallows the
driver to communicate with the system. There are many diftesays to implement
this system; one version is illustrated in Figdd. The system has four buttons:
on-off, set/decelerate, resume/accelerate and cancebgdration of the system
is governed by a finite state machine that controls the mod#sed®?l controller
and the reference generator. Implementation of contsodied reference generators
will be discussed more fully in Chaptéo.

The use of control in automotive systems goes well beyondithpls cruise
control system described here. Applications include eomsscontrol, traction
control, power control (especially in hybrid vehicles) adhptive cruise control.
Many automotive applications are discussed in detail irbthek by Kiencke and
Nielsen KNOQ] and in the survey papers by Powers et BP§G PNOQ.

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the fesatinat one of its key
properties is due to a feedback mechanism that is creatdeelmesign of the front
fork. A detailed model of a bicycle is complex because théssydas many degrees
of freedom and the geometry is complicated. However, a glealtof insight can
be obtained from simple models.

To derive the equations of motion we assume that the bicydle on the hor-
izontal Xy plane. Introduce a coordinate system that is fixed to the @oyith
the ¢-axis through the contact points of the wheels with the gdouhe »-axis
horizontal and the-axis vertical, as shown in Figu®5. Letog be the velocity of
the bicycle at the rear whedd,the wheel basey the tilt angle and the steering
angle. The coordinate system rotates around the @inith the angular veloc-
ity @ = vod/b, and an observer fixed to the bicycle experiences forces dineto
motion of the coordinate system.
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Figure 3.5: Schematic views of a bicycle. The steering angk &nd the roll angle ig. The
center of mass has heightaind distance from a vertical through the contact poiit of the
rear wheel. The wheel baselisand the trail isc.

The tilting motion of the bicycle is similar to an inverted gefum, as shown in
the rear view in Figur8.50. To model the tilt, consider the rigid body obtained when
the wheels, the rider and the front fork assembly are fixeddditycle frame. Let
m be the total mass of the systeththe moment of inertia of this body with respect
to theé-axis andD the product of inertia with respect to thig axes. Furthermore,
let the and ¢ coordinates of the center of mass with respect to the reaelwhe
contact point,P;, bea andh, respectively. We havé@ ~ mi andD = mah The
torques acting on the system are due to gravity and cerdtipetion. Assuming
that the steering angleis small, the equation of motion becomes

d?p  Dogdo mo3h

ae " b gt~ mahsing + =

The termmghsing is the torque generated by gravity. The terms contaifiagd
its derivative are the torques generated by steering, Wwighdrm(Dog/b) do/dt
due to inertial forces and the terfmo3h/b) 6 due to centripetal forces.

The steering angle is influenced by the torque the rider apmi¢ise handle
bar. Because of the tilt of the steering axis and the shaphleofront fork, the
contact point of the front wheel with the ro&d is behind the axis of rotation of the
front wheel assembly, as shown in Fig@.&c. The distance between the contact
point of the front wheeP, and the projection of the axis of rotation of the front
fork assemblyP; is called thetrail. The steering properties of a bicycle depend
critically on the trail. A large trail increases stabilitytomakes the steering less
agile.

A consequence of the design of the front fork is that the stgeangleo is
influenced both by steering torglieand by the tilt of the frame. This means
that a bicycle with a front fork is #&edback systemas illustrated by the block
diagram in Figure3.6. The steering anglé influences the tilt angle, and the
tilt angle influences the steering angle, giving rise to tmeutar causality that is

0. (3.5)
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applietthéo
handlebars idT, the roll angle isp and the steering angle & Notice that the front fork
creates a feedback from the roll angl¢o the steering angléthat under certain conditions
can stabilize the system.

characteristic of reasoning about feedback. For a froktkath a positive trail, the
bicycle will steer into the lean, creating a centrifugatthat attempts to diminish
the lean. Under certain conditions, the feedback can dgtsialbbilize the bicycle.
A crude empirical model is obtained by assuming that thekoBcan be modeled

as the static system
0=kT —kop. (3.6)

This model neglects the dynamics of the front fork, the tioaer interaction and
the fact that the parameters depend on the velocity. A marnerate model, called
theWhipple modelis obtained using the rigid-body dynamics of the front farkl
the frame. Assuming small angles, this model becomes

o[ ] wreafe]-[2]. e

where the elements of the2 matriceaM, C, Ky andK; depend on the geometry
and the mass distribution of the bicycle. Note that this Hasra somewhat similar
to that of the spring—mass system introduced in Ch&xed the balance systemin
Example2.1 Even this more complex model is inaccurate because theatien
between the tire and the road is neglected; taking this into@nt requires two
additional state variables. Again, the uncertainty lemmoRigure2.15bprovides a
framework for understanding the validity of the model untihese assumptions.

Interesting presentations on the development of the kecgok given in the
books by D. Wilsonil04] and Herlihy Her04. The model 8.7) was presented
in a paper by Whipple in 189%hi99]. More details on bicycle modeling are given
in the paper AKLO5], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementatiddlack’s feedback
amplifier. It is a universal component that is widely used f@tiumentation, con-
trol and communication. It is also a key element in analogmating. Schematic
diagrams of the operational amplifier are shown in FiguveThe amplifier has one
inverting input ¢_), one noninverting inputy(,) and one outputv,). There are
also connections for the supply voltages,ande,, and a zero adjustment (offset
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all connect{c) Only the
signal connections.

null). A simple model is obtained by assuming that the inputentsi_ andi, are
zero and that the output is given by the static relation

Dout = S8y ome0 (K04 — 02)), (3.8)
where sat denotes the saturation function
a ifx<a
Safap(X) =1x ifa<x<b (3.9)
b if x> bh.

We assume that the galinis large, in the range of £810%, and the voltagesmn

andomax satisfy
€_ < Umin < Umax < €4

and hence are inthe range of the supply voltages. More aecuralels are obtained
by replacing the saturation function with a smooth funcasrshown in Figur8.8.
For small input signals the amplifier characteris8c] is linear:

vout = K(vy —ov_) =: —ko. (3.10)
Dout
Umax
vy —U_
Umin

Figure 3.8: Input/output characteristics of an operational amplifier. The differkinibat is
given byv, —o_. The output voltage is a linear function of the input in a small range around
0, with saturation atbmin andomax. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feledbaiand
an operational amplifier and has a corresponding block diagramlib):esistordR; and R,
determine the gain of the ampilifier.

Since the open loop gaknis very large, the range of input signals where the system
is linear is very small.

A simple amplifier is obtained by arranging feedback arourmditisic opera-
tional amplifier as shown in Figur&9a To model the feedback amplifier in the
linear range, we assume that the curiignt i_ + i, is zero and that the gain of
the amplifier is so large that the voltage= v_ — v, is also zero. It follows from
Ohm'’s law that the currents through resist&isand R, are given by

vy D2
RR R’
and hence the closed loop gain of the amplifier is
R,
Y2 _ kg, where kg = —2. (3.11)
D1 Rl

A more accurate model is obtained by continuing to negleetdinrentiy but
assuming that the voltageis small but not negligible. The current balance is then
D1 —0 L — U2
= . 3.12
R Ry (3.12)
Assuming that the amplifier operates in the linear range aimgj @sjuation 8.10,
the gain of the closed loop system becomes

D2 . Rz kR1

__v2_R KR 3.13
ke v1 RIRI+R+kR (313)

If the open loop gairk of the operational amplifier is large, the closed loop gain
kq is the same as in the simple model given by equat®alj. Notice that the
closed loop gain depends only on the passive componenthandariations irk
have only a marginal effect on the closed loop gain. For exavifigx = 10° and
R,/R1 = 100, a variation ok by 100% gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nicesthation of how feedback
can be used to make precise systems from uncertain comgoietitis particular
case, feedback is used to trade high gain and low robustoeks\f gain and high
robustness. Equatio.(l3 was the formula that inspired Black when he invented
the feedback amplifieBla34] (see the quote at the beginning of Chaitay.
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around aratipeal
amplifier. The capacito€ is used to store charge and represents the integral of the input.

It is instructive to develop a block diagram for the feedbaokplifier in Fig-
ure3.9a To do this we will represent the pure amplifier with inpuand outpub,
as one block. To complete the block diagram, we must deshdibe depends on
01 ando,. Solving equation3.12 for o gives

R Ry R R
v R; + szl + Ry + RZUZ B Ry + Rz(Rlvl + 1)2),

and we obtain the block diagram shown in Fig8réh The diagram clearly shows
that the system has feedback and that the gain frotow is Ry /(R; + Ry), which
can also be read from the circuit diagram in Fig8r@a If the loop is stable and
the gain of the amplifier is large, it follows that the ereas small, and we find that
v2 = —(Rz/Ry)v1. Notice that the resistoR; appears in two blocks in the block
diagram. This situation is typical in electrical circuitsidait is one reason why
block diagrams are not always well suited for some types g$jgll modeling.

The simple model of the amplifier given by equati@nl(Q) provides qualitative
insight, but it neglects the fact that the amplifier is a dyrahsystem. A more
realistic model is

dogyt

dt

The parametdrs that has dimensions of frequency and is calledie-bandwidth
productof the amplifier. Whether a more complicated model is used ridpen
the questions to be answered and the required size of thetaimtyg lemon. The
model @.14) is still not valid for very high or very low frequencies sadrift
causes deviations at low frequencies and there are adalitignamics that appear
at frequencies close to The model is also not valid for large signals—an upper
limitis given by the voltage of the power supply, typicallythe range of 5-10 V—
neither is it valid for very low signals because of electriwaise. These effects can
be added, if needed, but increase the complexity of the aisaly

The operational amplifier is very versatile, and many diffessistems can be
built by combining it with resistors and capacitors. In faty linear system can
be implemented by combining operational amplifiers withstess and capacitors.
Exercise3.5shows how a second-order oscillator is implemented, and&gyt0
shows the circuit diagram for an analog proportional-irdégontroller. To develop
a simple model for the circuit we assume that the cuiiggistzero and that the open
loop gaink is so large that the input voltageis negligible. The currentthrough

- _aUOut - bl). (314)
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the capacitor i$ = Cdo./dt, whereuo, is the voltage across the capacitor. Since
the same current goes through the resiggrwe get

01 dog

TR Car
which implies that

1 /. 1 t
ve(t) = E/I(t) dt = @/0 v1(7)dz.

The output voltage is thus given by

. R, 1 t
v2(t) = —Rol —oc = _ﬁlvl(t) - @ vi(r)dr,
0

which is the input/output relation for a Pl controller.

The development of operational amplifiers was pioneered by tkl[Lun05
Phi4g, and their usage is described in many textbooks (e3,75]). Good infor-
mation is also available from suppliedujp02 Man032.

3.4 Computing Systems and Networks

The application of feedback to computing systems followsstiie principles as
the control of physical systems, but the types of measur&raard control inputs
that can be used are somewhat different. Measurementso(sgrse typically
related to resource utilization in the computing systemetwork and can include
guantities such as the processor load, memory usage ornketaradwidth. Control
variables (actuators) typically involve setting limits the resources available to a
process. This might be done by controlling the amount of mgnubsk space or
time that a process can consume, turning on or off processatgying availability
of a resource or rejecting incoming requests to a servelegsdrocess modeling
for networked computing systems is also challenging, angieal models based
on measurements are often used when a first-principles n®det available.

Web Server Control

Web servers respond to requests from the Internet and gravidrmation in the
form of web pages. Modern web servers start multiple prese$s respond to
requests, with each process assigned to a single sourtaafirther requests are
received from that source for a predefined period of time. RgEethat are idle
become part of a pool that can be used to respond to new reqiiesprovide a
fast response to web requests, it is important that the wedersprocesses do not
overload the server's computational capabilities or egh@simemory. Since other
processes may be running on the server, the amount of aegiledressing power
and memory is uncertain, and feedback can be used to prowitd merformance
in the presence of this uncertainty.
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Figure 3.11:Feedback control of a web server. Connection requests arriveiopat queue,
where they are sent to a server process. A finite state machine kedpsftthe state of the
individual server processes and responds to requests. A colgasitm can modify the
server’s operation by controlling parameters that affect its behastich as the maximum
number of requests that can be serviced at a single filag@ i ent s) or the amount of
time that a connection can remain idle before it is dropp@epAl i ve).

Figure 3.11 illustrates the use of feedback to modulate the operatioanof
Apache web server. The web server operates by placing ingooainnection re-
guests on a queue and then starting a subprocess to handtst®fpr each accepted
connection. This subprocess responds to requests from @ givanection as they
come in, alternating betweenBusy state and aMi t state. (Keeping the sub-
process active between requests is known apéhsistencef the connection and
provides a substantial reduction in latency to requestmfdtiple pieces of infor-
mation from a single site.) If no requests are received faficgently long period
of time, controlled by thé&keepAl i ve parameter, then the connection is dropped
and the subprocess enterslah e state, where it can be assigned another connec-
tion. A maximum ofVaxCl i ent s simultaneous requests will be served, with the
remainder remaining on the incoming request queue.

The parameters that control the server represent a tradeebffeen perfor-
mance (how quickly requests receive a response) and resosage (the amount
of processing power and memory used by the server). InorgtdsMaxCl i ent s
parameter allows connection requests to be pulled off ofjtiese more quickly
but increases the amount of processing power and memorg tisagis required.
Increasing th&eepAl i ve timeout means that individual connections can remain
idle for alonger period of time, which decreases the prangdsad on the machine
butincreases the size of the queue (and hence the amoumeaiquired for a user
to initiate a connection). Successful operation of a busyeseequires a proper
choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we craaliscrete-time
model with states given by the average processor leg¢dand the percentage
memory usage&menm 1he inputs to the system are taken as the maximum number
of clientsunc and the keep-alive timey,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

Xep K+ 11 | | Ar Asz| | XepulK] Bir Bi2]| [ UkalK]
[XmZn{k+1]] B [A21 Azz] [XmZn{k]]+[BZl Bzz] [Umc[k] + (3.19)

where the coefficients of thandB matrices can be determined based on empirical
measurements or detailed modeling of the web server’s psamg and memory
usage. Using system identification, Diao et BIGH+02 HDPTO04 identified the
linearized dynamics as

A_ [ 054 -011 a_[-85 44
~ |-0026 Q63 " ~ |-25 28

where the system was linearized about the equilibrium point
chu - 058, uka = 11 S Xmem - 055, Umc = 600

This model shows the basic characteristics that were destabove. Looking
first at theB matrix, we see that increasing teepAl i ve timeout (first column
of the B matrix) decreases both the processor usage and the menawy sisice
there is more persistence in connections and hence the seemds a longer time
waiting for a connection to close rather than taking on a netiveconnection. The
MaxC i ent s connectionincreases both the processing and memory eaggiitts.
Note that the largest effect on the processor load iskibepAl i ve timeout.
The A matrix tells us how the processor and memory usage evolveegian of
the state space near the equilibrium point. The diagonalstel@scribe how the
individual resources return to equilibrium after a transiecrease or decrease.
The off-diagonal terms show that there is coupling betweertwo resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later exdegpthat it can
be used to modify the parameters controlling the serverahtime and provide
robustness with respect to uncertainties in the load on #ehime. Similar types of
mechanisms have been used for other types of servers. Ip@riant to remember
the assumptions on the model and their role in determinirgnvwhe model is valid.
In particular, since we have chosen to use average quartitier a given sample
time, the model will not provide an accurate representatosrhigh-frequency
phenomena.

] x 1074,

Congestion Control

The Internet was created to obtain a large, highly decenédliefficient and ex-
pandable communication system. The system consists of & tangber of inter-
connected gateways. A message is split into several paskéth are transmitted
over different paths in the network, and the packages aoineg] to recover the
message at the receiver. An acknowledgment (“ack”) messaggnt back to the
sender when a packet is received. The operation of the systgoverned by a
simple but powerful decentralized control structure ttre &volved over time.
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Figure 3.12: Internet congestion control. (a) Source computers send informati@uters,
which forward the information to other routers that eventually connectogbeiving com-
puter. When a packet is received, an acknowledgment packet isasgnthrough the routers
(not shown). The routers buffer information received from thersesiand send the data
across the outgoing link. (b) The equilibrium buffer sizdor a set ofN identical computers
sending packets through a single router with drop probabhility

The system has two control mechanisms capestocols the Transmission
Control Protocol (TCP) for end-to-end network communicatiod ¢he Internet
Protocol (IP) for routing packets and for host-to-gateway ategay-to-gateway
communication. The current protocols evolved after sometapalar congestion
collapses occurred in the mid 1980s, when throughput ureésgly could drop by
a factor of 1000 Jac9%. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the recaivd back to the
sender. The sending rate is increased exponentially whee th@o congestion,
and it is dropped to a low level when there is congestion.

To derive an overall model for congestion control, we motieéé¢ separate
elements of the system: the rate at which packets are semdbydual sources
(computers), the dynamics of the queues in the links (reptmnd the admission
control mechanism for the queues. FigBr&2ais a block diagram of the system.

The current source control mechanism on the Internet is a@obknown
as TCP/RenolJPDO0Z. This protocol operates by sending packets to a receiver
and waiting to receive an acknowledgment from the receivar the packet has
arrived. If no acknowledgment is sent within a certain tingoeriod, the packet
is retransmitted. To avoid waiting for the acknowledgmeafobe sending the next
packet, Reno transmits multiple packets up to a finéldow around the latest
packetthat has been acknowledged. If the window lengtiosamproperly, packets
at the beginning of the window will be acknowledged before gburce transmits
packets at the end of the window, allowing the computer tdinaously stream
packets at a high rate.

To determine the size of the window to use, TCP/Reno uses adekahech-
anism in which (roughly speaking) the window size is incezblsy 1 every time a
packet is acknowledged and the window size is cut in half wieerkets are lost.
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This mechanism allows a dynamic adjustment of the window isizehich each
computer acts in a greedy fashion as long as packets are delingred but backs
off quickly when congestion occurs.

A model for the behavior of the source can be developed byrithérsg the
dynamics of the window size. Suppose we h&Weomputers and let; be the
current window size (measured in number of packets) for thecomputer. Let
g represent the end-to-end probability that a packet will moped someplace
between the source and the receiver. We can model the dysafibe window
size by the differential equation

% - (1—Qi)r'(t—fl)+Qi(—ﬂri(t —),  n=— (3.16)
t Wi 2 Tj

wherez; is the end-to-end transmission time for a packet to reackdsrhtion and
the acknowledgment to be sent back and the resulting rate at which packets
are cleared from the list of packets that have been receiaal first term in the
dynamics represents the increase in window size when apiackeeived, and the
second term represents the decrease in window size wherket pgost. Notice
thatr; is evaluated at time— z;, representing the time required to receive additional
acknowledgments.

The link dynamics are controlled by the dynamics of the rogtezue and the
admission control mechanism for the queue. Assume that we Lhdinks in the
network and uskto index the individual links. We model the queue in termshef t
current number of packets in the router’s butieand assume that the router can
contain a maximum df max packets and transmits packets at a catequal to the
capacity of the link. The buffer dynamics can then be written a

dh f
=96 S —{i:%:mr.(t %), (3.17)

wherelL; is the set of links that are being used by sodumﬁf is the time it takes a
packet from sourceto reach linkl ands is the total rate at which packets arrive
at link .

The admission control mechanism determines whether a giaekep is ac-
cepted by a router. Since our model is based on the averagttopsin the network
and not the individual packets, one simple model is to asshatehe probability
that a packet is dropped depends on how full the buffepjiss m; (b, bmay). For
simplicity, we will assume for now thap = pby (see Exercis@.6 for a more
detailed model). The probability that a packet is droppedjaten link can be used
to determine the end-to-end probability that a packet isitogansmission:

g=1-[]a-p~D pt—1p, (3.18)
lel; leL;

wherez is the backward delay from linkto sourcel and the approximation is
valid as long as the individual drop probabilities are sma# use the backward
delay since this represents the time required for the acletmyment packet to be
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received by the source.

Together, equations(16), (3.17) and @.18 represent a model of congestion
control dynamics. We can obtain substantial insight by t|1g1g a special case
in which we haveN identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can beéghan which case
the dynamics can be reduced to the form

dw; 1 pC(2+wi2) db N Wi b
dt T 2 ’ dt ~ 7 ’ ¢ c’ ( )
wherew; e R,i =1, ..., N, are the window sizes for the sources of data, R is

the current buffer size of the routercontrols the rate at which packets are dropped
andc is the capacity of the link connecting the router to the cotarau The variable

7 represents the amount of time required for a packet to beepsecl by a router,
based on the size of the buffer and the capacity of the linkstuking z into the
eqguations, we write the state space dynamics as

N

duw; C w,2 db cw;
= 2o+ ). PRI (3.20)
More sophisticated models can be founditMTGO0O0, LPDOZ]. '

The nominal operating point for the system can be found binggti = b = 0:

c w? N cwi
0=-—pc(1+L 0=> -1 _¢
b pC( + 2), 2 b c

Exploiting the fact that all of the source dynamics are idzaifiit follows that all
of thew; should be the same, and it can be shown that there is a unigilbbagm
satisfying the equations
be Crte 1 3
The solution for the second equation is a bit messy but calyé@siletermined nu-
merically. A plot of its solution as a function of {2p?N?) is shown in Figur&.12h
We also note that at equilibrium we have the following adxdisil equalities:
b N
o= —=-—"% Ge=Np=Npb, re=-°.  (3.22)
Cc c Te
Figure 3.13shows a simulation of 60 sources communicating across #sing
link, with 20 sources dropping out at= 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Notetlieabuffer size and
window sizes automatically adjust to match the capacitheflink.

A comprehensive treatment of computer networks is giveméntéxtbook by
TannenbaumTan9§g. A good presentation of the ideas behind the control prin-
ciples for the Internet is given by one of its designers, Vacobson, inJac9j.

F. Kelly [Kel85] presents an early effort on the analysis of the system. Tho& bo
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Figure 3.13:Internet congestion control fdt identical sources across a single link. As shown
on the left, multiple sources attempt to communicate through a router acsoggle link. An
“ack” packet sent by the receiver acknowledges that the messageeaeived; otherwise the
message packet is resent and the sending rate is slowed down atrite §de simulation
on the right is for 60 sources starting random rates, with 20 sourcppidgout at = 500
ms. The buffer size is shown at the top, and the individual source fiatésof the sources
are shown at the bottom.

by Hellerstein et al. HDPT04 gives many examples of the use of feedback in
computer systems.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig andieleiRohrer
for their design of thescanning tunneling microscop&he idea of the instrument
is to bring an atomically sharp tip so close to a conductinggse that tunneling
occurs. An image is obtained by traversing the tip acrossahgle and measuring
the tunneling current as a function of tip position. This mien has stimulated
the development of a family of instruments that permit viagion of surface
structure at the nanometer scale, including d@b@mic force microscopAFM),
where a sample is probed by a tip on a cantilever. An AFM canatpen two
modes. Intapping modehe cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. Inontact modehe cantilever is in contact with the
sample, and its bending is controlled by feedback. In batkesaontrol is actuated
by a piezo element that controls the vertical position ofdhetilever base (or the
sample). The control system has a direct influence on pictuatitgiand scanning
rate.

A schematic picture of an atomic force microscope is showkignre3.14a A
microcantilever with a tip having a radius of the order of 10 is placed close to
the sample. The tip can be moved vertically and horizontalggia piezoelectric
scanner. It is clamped to the sample surface by attractivelga\Waals forces and
repulsive Pauli forces. The cantilever tilt depends on tpegoaphy of the surface
and the position of the cantilever base, which is controtigdhe piezo element.
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic forceamic
scope, consisting of a piezo drive that scans the sample under the AFMaiger reflects off
of the cantilever and is used to measure the detection of the tip throughbatdecbntroller.
(b) An AFM image of strands of DNA. (Image courtesy Veeco Instraoteg

The tilt is measured by sensing the deflection of the laser ba@rg a photodiode.
The signal from the photodiode is amplified and sent to a cdatrthat drives
the amplifier for the vertical position of the cantilever. Bgntrolling the piezo
element so that the deflection of the cantilever is consthatsignal driving the
vertical deflection of the piezo element is a measure of thaiattorces between
the cantilever tip and the atoms of the sample. An image oftiniace is obtained
by scanning the cantilever along the sample. The resolutiakesnit possible to
see the structure of the sample on the atomic scale, agalledtin Figure3.14h
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a sprmgss system
with low damping. The vertical motion is more complicated.riiodel the system,
we start with the block diagram shown in Figl&d.5 Signals that are easily acces-
sible are the input voltage to the power amplifier that drives the piezo element,

Sample topography

_| Piezo 2 Cantil ? | Laser&
element .| wantiever photodiode

Deflection reference

'

Power | Y |D Al Y| Signal

amplifier [~ A| Computery, = amplifier [~

Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempiefo tke can-
tilever deflection equal to its reference value. Cantilever deflection isurexsamplified
and converted to a digital signal, then compared with its reference vat@récting signal is
generated by the computer, converted to analog form, amplified ahtbgka piezo element.
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step respdhge
top curve shows the voltageapplied to the drive amplifier (50 mV/div), the middle curve
is the outputV, of the power amplifier (500 mV/div) and the bottom curve is the output
of the signal amplifier (500 mV/div). The time scale is 25/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical postiamd the piezo
crystal.

the voltagevr applied to the piezo element and the output voltggd the signal
amplifier for the photodiode. The controller is a Pl controll@plemented by a
computer, which is connected to the system by analog-tivatlig/D) and digital-
to-analog (D/A) converters. The deflection of the cantilevés also shown in the
figure. The desired reference value for the deflection is an itopilie computer.

There are several different configurations that have diftatgmamics. Here we
will discuss a high-performance system fro8AD+07 where the cantilever base
is positioned vertically using a piezo stack. We begin th@etiag with a simple
experiment on the system. FiglBd 6ashows a step response of a scanner from the
input voltageu to the power amplifier to the output voltagef the signal amplifier
for the photodiode. This experiment captures the dynamitiseo€hain of blocks
fromutoy in the block diagram in Figurg.15 Figure3.16ashows that the system
responds quickly but that there is a poorly damped oscilfatwode with a period
of about 35 ps. A primary task of the modeling is to understiedorigin of the
oscillatory behavior. To do so we will explore the system iorendetail.

The natural frequency of the clamped cantilever is typicalyeral hundred
kilohertz, which is much higher than the observed oscidlavf about 30 kHz. As
a first approximation we will model it as a static system. Simeedeflections are
small, we can assume that the bendingf the cantilever is proportional to the
difference in height between the cantilever tip at the praniethe piezo scanner. A
more accurate model can be obtained by modeling the caettiéeva spring—mass
system of the type discussed in Chajiter

Figure 3.16aalso shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast respomsksam thus be mod-
eled as static systems. The remaining block is a piezo sysidnsuspension. A
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schematic mechanical representation of the vertical matiohe scanner is shown
in Figure3.16h We will model the system as two masses separated by an ideal
piezo element. The mass; is half of the piezo system, and the massgis the
other half of the piezo system plus the mass of the support.
A simple model is obtained by assuming that the piezo crgstaérates a force
F between the masses and that there is a danguimghe spring. Let the positions
of the center of the masses beandz,. A momentum balance gives the following
model for the system:
d?z, d?z, dz
Mae =5 M™ae T %
Let the elongation of the piezo elemdnt z; — z, be the control variable and
the heightz; of the cantilever base be the output. Eliminating the vagidblin
eqguations above and substitutimg— | for z, gives the model

- k222 - F.

2 2
% + Cz% + kozy = mg% + Cz% + Kol . (323)

Summarizing, we find that a simple model of the system is obddigenodeling
the piezo by 8.23 and all the other blocks by static models. Introducing thedr
equation$ = kzu andy = k421, we now have a complete model relating the output
y to the control signall. A more accurate model can be obtained by introducing the
dynamics of the cantilever and the power amplifier. As in thevimus examples,
the concept of the uncertainty lemon in Fig@@d5bprovides a framework for
describing the uncertainty: the model will be accurate ughéofrequencies of the
fastest modeled modes and over a range of motion in whiclarized stiffness
models can be used.

The experimental results in FiguBel6acan be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expandkthe massn; moves
up and the massi, moves down instantaneously. The system settles after aypoorl
damped oscillation.

Itis highly desirable to design a control system for theigattmotion so that it
responds quickly with little oscillation. The instrumensdger has several choices:
to accept the oscillation and have a slow response time sigid@ control system
that can damp the oscillations or to redesign the mechaniga¢ resonances of
higher frequency. The last two alternatives give a fastgraese and faster imaging.

Since the dynamic behavior of the system changes with theepiep of the
sample, itis necessary to tune the feedback loop. In singgtems this is currently
done manually by adjusting parameters of a Pl controller. dlage interesting
possibilities for making AFM systems easier to use by intadgiautomatic tuning
and adaptation.

(Mg + my)

The book by Sarid$ar9] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamentallio state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schi&h(].
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of desgrib
drug distribution (based on Teorelldo37). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processeapgroximated by
assuming that the flow is proportional to the concentration differenceg icaimpartments.

The constant& parameterize the rates of flow between different compartments.

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommeadatith which we
are all familiar. Behind this recommendation is a solutibamopen loop control
problem. The key issue is to make sure that the concentrafiannoedicine in
a part of the body is sufficiently high to be effective but nothégh that it will
cause undesirable side effects. The control action is quexhtake two pills and
sampledgevery 8 hoursThe prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and wéitiet patient.

Drug administration is a control problem. To solve it we mustlerstand how
a drug spreads in the body after it is administered. This tagitledpharmacoki-
netics is now a discipline of its own, and the models used are calbeapartment
modelsThey go back to the 1920s when Widmark modeled the propageattedco-
hol in the body WT24]. Compartment models are now important for the screening
of all drugs used by humans. The schematic diagram in Figr&illustrates the
idea of a compartment model. The body is viewed as a numberropadments
like blood plasma, kidney, liver and tissues that are seépdday membranes. It is
assumed that there is perfect mixing so that the drug corat@nt is constant in
each compartment. The complex transport processes arexappted by assuming
that the flow rates between the compartments are proportiotizd concentration
differences in the compartments.

To describe the effect of a drug it is necessary to know batldanhcentration
and how it influences the body. The relation between concémraand its effect
eis typically nonlinear. A simple model is

c
e= . 3.24
ot Cemax ( )
The effect is linear for low concentrations, and it saturatdsigh concentrations.
The relation can also be dynamic, and it is then catledrmacodynamics
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Compartment Models

The simplest dynamic model for drug administration is olgeiby assuming that
the drug is evenly distributed in a single compartment dfteas been administered
and that the drug is removed at a rate proportional to theergration. The com-
partments behave like stirred tanks with perfect mixing.dle¢ the concentration,
V the volume andj the outflow rate. Converting the description of the system int
differential equations gives the model
dc

Var =
This equation has the solutiarit) = coe 9"V = coet, which shows that the
concentration decays exponentially with the time consfasat V /q after an injec-
tion. The input is introduced implicitly as an initial conidih in the model 8.25).
More generally, the way the input enters the model dependsoanthe drug is
administered. For example, the input can be representedvasa flow into the
compartment where the drug is injected. A pill that is digedlcan also be inter-
preted as an input in terms of a mass flow rate.

The model 8.25 is called a ane-compartment modet asingle-pool model
The parameteq/V is called the elimination rate constant. This simple model
often used to model the concentration in the blood plasman8gsuring the con-
centration at a few times, the initial concentration canlit@imed by extrapolation.
If the total amount of injected substance is known, the v@thcan then be de-
termined a3/ = m/cy; this volume is called thapparent volume of distribution
This volume is larger than the real volume if the concentratiothe plasma is
lower than in other parts of the body. The mod&R§ is very simple, and there
are large individual variations in the parameters. The pataraV andq are often
normalized by dividing by the weight of the person. Typicaftgameters for aspirin
areV = 0.2 L/kg andg = 0.01(L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, araicetlular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/ min /kg.

The simple one-compartment model captures the gross belwddoug distri-
bution, butitis based on many simplifications. Improved ni®dan be obtained by
considering the body as composed of several compartmerdmjidgs of such sys-
tems are shown in Figui®18 where the compartments are represented as circles
and the flows by arrows.

Modeling will be illustrated using the two-compartment rebith Figure3.18a
We assume that there is perfect mixing in each compartmehthat the transport
between the compartments is driven by concentration éifiegs. We further as-
sume that a drug with concentratiogis injected in compartment 1 at a volume
flow rate ofu and that the concentration in compartment 2 is the outputcLand
C, be the concentrations of the drug in the compartments and lahdV, be the

—qgc, c¢=>0. (3.25)

is
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Uy
(a) Two compartment model (b) Thyroid hormone model

Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compairtme
model. Each compartment is labeled by its volume, and arrows indicat@wheffchemical
into, out of and between compartments. (b) A system with six compartmeatsto study
the metabolism of thyroid hormon&pd83. The notationk;; denotes the transport from
compartmenf to compartmeni.

volumes of the compartments. The mass balances for the ctmgods are

dc
Vige = a(c2—€1) —Goc o, €1 2 0,
dc
Vzd—t2 =qC1—C), ©€>0, (3.26)
Yy = Ca.

Introducing the variableky = qo/ V1, ki = q/ V1, ko = q/ V. andby = ¢/ V1 and
using matrix notation, the model can be written as

3_ft:: [—kokz— ka —kli2] c+ [%)] U,  y= [o 1] . (3.27)

Comparing this model with its graphical representation iguFé 3.18a we find
that the mathematical representati@m2() can be written by inspection.

It should also be emphasized that simple compartment medelsas the one in
equation 8.27) have a limited range of validity. Low-frequency limits eXiecause
the human body changes with time, and since the compartnmiglruses average
concentrations, they will not accurately represent rapidnges. There are also
nonlinear effects that influence transportation betweewrdhepartments.

Compartment models are widely used in medicine, enginged environ-
mental science. An interesting property of these systettigats/ariables like con-
centration and mass are always positive. An essential dtffii compartment
modeling is deciding how to divide a complex system into cartpents. Com-
partment models can also be nonlinear, as illustrated in¢lesection.
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the clooitr
glucose. (b) Schematic diagram of the system. (c) Responses of iasdliglucose when
glucose in injected intravenously. FrofB84.

Insulin—glucose Dynamics

It is essential that the blood glucose concentration in thaykis kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is infladriwy many factors
like food intake, digestion and exercise. A schematic pectf the relevant parts
of the body is shown in Figurés19aandb.

There is a sophisticated mechanism that regulates glucosegcwation. Glu-
cose concentration is maintained by the pancreas, whiaetescthe hormones
insulin and glucagon. Glucagon is released into the bloedst when the glucose
level is low. It acts on cells in the liver that release gluedasulin is secreted when
the glucose level is high, and the glucose level is loweredamgsing the liver and
other cells to take up more glucose. In diseases like juzehidbetes the pancreas
is unable to produce insulin and the patient must injectlingato the body to
maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are coagdicdynamics
with time scales that range from seconds to hours have besmadnl. Models of
different complexity have been developed. The models aiedifptested with data
from experiments where glucose is injected intravenoustyiasulin and glucose
concentrations are measured at regular time intervals.

A relatively simple model called thminimal modeivas developed by Bergman
and coworkersBer89. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the otipeesenting the concen-
tration of insulin in the interstitial fluid. Insulin in the bdstream is considered an
input. The reaction of glucose to insulin can be modeled bethations

Xm

— = —(p1 + X2)X1 + P10,

dx: .
T d—f = —pXo+ paU—ie),  (3.28)
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wherege andi, represent the equilibrium values of glucose and insuiins the
concentration of glucose and is proportional to the concentration of interstitial
insulin. Notice the presence of the tempx; in the first equation. Also notice
that the model does not capture the complete feedback locgube it does not
describe how the pancreas reacts to the glucose. FRjliBzshows a fit of the
model to a test on a normal person where glucose was injecteénously at
timet = 0. The glucose concentration rises rapidly, and the pancesgponds
with a rapid spikelike injection of insulin. The glucose amdulin levels then
gradually approach the equilibrium values.

Models of the type in equatioB (28 and more complicated models having many
compartments have been developed and fitted to experimextéalAl difficulty in
modeling is that there are significant variations in modeapeaters over time and
for different patients. For example, the paramgigein equation 8.28 has been
reported to vary with an order of magnitude for healthy imdisals. The models
have been used for diagnosis and to develop schemes foetiment of persons
with diseases. Attempts to develop a fully automatic aréifipancreas have been
hampered by the lack of reliable sensors.

The papers by Widmark and TandbewyT24] and Teorell feo37 are classics
in pharmacokinetics, which is now an established disogpliith many textbooks
[Dos68 Jac72 GP83. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The bookdpysHRig63 is a
good source for the modeling of physiological systems, ambee mathematical
treatment is given inKS01]. Compartment models are discussed@ofi83. The
problem of determining rate coefficients from experimentthds discussed in
[BA70] and [God83. There are many publications on the insulin—glucose model.
The minimal model is discussed i6T84, Ber89 and more recent references are
[MLKO6, FCF+04.

3.7 Population Dynamics

Population growth is a complex dynamic process that invdlveteraction of one
or more species with their environment and the larger etesysThe dynamics of
population groups are interesting and important in marfgdiht areas of social and
environmental policy. There are examples where new speaiastieen introduced
into new habitats, sometimes with disastrous results. There also been attempts
to control population growth both through incentives anetigh legislation. In
this section we describe some of the models that can be usetigrstand how
populations evolve with time and as a function of their eoninents.

Logistic Growth Model

Let x be the population of a species at titné simple model is to assume that the
birth rates and mortality rates are proportional to theltotgulation. This gives
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the linear model
dx

a:bx—dx:(b—d)x:rx, X >0, (3.29)

where birth ratd and mortality rated are parameters. The model gives an expo-
nential increase ib > d or an exponential decreasehif < d. A more realistic
model is to assume that the birth rate decreases when théatiopus large. The
following modification of the model3.29 has this property:

% =rx(1- E), X >0, (3.30)

wherek is thecarrying capacityof the environment. The mode3.30) is called the
logistic growth model

Predator-Prey Models

A more sophisticated model of population dynamics inclutle®ffects of compet-
ing populations, where one species may feed on another. ifindisn, referred to
as thepredator—prey problenwas introduced in Exampk3, where we developed
a discrete-time model that captured some of the featuresstifrical records of
lynx and hare populations.

In this section, we replace the difference equation mods tisere with a more
sophisticated differential equation model. kétt) represent the number of hares
(prey) and let (t) represent the number of lynxes (predator). The dynamicseof th
system are modeled as

dH:rH(l_ﬂ)_aHL H>o,

ST_ aHL ‘ i _ (3:31)
——=b —dL, L >0.
dt c+H

In the first equationy represents the growth rate of the haresepresents the
maximum population of the hares (in the absence of lynx@sgpresents the
interaction term that describes how the hares are dimidisisea function of the
lynx population and: controls the prey consumption rate for low hare population.
In the second equatiot, represents the growth coefficient of the lynxes and
represents the mortality rate of the lynxes. Note that thre dgnamics include a
term that resembles the logistic growth modBQ).

Of particular interest are the values at which the poputatedues remain con-
stant, calledequilibrium points The equilibrium points for this system can be
determined by setting the right-hand side of the above @qnsato zero. Letting

He andL represent the equilibrium state, from the second equate®have
cd
Le=0 or H; = . 3.32
e e ab _ d ( )

Substituting this into the first equation, we have thatlfgr= 0 eitherHe = 0 or
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Figure 3.20:Simulation of the predator—prey system. The figure on the left shows gegion

of the two populations as a function of time. The figure on the right showpdpalations
plotted against each other, starting from different values of the populdtie oscillation seen

in both figures is an example ofliait cycle The parameter values used for the simulations
area=3.2,b=0.6,c=50,d =056,k = 125 and = 1.6.

He = k. ForL¢ # 0, we obtain

., THe(c+ He) He bcr(abk — cd — dk)
e~ a—He(l_ T) - (ab—d)zk
Thus, we have three possible equilibrium poixis= (L, H

) el )

whereH; andL} are given in equations3(32 and @.33. Note that the equilib-
rium populations may be negative for some parameter vatwesesponding to a
nonachievable equilibrium point.

Figure 3.20shows a simulation of the dynamics starting from a set of popu
lation values near the nonzero equilibrium values. We sakfth this choice of
parameters, the simulation predicts an oscillatory pdfuiaount for each species,
reminiscent of the data shown in Figuze.

L (3.33)

Volume | of the two-volume set by J. D. Murralylur04] give a broad coverage
of population dynamics.

Exercises

3.1(Cruise control) Consider the cruise control example deedrin Sectior8.1
Build a simulation that re-creates the response to a hillvshio Figure3.3band
show the effects of increasing and decreasing the mass céhtly 25%. Redesign
the controller (using trial and error is fine) so that it regita within 1% of the
desired speed within 3 s of encountering the beginning ofithe
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3.2 (Bicycle dynamics) Show that the dynamics of a bicycle fraiergby equa-
tion (3.5) can be approximated in state space form as

Xi| _ 0 1 Doo/(bJ)
X2| — |mgh/yd O mo3h/(bJ)
y= [1 0] X
where the input is the steering anglé and the outpuy is the tilt anglep. What

do the stateg; andx, represent?

3.3(Bicycle steering) Combine the bicycle model given by emue(3.5) and the
model for steering kinematics in Exam#e3 to obtain a model that describes the
path of the center of mass of the bicycle.
3.4 (Operational amplifier circuit) Consider the op amp circhibwn below.

V2

O—WWA—T— WV ANV
R R, Ry

Ry
Vi Ci== V—WJTO
0
(65 —|— V3
O O

Show that the dynamics can be written in state space form as

1 1 0 1

dx | RCi RiC RiC: B

Tl R 1 1 X+ . u,y_[O 1]x
Ra RCo R.Co

whereu = »v; andy = vo3. (Hint: Usev, andoz as your state variables.)

3.5(Operational amplifier oscillator) The op amp circuit showioles an imple-
mentation of an oscillator.

G Ry C
H " H

Ry > R3 > Ry h
MY AV
+ V2 + V3 + Vi

Show that the dynamics can be written in state space form as

0 Ry
ax RiRsCy
dt 1 ’
— 0
R.C,

where the state variables represent the voltages acrossgpheitors<; = »; and
X2 = Uo.
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3.6 (Congestion control using RED.PW+02) A number of improvements can
be made to the model for Internet congestion control preseimt Section3.4.
To ensure that the router’s buffer size remains positivecaremodify the buffer
dynamics to satisfy

db |s—q b >0

dt salo)(§ —C) b =0.

In addition, we can model the drop probability of a packellasn how close we
are to the buffer limits, a mechanism known as random eatigotien (RED):

0 a(t) < bllower
p=m@)= pri() — p bllower bllower <a) < blupper
mri (t) - (1 - 2b|Upper) bll.lpper <aq (t) < 2blupper
1 a(t) > 2b"PPe"
da
E =—aiG(a —by),
whereg, b*", b°¥¢" and p;""**" are parameters for the RED protocol.

Using the model above, write a simulation for the system andl dirset of
parameter values for which there is a stable equilibriunmipand a set for which
the system exhibits oscillatory solutions. The followind¢ssef parameters should
be explored:

N = 20,30, ..., 60, blower = 40 pkts p =01,
c=8,9,...,15 pktyms bPPe" = 540 pkts o = 1074,
r =5560,...,100 ms

3.7 (Atomic force microscope with piezo tube) A schematic déagrof an AFM
where the vertical scanner is a piezo tube with preloadispasvn below.

e -
Vr
)
Ed
ky ==l e

Show that the dynamics can be written as

2 2

z dz [ dl
L+ Cz)d—tl + (ki + ko)z = +C— +kal.

JR— m —_—
dt2 2dez T Pt
Are there parameter values that make the dynamics pantigsianple?

(M1 + my)
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3.8 (Drug administration) The metabolism of alcohol in the body e modeled
by the nonlinear compartment model
do

dg
Vy,— = — 05 V,— = — —
bd'[ q(c —cp) + 0 Idt g(c, —C) qmaXCo+C|

whereV, = 48 L andV, = 0.6 L are the apparent volumes of distribution of
body water and liver watec, andc are the concentrations of alcohol in the com-
partmentsg;, andqg are the injection rates for intravenous and gastrointaktin
intake,q = 1.5 L/min is the total hepatic blood flownax = 2.75 mmol/min and
Co = 0.1 mmol/L. Simulate the system and compute the concentriatitie blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

+qgi:

3.9 (Population dynamics) Consider the model for logistic gtogiven by equa-
tion (3.30. Show that the maximum growth rate occurs when the size gbolpe
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fisherpeate-
scribed by the following simple model:

3_1‘ = f(x) —h(x,u), y=bh(x,u)—cu

wherex is the total biomassf (x) = rx (1 — x/k) is the growth rate andd(x, u) =
axuis the harvesting rate. The outpuis the rate of revenue, and the paramegers
b andc are constants representing the price of fish and the cost ofdisBhow that
there is an equilibrium where the steady-state biomassg is ¢/(ab). Compare
with the situation when the biomass is regulated to a cohstdne and find the
maximum sustainable return in that case.



Chapter Four
Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behakgymamical sys-
tems focused on systems modeled by nonlinear differergizdtons. This allows
us to consider equilibrium points, stability, limit cyclead other key concepts in
understanding dynamic behavior. We also introduce sombadstfor analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of rimapdi/namical
systems is through the use of ordinary differential equat{®DES). A state space,
input/output system has the form

dx
i f(x, u), y = h(x, u), (4.1)
wherex = (Xi,...,Xy) € R" is the statey € RP is the input andy € RY is

the output. The smooth maps : R" x RP — R"andh : R" x RP —» RA
represent the dynamics and measurements for the systemnémal, they can be
nonlinear functions of their arguments. We will sometimesuls on single-input,
single-output (SISO) systems, for whigh=q = 1.

We begin by investigating systems in which the input has Ise¢to a function
of the stateu = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatin this case become

dx ]
Tl f (X, a(X)) =: F(x). (4.2)

To understand the dynamic behavior of this system, we neeohatyze the
features of the solutions of equatioh?). While in some simple situations we can
write down the solutions in analytical form, often we mudyren computational
approaches. We begin by describing the class of solutiarthifoproblem.

We say thatx(t) is a solution of the differential equation4(2) on the time
intervaltg e Rtots e R if

dx(t)
dt

=FX()) forallty <t < ts.
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A given differential equation may have many solutions. W# miost often be
interested in thénitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretimet > tg.

We say thak(t) is a solution of the differential equatiod.@) with initial value
Xo € R" attp e R if

dx(t)

X(to) = X and =F(Xx()) forallty <t < ts.

For most differential equations we will encounter, theraismiquesolution that is
defined forty < t < t;. The solution may be defined for all tinhe> tp, in which
case we také; = co. Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgply as the solution
of an ODE.

We will typically assume tha is equal to 0. In the case whénis independent
of time (as in equationd4(.2)), we can do so without loss of generality by choosing
a new independent (time) variable=t — ty (Exercised.l).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G + 20 wod + w5q =0,

whereq is the displacement of the oscillator from its rest positibmese dynamics

are equivalent to those of a spring—mass system, as showneirtiga?.6. We
assume that < 1, corresponding to a lightly damped system (the reasorhfsr t
particular choice will become clear later). We can rewititis in state space form
by settingx; = g andx, = ¢/wo, giving
dxq “ dx
dt dt
In vector form, the right-hand side can be written as

woX2

F(X) = .

0 [—woxl - 2(600X2]

The solution to the initial value problem can be written in aer of different
ways and will be explored in more detail in ChapeiHere we simply assert that
the solution can be written as

= —@woX1 — 2(600X2.

; 1 .
xi(t) =€ ot (X10 CcoSswqyt + aT(wog“Xlo + X20) smwdt) ,
d

1 .
Xo(t) = e ¢t (xzo COSwgt — —(60(2JX10 + ol X20) S|nwdt) ,
g

wherexg = (X190, X20) is the initial condition andvy = wo/1 — 2. This solution
can be verified by substituting it into the differential eqoat We see that the
solution is explicitly dependent on the initial conditiand it can be shown that
this solution is unique. A plot of the initial condition respse is shown in Figure 1
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Figure 4.1: Response of the damped oscillator to the initial conditign= (1, 0). The
solution is unique for the given initial conditions and consists of an oscillegolytion for
each state, with an exponentially decaying magnitude.

We note that this form of the solution holds only foxO; < 1, corresponding to
an “underdamped” oscillator. \%

Without imposing some mathematical conditions on the fioncE, the differ- @
ential equation4.2) may not have a solution for &ll and there is no guarantee that
the solution is unique. We illustrate these possibilitiégwwo examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dx 2
T (4.3)
with the initial conditiorx (0) = 1. By differentiation we can verify that the function
1
t) = —
XM =7

satisfies the differential equation and that it also satisfiedritial condition. A
graph of the solution is given in Figude23 notice that the solution goes to infinity
ast goes to 1. We say that this system fi@ite escape timeThus the solution
exists only in the time interval & t < 1. \%

Example 4.3 Nonunique solution
Letx € R and consider the differential equation

dx
— =2 4.4
ai VX (4.4)
with initial conditionx(0) = 0. We can show that the function
0 fo<t<a
X(t) = ,
(t—a) ift>a

satisfies the differential equation for all values of the pagtera > 0. To see this,
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Figure 4.2: Existence and uniqueness of solutions. Equato8) bas a solution only for time
t < 1, at which point the solution goes #o, as shown in (a). Equatiod () is an example
of a system with many solutions, as shown in (b). For each value ofe get a different
solution starting from the same initial condition.

we differentiatex(t) to obtain

dx_ 0 fo<t<a
dt  |2(t—a) ift> a,

and hencex = 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figurd.2h Notice that in this case there are many solutions
to the differential equation. \%

These simple examples show that there may be difficulties evinsimple
differential equations. Existence and uniqueness can beugieeed by requiring
that the functior= have the property that for some fixed& R,

IF(x) — FWIl <cllx—y]| forallx,y,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiarF /ox is uniformly bounded for alk. The difficulty
in Example4.2 is that the derivative)F/6x becomes large for large, and the
difficulty in Example4.3is that the derivativé F /60X is infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is importantiderstanding some of
the key concepts of stability in nonlinear dynamics. We faitlus on an important
class of systems known as planar dynamical systems. Thases/save two state
variablesx e R?, allowing their solutions to be plotted in ti{&;, x,) plane. The
basic concepts that we describe hold more generally andecasdal to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot the phase portrait of the system, briefly introduice@hapter2.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dyma&mic
system. Each arrow shows the velocity at that point in the state spadeigiy)lot includes
the solutions (sometimes called streamlines) from different initial conditieitis the vector
field superimposed.

We start by introducing the concept ofvactor field For a system of ordinary
differential equations q
X

qa F(x),

the right-hand side of the differential equation defines atex € R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds totarpihe plane and
F (x) is a vector representing the velocity of that state. We cahtpkese vectors
on a grid of points in the plane and obtain a visual image ofdyramics of the
system, as shown in Figu#e3a The points where the velocities are zero are of
particular interest since they define stationary points eflihw: if we start at such
a state, we stay at that state.

A phase portraitis constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a seiitidli conditions, we
plot the solution of the differential equation in the plak& This corresponds to
following the arrows at each point in the phase plane andidgthe resulting tra-
jectory. By plotting the solutions for several differenitial conditions, we obtain
a phase portrait, as show in Figutgh Phase portraits are also sometimes called
phase plane diagrams

Phase portraits give insight into the dynamics of the systgmhowing the
solutions plotted in the (two-dimensional) state spacéefdystem. For example,
we can see whether all trajectories tend to a single poiim@smcreases or whether
there are more complicated behaviors. In the example in €48y corresponding
to a damped oscillator, the solutions approach the origimlianitial conditions.
This is consistent with our simulation in Figudel, but it allows us to infer the
behavior for all initial conditions rather than a singletiai condition. However,
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a inode
for a class of balance systems in which we wish to keep a system uprighasa rocket (a).
Using a simplified model of an inverted pendulum (b), we can develomaepportrait that
shows the dynamics of the system (c). The system has multiple equilibriunts pamarked

by the solid dots along the, = O line.

the phase portrait does not readily tell us the rate of chahtjee states (although
this can be inferred from the lengths of the arrows in theosrgfigld plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statgs an equilibrium point for a dynamical system

dx
T _—F
at (x)

if F(xe) = 0. If a dynamical system has an initial conditio(0) = Xe, then it will
stay at the equilibrium poink(t) = X for allt > 0, where we have takep = O.

Equilibrium points are one of the most important features dfaamical sys-
tem since they define the states corresponding to constaratiogeconditions. A
dynamical system can have zero, one or more equilibriumtgoin

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Fig4rd, which is a part of the balance system
we considered in Chapt@r The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at thedaf the rocket, we
seek to keep the rocket stabilized in the upright positiore $tate variables are
the angle = x; and the angular velocitgld /dt = x,, the control variable is the
accelerationu of the pivot and the output is the andle
For simplicity we assume thatgl/J; = 1 andl /J; = 1, so that the dynamics

(equation 2.10) become

dx Xo

dt ~ |sinxy—cx+u cosxl] (4.5)
This is a nonlinear time-invariant system of second orders $hme set of equa-
tions can also be obtained by appropriate normalizatiohe@system dynamics as
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different iritiitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slacsingle solution
plotted as a function of time, with the limit cycle corresponding to a steady dswillaf
fixed amplitude.

illustrated in Example.7.
We consider the open loop dynamics by setting 0. The equilibrium points
for the system are given by
[:I:nn ]
Xe = O 9

wheren =0, 1, 2, .... The equilibrium points fon even correspond to the pendu-
lum pointing up and those faor odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inpugsghown in Figuret.4c.
The phase portrait shows2z < x; < 27, so five of the equilibrium points are
shown. \%

Nonlinear systems can exhibit rich behavior. Apart fromildgpia they can also
exhibit stationary periodic solutions. This is of great pical value in generating
sinusoidally varying voltages in power systems or in getireggoeriodic signals for
animal locomotion. A simple example is given in Exercis&2 which shows the
circuit diagram for an electronic oscillator. A normalizaddel of the oscillator is
given by the equation

daxq dx,

dt dt
The phase portrait and time domain solutions are given in Eigui The figure
shows that the solutions in the phase plane converge towaniittajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiot{t) a limit cycle
of periodT > O if x(t + T) = x(t) forallt € R.

There are methods for determining limit cycles for secorakpsystems, but for
general higher-order systems we have to resort to compuogdtnalysis. Computer

= X2 4+ X1(1 — x§ — x3), = —X3 + Xo(1 — X2 — X3). (4.6)
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Figure 4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionesgnted
by the solid line is stable if we can guarantee that all solutions remain within atdismeter
€ by choosing initial conditions sufficiently close the solution.

algorithms find limit cycles by searching for periodic traj@es in state space that
satisfy the dynamics of the system. In many situations let#hit cycles can be
found by simulating the system with different initial cotidns.

4.3 Stability

The stability of a solution determines whether or not sohgiaearby the solution
remain close, get closer or move further away. We now giveradbdefinition of
stability and describe tests for determining whether atgwoius stable.

Definitions

Let x(t; a) be a solution to the differential equation with initial cétch a. A
solution isstableif other solutions that start nearstay close tx(t; a). Formally,
we say that the solutior(t; a) is stable if for alle > 0, there exists & > 0 such

that
Ib—all <6 = |Ix(t;b)—x(t;a)|] <e forallt > 0.

Note that this definition does not imply thatt; b) approachex(t; a) as time
increases but just that it stays nearby. Furthermore, theexaflo may depend on
€, SO that if we wish to stay very close to the solution, we mayehta start very,
very close § < €). This type of stability, which is illustrated in Figue6, is also
calledstability in the sense of Lyapund¥a solution is stable in this sense and the
trajectories do not converge, we say that the solutioreigrally stable

An important special case is when the solutidi; a) = Xe is an equilibrium
solution. Instead of saying that the solution is stable, wgly say that the equi-
librium pointis stable. An example of a neutrally stableiggrium point is shown
in Figure4.7. From the phase portrait, we see that if we start near theilequih
point, then we stay near the equilibrium point. Indeed, iig example, given any
¢ that defines the range of possible initial conditions, we @aply choose) = ¢
to satisfy the definition of stability since the trajectorée perfect circles.

A solutionx(t; a) isasymptotically stabléitis stable in the sense of Lyapunov
and alsx(t; b) — x(t; a) ast — oo for b sufficiently close t@. This corresponds
tothe case where all nearby trajectories converge to thiestalution for large time.
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point, at the origin is stable since all trajectories that
start neawx, stay neae.

Figure4.8 shows an example of an asymptotically stable equilibriuintp®lote
from the phase portraits that not only do all trajectoriey stear the equilibrium
point at the origin, but that they also all approach the ariggt gets large (the
directions of the arrows on the phase portrait show the timedn which the
trajectories move).

A solutionx(t; a) is unstableif it is not stable. More specifically, we say that
a solutionx(t; a) is unstable if given some > 0, there doesot exist ad > 0
such that ifb — a|| < d, then||x(t; b) — x(t; a)|| < € for all t. An example of an
unstable equilibrium point is shown in Figu4e.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to becally stable(or locally
asymptotically stablef it is stable for all initial conditionsx € B, (a), where

Br@={x:lx—al <r}

is a ball of radiug arounda andr > 0. A system igglobally stableif it is stable
for allr > 0. Systems whose equilibrium points are only locally stable ltave
interesting behavior away from equilibrium points, as wglese in the next section.
For planar dynamical systems, equilibrium points have lsssigned names
based on their stability type. An asymptotically stableiloium point is called
a sink or sometimes attractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, @ saddle if
some trajectories lead to the equilibrium point and othessaraway (this is the
situation pictured in Figuré.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such atieein Figured.?7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistingjlaflentical computers
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Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poixt at the origin is asymptotically stable
since the trajectories converge to this point as co.

connected to a single router, introduced in Sec8ahis given by

dw_C C1+w2 db_NwC c
it b 7’ 2 ) @t "o

wherew is the window size ant is the buffer size of the router. Phase portraits are
shown in Figuret.10for two different sets of parameter values. In each case ee se
that the system converges to an equilibrium point in whighhbffer is below its
full capacity of 500 packets. The equilibrium size of the bufiepresents a balance
between the transmission rates for the sources and theittapfthe link. We see
from the phase portraits that the equilibrium points arergswptically stable since

all initial conditions result in trajectories that converp these points. \%

Stability of Linear Systems

A linear dynamical system has the form

dx
Tl AX, X(0) = Xo, 4.7)

where A € R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system2(6). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of theixAtr

A(A) = {s e C: dets| — A) = 0}.

The polynomial dgis| — A) is thecharacteristic polynomiaind the eigenvalues
are its roots. We use the notatidpfor the jth eigenvalue ofA, so thatlj € A(A).

In generalA can be complex-valued, although Af is real-valued, then for any
eigenvaluel, its complex conjugate* will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stabdita linear system
depends only on the matrik, we find that stability is a property of the system. For
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point. at the origin is unstable since not all trajectories
that start neare stay neatx.. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

a linear system we can therefore talk about the stabilithefdystem rather than
the stability of a particular solution or equilibrium paint
The easiest class of linear systems to analyze are those wysteen matrices
are in diagonal form. In this case, the dynamics have the form
A1 0
dx A2
P X. 4.8
dt " (48)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in term@afdividual systems; = 4;x;.
Each of these scalar solutions is of the form
X (t) = €% (0).

We see that the equilibrium point = 0 is stable if1; < 0 and asymptotically
stable ifA; < 0.
Another simple case is when the dynamics are in the bloclodiaigorm

01 w1 0 0
dx_ e ' O O «
a9 o : : :

0 0 Om  Om

0 0 _wm O'm

In this case, the eigenvalues can be shown tb;jbe ¢; +iw;. We once again can
separate the state trajectories into independent sotufiimreach pair of states, and
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Figure 4.10:Phase portraits for a congestion control protocol running Wit 60 identical
source computers. The equilibrium values correspond to a fixed wiatitive source, which
results in a steady-state buffer size and corresponding transmist&oA faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

the solutions are of the form
Xoj—1(t) = €' (X2j-1(0) COSw;t + X7 (0) Sinwjt),
X (1) = €' (—X2j-1(0) Sinwjt + X2; (0) cosw;t),

wherej =1, 2, ..., m. We see that this system is asymptotically stable if and only
if o; = Red; < 0. Itis also possible to combine real and complex eigengaiue
(block) diagonal form, resulting in a mixture of solutiorfstioe two types.

Very few systems are in one of the diagonal forms above, huiessystems
can be transformed into these forms via coordinate tramsfions. One such class
of systems is those for which the dynamics matrix has distinonrepeating)
eigenvalues. In this case there is a mairix R"*" such that the matrix AT~!
is in (block) diagonal form, with the block diagonal elem®ibrresponding to
the eigenvalues of the original matrik (see Exercisé.14). If we choose new
coordinateg = T X, then

d
d—tZ=T>'<=TAx=TAT‘12

and the linear system has a (block) diagonal dynamics mditighermore, the
eigenvalues of the transformed system are the same as tlieabsystem since
if » is an eigenvector oA, thenw = To can be shown to be an eigenvector of
T AT~ We can reason about the stability of the original system diyng that
x(t) = T~1z(t), and so if the transformed system is stable (or asymptbtical
stable), then the original system has the same type of iyabil

This analysis shows that for linear systems with distinaeiglues, the stability
of the system can be completely determined by examining ¢aé part of the
eigenvalues of the dynamics matrix. For more general systemmake use of the
following theorem, proved in the next chapter:
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Theorem 4.1(Stability of a linear system)The system

dx
2 A
at X

is asymptotically stable if and only if all eigenvalues oflkhave a strictly negative
real part and is unstable if any eigenvalue of A has a striptigitive real part.

Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in SectioB.6.
Using concentrations as state variables and denotingateasctor by, the system
dynamics are given by

dx _ [-ko—ki Ky bo _
a‘[ o k)t |o]u v=[0 1

where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurgzlioy. We wish to

design a feedback control law that maintains a constanuogipen byy = yy.
We choose an output feedback control law of the form

u=—Kk(y — Ya) + Ug,
whereuy is the rate of injection required to maintain the desiredcemtration and
kis afeedback gain that should be chosen such that the closedystem is stable.
Substituting the control law into the system, we obtain

dX_ _kO_kl k]_—bok bO .
a—[ T | | ek = Ax+ B,

y = [0 1]x::Cx.

The equilibrium concentratior. € R? is given byx. = —A~*Bue and

boks
Kokz + bokok
Choosinguq such thatye = yg provides the constant rate of injection required to
maintain the desired output. We can now shift coordinatgdatoe the equilibrium
point at the origin, which yields (after some algebra)

dz_ (—ko—ki ki—bok]
dt ko —k2 ’

wherez = x — Xe. We can now apply the results of Theordmi to determine the

stability of the system. The eigenvalues of the system aenddy the roots of the
characteristic polynomial

A(s) = 5 + (Ko + ka + k2)s + (Kokz + bokzk).

While the specific form of the roots is messy, it can be shownhtti&roots have
negative real part as long as the linear term and the cortstantare both positive
(Exercise4.16). Hence the system is stable for any 0. \%

Ve = —CA1BU = (Ug + Kyg).
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Stability Analysis via Linear Approximation

Animportant feature of differential equations is that ibfeen possible to determine
the local stability of an equilibrium point by approximaiithe system by a linear
system. The following example illustrates the basic idea.

Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dyisaamécgiven by

dt ~ |sinxi—yx2 |’
where we have defined the statexas= (8, §). We first consider the equilibrium
point atx = (0, 0), corresponding to the straight-up position. If we assuratttie

anglef = x; remains small, then we can replacesiwith x; and cos; with 1,
which gives the approximate system

dx X2 0 1
af“[xl—yXZ]"[l _y]x. 4.9)

Intuitively, this system should behave similarly to the m@omplicated model
as long as«; is small. In particular, it can be verified that the equililoniyoint
(0, 0) is unstable by plotting the phase portrait or computing tgerevalues of the
dynamics matrix in equatior#(9)

We can also approximate the system around the stable aguilitpoint at
X = (x,0). In this case we have to expand ginand cos; aroundx; = =,
according to the expansions

sin(r +0) =—sinf@ ~ —f, cogxn +6) = —codh) ~ —1.

If we definez; = x; — 7 andz, = X», the resulting approximate dynamics are

given by g
z _ V) _ 0 1
dt_[_h_sz._[_l_ﬁ]z. (4.10)

Note thatz = (0, 0) is the equilibrium point for this system and that it has thesa
basic form as the dynamics shown in Figdt8. Figure4.11shows the phase por-
traits for the original system and the approximate systeyaradt the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either gytically stable or

unstable equilibrium points, then the local stability of triginal system must be

the same (Theored.3). \Y%
More generally, suppose that we have a nonlinear system
dx
— =F(X
T (x)

that has an equilibrium point at. Computing the Taylor series expansion of the
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systg¢randa
its linear approximation around the origin (b). Notice that near the equilibgamt at the
center of the plots, the phase portraits (and hence the dynamics) ars aerdical.

vector field, we can write

dx oF . .

— = F(Xe) + —| (X — Xe) + higher-order terms ifix — Xe).

dt OX |y,
SinceF (xe) = 0, we can approximate the system by choosing a new statdleria
Z = X — Xe and writing

dz oF
T Az, where A= 5 Xe. (4.11)
We call the system4(11) thelinear approximatiorof the original nonlinear system
or thelinearizationat Xe.

The fact that a linear model can be used to study the behaviamohlinear
system near an equilibrium point is a powerful one. Indeezican take this even
further and use a local linear approximation of a nonlingatesm to design a feed-
back law that keeps the system near its equilibrium poinsiggeof dynamics).
Thus, feedback can be used to make sure that solutions retnasto the equi-
librium point, which in turn ensures that the linear appnoation used to stabilize
it is valid.

Linear approximations can also be used to understand thiéitgtabnonequi-
librium solutions, as illustrated by the following example

Example 4.8 Stable limit cycle
Consider the system given by equatidng,
dx; dx

gr = e tal-xi-x),  E = oo X - x),

whose phase portraitis shown in Figdr. The differential equation has a periodic
solution
X1(t) = x1(0) cost + x»(0) sint, (4.12)
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with x2(0) + x2(0) = 1.
To explore the stability of this solution, we introduce potaordinates and
@, which are related to the state variablgsandx, by

X1 =T COSp, X2 =T Sing.
Differentiation gives the following linear equations foandg:
X1 =rCOSp —rgsing, X, =r1Sing +r¢ Ccosy.
Solving this linear system farand¢ gives, after some calculation,

dr do
— =r(1—r? — =
at A= G

Notice that the equations are decoupled; hence we can &tk stability of each
state separately.

The equation for has three equilibriac = 0,r = 1 andr = —1 (not realiz-
able since must be positive). We can analyze the stability of theselibgiai by
linearizing the radial dynamics witR (r) = r (1 — r?). The corresponding linear
dynamics are given by

dr oF 2

i = ar rer =A-3rHr, re=0,1,
where we have abused notation and usdd represent the deviation from the
equilibrium point. It follows from the sign ofL — 3r2) that the equilibriunt = 0
is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0O the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0, it will remain at the equilibrium for all times. This impkdhat
all solutions to the original system that do not starkat= x, = 0 will approach
the circlex? + x2 = 1 as time increases.

To show the stability of the full solutior(12), we must investigate the behavior
of neighboring solutions with different initial conditisnWe have already shown
that the radius will approach that of the solutio(12) as long as (0) > 0. The
equation for the angle can be integrated analytically to giygt) = —t + ¢(0),
which shows that solutions starting at different anglesill neither converge nor
diverge. Thus, the unit circle &tracting but the solution4.12) is only stable, not
asymptotically stable. The behavior of the system is ilatsl by the simulation
in Figure4.12 Notice that the solutions approach the circle rapidly,that there
is a constant phase shift between the solutions. \%

-1

4.4 Lyapunov Stability Analysis @

We now return to the study of the full nonlinear system

% = F(x), xeR" (4.13)
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Figure 4.12:Solution curves for a stable limit cycle. The phase portrait on the left shiost
the trajectory for the system rapidly converges to the stable limit cycle. fHnng points
for the trajectories are marked by circles in the phase portrait. The timaidgiots on the
right show that the states do not converge to the solution but instead maictstant phase
error.

Having defined when a solution for a nonlinear dynamical systestable, we
can now ask how to prove that a given solution is stable, asyticplly stable
or unstable. For physical systems, one can often argue atalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placesstjg.

In this section we will describe techniques for determinting stability of so-
lutions for a nonlinear systen#(13. We will generally be interested in stability
of equilibrium points, and it will be convenient to assumattk. = O is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates
Z=X—Xe.)

Lyapunov Functions

A Lyapunov function V: R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, itesefind a nonnegative
function that always decreases along trajectories of teeery, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitioe say that a
continuous functiorV is positive definitef V (x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function isnegative definité V (x) < 0 for all x £ 0 andV (0) = 0.
We say that a functioV is positive semidefinité V (x) > 0 for all x, butV (x)
can be zero at points other than just 0.

To illustrate the difference between a positive definite fiomcand a positive
semidefinite function, suppose that R? and let

Vi(x) = X2, Vo(x) = x2 + x2.

Both V; andV, are always nonnegative. However, it is possible\fpito be zero
even if x # 0. Specifically, if we sek = (0, ¢), wherec € R is any nonzero
number, therV,(x) = 0. On the other hand/>(x) = 0 if and only if x = (0, 0).
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V(X) =¢1 <Gy

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov funchibfx) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vayslvaus®/ (x)

to decrease along the trajectory.

ThusV, is positive semidefinite and, is positive definite.
We can now characterize the stability of an equilibrium poein= 0 for the
system 4.13.

Theorem 4.2 (Lyapunov stability theorem)Let V be a nonnegative function on
R" and letV represent the time derivative of V along trajectories & flystem
dynamicg4.13):

~ooxdt  ox '
Let B = B;(0) be a ball of radius r around the origin. If there exists>r 0 such
that V is positive definite and is negative semidefinite for all« B;, then x= 0
is locally stable in the sense of Lyapunov. If V is positiinite andV is negative

definite in B, then x= 0 s locally asymptotically stable.

If V satisfies one of the conditions above, we say thi a (local)Lyapunov
functionfor the system. These results have a nice geometric intatfmet The
level curves for a positive definite function are the curvefined byV (x) = c,
¢ > 0, and for eaclt this gives a closed contour, as shown in Figdr&3 The
condition thatV (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories ntoanaller and smaller
values ofV and if V is negative definite ther must approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx_ 2
dt  1+x
This system has equilibrium points)@at= 1 andx = —2. We consider the equilib-
rium point atx = 1 and rewrite the dynamics usiiag= x — 1:
d_Z = 2 —Z— 1,
dt 24z
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which has an equilibrium point & = 0. Now consider the candidate Lyapunov
function
1,
V(z) = EZ ,

which is globally positive definite. The derivative ®f along trajectories of the
system is given by 5
. z
V@) =z2zz=—"-72-12
24z
If we restrict our analysis to an intervB}, wherer < 2, then 2+ z > 0 and we

can multiply through by 2+ z to obtain
22— (ZZ4+22+2=-22-322=-72(z+3) <0, zeB,r <2

It follows thatV(z) < Oforallz € B, z# 0, and hence the equilibrium point
Xe = 1 is locally asymptotically stable. \%

A slightly more complicated situation occurs\ifis negative semidefinite. In
this case itis possible thet(x) = 0 whenx # 0, and henc& could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

% = Xo, % = —SinXy,
where x; is the angle between the pendulum and the vertical, withtigesk,
corresponding to counterclockwise rotation. The equataman equilibriumx; =
X2 = 0, which corresponds to the pendulum hanging straight ddaexplore the
stability of this equilibrium we choose the total energy dyapunov function:

1 2 1 2 1 2
V(X) = 1—cosx; + EXZ A Exl + éxz.
The Taylor series approximation shows that the function witppe definite for

smallx. The time derivative o¥ (x) is

V = X3 SiNXy + XoXp = X2 SiNXy — Xo SinXg = O.
Since this function is negative semidefinite, it follows frogabunov’s theorem that
the equilibrium is stable but not necessarily asymptdticabble. When perturbed,
the pendulum actually moves in a trajectory that corresptmdonstant energyV

Lyapunov functions are not always easy to find, and they aremque. In many
cases energy functions can be used as a starting point, @wnag Exampld.10
It turns out that Lyapunov functions can always be found fyrstable system (un-
der certain conditions), and hence one knows that if a systetable, a Lyapunov
function exists (and vice versa). Recent results using sfiagtuares methods have
provided systematic approaches for finding Lyapunov sys{&R&02 Sum-of-
squares techniques can be applied to a broad variety ofsystecluding systems
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whose dynamics are described by polynomial equations, basveybrid systems,
which can have different models for different regions ofestgpace.
For a linear dynamical system of the form

dx
— = AX,
dt
it is possible to construct Lyapunov functions in a systeéomaanner. To do so, we

consider quadratic functions of the form
V(x) =X Px,
whereP e R""is a symmetric matrix® = PT). The condition tha¥/ be positive
definite is equivalent to the condition thAtbe apositive definite matrix
x"Px>0, forallx#0,

which we write as? > 0. It can be shown that P is symmetric, therP is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functid(x) = x' Px, we can now compute its
derivative along flows of the system:

oV dx

~ ox dt
The requirement tha¥ be negative definite (for asymptotic stability) becomes a
condition that the matrixQ be positive definite. Thus, to find a Lyapunov function

for a linear system it is sufficient to chooseQa > 0 and solve thd.yapunov
equation

=Xx"(ATP + PAX = —x" Qx.

ATP+PA=-Q. (4.14)

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always kakition if all of the
eigenvalues of the matriR are in the left half-plane. Moreover, the solutibnis
positive definite ifQ is positive definite. Itis thus always possible to find a quadrat
Lyapunov function for a stable linear system. We will defgsraof of this until
Chapter5, where more tools for analysis of linear systems will be tmyved.

Knowing that we have a direct method to find Lyapunov functifardinear
systems, we can now investigate the stability of nonlingatesns. Consider the
system d

d—)t( = F(x) = AX+ F(%), (4.15)

whereF (0) = 0 andF (x) contains terms that are second order and higher in the
elements ok. The functionAx is an approximation of (x) near the origin, and we
can determine the Lyapunov function for the linear appr@tion and investigate if
itis also a Lyapunov function for the full nonlinear systérhe following example
illustrates the approach.

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connectedhtrgiet a cycle, as
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71, f(z0)
VN - = -2z, f(22)

3F 1

22, f(z1)

0 1 2 3 4 5
71, f(z2)

(a) Circuit diagram (b) Equilibrium points
Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two psotein
that are each repressing the production of the other. The inp@isdu, interfere with this

repression, allowing the circuit dynamics to be modified. The equilibriumtpdor this
circuit can be determined by the intersection of the two curves shown.in (b)

shown in Figured.14a The normalized dynamics for this system were given in

Exercise2.9:
dzz  u dzz  u

- = = — 7 , - = —
de 1+ © dr  1+2

wherez; and z, are scaled versions of the protein concentrationand x are
parameters that describe the interconnection betweeretiesgnd we have set the
external inputsl; andus to zero.

The equilibrium points for the system are found by equatiegitne derivatives
to zero. We define

_df —unut

A /
f(u=—— ffuy= —=——=
(u) T (u) du = Aru?
and the equilibrium points are defined as the solutions of gu@ons
z1=1(), z=f=).

If we plot the curveqz;, f(z1)) and(f(z), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown inréig.14h Because
of the shape of the curves, it can be shown that there willydva three solutions:

one atzje = Zpe, ONe Withzye < 756 and one withege > Zpe. If 1 > 1, then we can
show that the solutions are given approximately by

1 1
1 Ae=Ze ZeN o, ZeN A (4.17)

2, (4.16)

e N U, L™

To check the stability of the system, we writ€u) in terms of its Taylor series
expansion aboute:

1
f(u) = f(ug) + f'(Ue) - (U—Ug) + 5 f”(Ue) - (U — Ue)? + higher-order terms
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where f’ represents the first derivative of the function, afrfdthe second. Using
these approximations, the dynamics can then be written as

dw [—1 f'(Z2e)

at = | t@e -1 |©TF@:

wherew = z—zis the shifted state arfél(w) represents quadratic and higher-order
terms.

We now use equatiod(14) to search for a Lyapunov function. Choosi@g= |
and lettingP e R?*2 have elementg;;, we search for a solution of the equation

-1 f] Pur Prz| | Pu Pr2 -1 ] _[|-1 0

f; =1) [Pz P22 P12 P22 fi -1 o -1}|°
where f{ = f'(zie) and f; = f'(zz). Note that we have sgh; = p;2 to force P
to be symmetric. Multiplying out the matrices, we obtain

—2p11+ 2f{p12 Purf; —2po+ p2fi| _ -1 O
P11f; — 2p12 + po2f] —2p22+ 21, p12 0 -1

which is a set ofinear equations for the unknowns; . We can solve these linear
eqguations to obtain

f/2— £)f/ +2 fi+ f; f,2 — /1,42

p11=—ma p12=—ma P22 = — AT H—1)

To check thaV (w) = w' Pw is a Lyapunov function, we must verify thelt(w) is
positive definite function or equivalently thRt > 0. SinceP is a 2x 2 symmetric
matrix, it has two real eigenvalués and, that satisfy

A1+ Ao = tracgP), A1+ Ao = det(P).

In order for P to be positive definite we must have thatand, are positive, and
we thus require that

2 iy 2 /2 xY 2
fie=2ff/+f,°+4 - 0, det(P)= fie=2ff/+f,°+4
4-41/f, 16— 161, f,

We see that trad®) = 4deiP) and the numerator of the expressions is just
(f1 — f2)2+4 > 0, so it suffices to check the sign of-1 f; f,. In particular, for

P to be positive definite, we require that

f/(z1e) T'(220) < 1.

We can now make use of the expressionsffodefined earlier and evaluate at
the approximate locations of the equilibrium points deatiireequation 4.17). For
the equilibrium points where,e # z5¢, we can show that

> 0.

tracgP) =

B —yn,u”‘l _Iunlu—(n—l)2

2 —n’4n
= . N )
(1 + ﬂn)z 1+ Iu—n(n—l)

1
('(zi0) '(220) = 10 1)
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Figure 4.15:Dynamics of a genetic switch. The phase portrait on the left shows thawitah
has three equilibrium points, corresponding to protein A having a corat@mtigreater than,
equal to or less than protein B. The equilibrium point with equal protein exnations is
unstable, but the other equilibrium points are stable. The simulation on theshgivs the
time response of the system starting from two different initial conditions iffitial portion of
the curve corresponds to initial concentratia(® = (1, 5) and converges to the equilibrium
whereze < Zge. Attimet = 10, the concentrations are perturbed4¥ in z; and—2 in z,
moving the state into the region of the state space whose solutions convérgetmilibrium
point wherez,e < .

Usingn = 2 andu =~ 200 from Exercis®.9, we see thaf’(ze) f'(z2¢) <« 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the systerd (16) is stable, we now computé at the equilibrium
point. By construction,

V=w(PA+AP)w + F'(w)Pw + w PF (w)
=—w'w+ F'(w)Pw+ v PF(0).

Since all terms irF are quadratic or higher order in, it follows that F T(w) Pw
andwTPF (w) consist of terms that are at least third ordewinTherefore ifw
is sufficiently close to zero, then the cubic and higher-otdens will be smaller
than the quadratic terms. Hence, sufficiently close te 0, V is negative definite,
allowing us to conclude that these equilibrium points aréhlstable.
Figure4.15shows the phase portrait and time traces for a systemwith4,
illustrating the bistable nature of the system. When thigaildondition starts with
a concentration of protein B greater than that of A, the smfutonverges to the
equilibrium point at (approximately)1/."1, ). If A is greater than B, then it
goes to(u, 1/u"1). The equilibrium point withz;e = 7, is unstable. \%

More generally, we can investigate what the linear apprakion tells about
the stability of a solution to a nonlinear equation. The fwilog theorem gives a
partial answer for the case of stability of an equilibriunino

Theorem 4.3. Consider the dynamical syste 15 with F(0) = 0 and F such
thatlim ||F(X)|l/Ix|| — Oas||x|| — O. If the real parts of all eigenvalues of A are



4.4, LYAPUNOV STABILITY ANALYSIS 119

strictly less than zero, then.x= 0 is a locally asymptotically stable equilibrium
point of equatior(4.15).

This theorem implies that asymptotic stability of the linapproximation im-
plieslocalasymptotic stability of the original nonlinear system. Tiedrem is very
important for control because it implies that stabilizatad a linear approximation
of a nonlinear system results in a stable equilibrium forrtbelinear system. The
proof of this theorem follows the technique used in Exardplel A formal proof
can be found inKkha01.

Krasovski—Lasalle Invariance Principle %

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functiol whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude thepstimstability of
an equilibrium point under less restrictive conditionsyedy, in the case whené
is negative semidefinite, which is often easier to constHmivever, it applies only
to time-invariant or periodic systems. This section makesafssome additional
concepts from dynamical systems; see Hata{67 or Khalil [KhaO]] for a more
detailed description.

We will deal with the time-invariant case and begin by introithg a few more
definitions. We denote the solution trajectories of the timariant system

dx
4 = F(x) (4.18)

asx(t; a), whichis the solution of equatiod (18 at timet starting froma atty = 0.
Thew limit setof a trajectoryx(t; a) is the set of all pointz € R" such that there
exists a strictly increasing sequence of timyesuch thax(t,; a) - zasnh — oo.

A setM cC R" is said to be aimvariant setif for all b € M, we havex(t; b) e M
forallt > 0. It can be proved that the limit set of every trajectory is closed and
invariant. We may now state the Krasovski—Lasalle principle

Theorem 4.4(Krasovski—Lasalle principle)Let V : R" — R be alocally positive
definite function such that on the compactQet= {x € R": V(X) < r} we have
V (x) < 0. Define ,

S={xeQ V() =0}

Ast— oo, the trajectory tends to the largest invariant set inside &; itsw limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given inKra63 and [LaS6qQ.

Lyapunov functions can often be used to design stabiliziogftrollers, as is
illustrated by the following example, which also illusgathow the Krasovski—
Lasalle principle can be applied.
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(a) Physical system (b) Phase portrait (c) Manifold view

Figure 4.16: Stabilized inverted pendulum. A control law applies a foucat the bottom
of the pendulum to stabilize the inverted position (a). The phase portragh(@ys that
the equilibrium point corresponding to the vertical position is stabilized. Tiaded region
indicates the set of initial conditions that converge to the origin. The ellipgesonds to a
level set of a Lyapunov functiov (x) for whichV (x) > 0 andV (x) < O for all points inside
the ellipse. This can be used as an estimate of the region of attraction ofilieragm point.
The actual dynamics of the system evolve on a manifold (c).

Example 4.12 Inverted pendulum
Following the analysis in Examp7, an inverted pendulum can be described by
the following normalized model:

% = X, % = SiNX; + UCOSXq, (4.19)
wherex; is the angular deviation from the upright position ané the (scaled)
acceleration of the pivot, as shown in Figytd6a The system has an equilib-
rium atx; = xp = 0, which corresponds to the pendulum standing upright. This
equilibrium is unstable.

To find a stabilizing controller we consider the following dadate for a Lya-
punov function:

1 1 1
V(x) = (cosx; — 1) + a(1l — cos x;) + Exg ~ (a— E)xf + Exg.

The Taylor series expansion shows that the function is pesiefinite near the
origin if a > 0.5. The time derivative o¥ (x) is

V = —X; SinXg 4+ 2aX; SiNX1 COSX; + XoXo = Xo(U 4 2a SiNX1) COSXy.
Choosing the feedback law
U = —2asinX; — Xy COSX1

gives )
V = —x3cos X;.

It follows from Lyapunov’s theorem that the equilibrium exhlly stable. However,
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since the function is only negative semidefinite, we cannothkae asymptotic
stability using Theorerd.2 However, note thaV = 0 implies thatx, = 0 or
X1 =rm/2+nx.

If we restrict our analysis to a small neighborhood of thgiorl),, r « 7/2,

then we can define
S={(X1, X2) € Q : X = 0}

and we can compute the largest invariant set in§ldEor a trajectory to remain
in this set we must havie, = 0 for all t and hencetx(t) = 0 as well. Using the
dynamics of the systerd (19, we see that,(t) = 0 andx,(t) = 0 impliesx(t) =
0 as well. Hence the largest invariant set ins&de (x;, X2) = 0, and we can use the
Krasovski—Lasalle principle to conclude that the originasdlly asymptotically
stable. A phase portrait of the closed loop system is shoviAigure4.16h

In the analysis and the phase portrait, we have treated the afthe pendulum
6 = x, as a real number. In fadt,is an angle wittd = 2z equivalent t&¥ = 0.
Hence the dynamics of the system actually evolves maaifold(smooth surface)
as shown in Figurd.16c Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic idessresl here. V

4.5 Parametric and Nonlocal Behavior @

Most of the tools that we have explored are focused on thd lwsl@avior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systena the dependence
of a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear systemamestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriomtgs called thdocal
behavior of the system.

The solutions of the system can be very different far away faorequilibrium
point. This is seen, for example, in the stabilized penduluxample4.12 The
inverted equilibrium pointis stable, with small osciltatis that eventually converge
to the origin. But far away from this equilibrium point thesee trajectories that
converge to other equilibrium points or even cases in whiehgendulum swings
around the top multiple times, giving very long oscillatiathat are topologically
different from those near the origin.

To better understand the dynamics of the system, we can arahe set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
This set is called theegion of attractionfor the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figutéh In general,
computing regions of attraction is difficult. However, evewe cannot determine
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the region of attraction, we can often obtain patches ardbedtable equilibria
that are attracting. This gives partial information aboethiehavior of the system.
One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose th¥tis a local Lyapunov function for a system
around an equilibrium poinky. LetQ, be a set on whicN (x) has a value less than
r,
Q ={xeR":V(X) <r},

and suppose that(x) < 0 for all x € Q,, with equality only at the equilibrium
point xg. Theng, is inside the region of attraction of the equilibrium poigince
this approximation depends on the Lyapunov function andhioéce of Lyapunov
function is not unique, it can sometimes be a very conseastimate.

It is sometimes the case that we can find a Lyapunov funétieach thatv is
positive definite and is negative (semi-) definite for all e R". In many instances
it can then be shown that the region of attraction for the ldagium point is the
entire state space, and the equilibrium point is said tglblkeally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from ExarhgR The Lyapunov
function for the system was

1
V (X) = (cosx; — 1) + a(1 — co x3) + Exg,

andV was negative semidefinite for alland nonzero wher; # 4z /2. Hence
anyx such thatix;| < z/2 andV (x) > O will be inside the invariant set defined
by the level curves of (x). One of these level sets is shown in Figdt&6h V

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can diisdiy tthe context
of models by exploring how the location of equilibrium paintheir stability, their
regions of attraction and other dynamic phenomena, su@mésycles, vary based
on the values of the parameters in the model.

Consider a differential equation of the form

dx
9= F(X,u), XxeR" ueRK (4.20)
wherex is the state and is a set of parameters that describe the family of equations.

The equilibrium solutions satisfy
F(x, u) =0,

and asu is varied, the corresponding solutiong ) can also vary. We say that the

system 4.20 has abifurcationat 4 = u* if the behavior of the system changes
qualitatively atu*. This can occur either because of a change in stability ty@e or
change in the number of solutions at a given valug of
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Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stadigity
gram showing the regions in parameter space for which the system is. §tgtB&urcation
diagram showing the location and stability of the equilibrium point as a funcfi@ dhe
solid line represents a stable equilibrium point, and the dashed line refr@seanstable
equilibrium point. The dashed-dotted lines indicate the upper and lowedsdanthe limit
cycle atthat parameter value (computed via simulation). The nominawvafihe parameters
in the model area = 3.2,b =0.6,¢c = 50,d = 0.56,k = 125 and = 1.6.

Example 4.14 Predator—prey
Consider the predator—prey system described in Se8tidbimThe dynamics of the
system are given by
d—Her 1_ﬂ _aHL’ d_L:baHL
dt c+H dt c+H

—dL, (4.21)
k

whereH andL are the numbers of hares (prey) and lynxes (predatorspabnd

¢, d, k andr are parameters that model a given predator—prey systerorioes

in more detail in SectioB.7). The system has an equilibrium pointtdf > 0 and

Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behafibe system, we
choose to focus on two specific parameters of inteegstie interaction coefficient
between the populations amgda parameter affecting the prey consumption rate.
Figure4.17ais a numerically computeparametric stability diagranshowing the
regions in the chosen parameter space for which the equitibpoint is stable
(leaving the other parameters at their nominal values). &gdr®m this figure that
for certain combinations @& andc we get a stable equilibrium point, while at other
values this equilibrium point is unstable.

Figure4.17bis a numerically computeblifurcation diagrantor the system. In
this plot, we choose one parameter to vaygnd then plot the equilibrium value of
one of the statedH{) on the vertical axis. The remaining parameters are set to the
nominal values. A solid line indicates that the equilibripoint is stable; a dashed
line indicates that the equilibrium point is unstable. Ntitat the stability in the
bifurcation diagram matches that in the parametric stgallagram forc = 50 (the
nominal value) an@ varying from 1.35 to 4. For the predator—prey system, when
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle veloditye system is
stable when all eigenvalues have negative real part (shaded refimylot in (b) shows the
locus of eigenvalues on the complex plane as the velacigyvaried and gives a different
view of the stability of the system. This type of plot is calletbat locus diagram

the equilibrium point is unstable, the solution converges stable limit cycle. The
amplitude of this limit cycle is shown by the dashed-dotieéd in Figure4.17h
\Y%

A particular form of bifurcation that is very common when tatling linear
systems is that the equilibrium remains fixed but the stghilitthe equilibrium
changes as the parameters are varied. In such a case itatimg\e plot the eigen-
values of the system as a function of the parameters. Suck aletcalledoot
locus diagramsecause they give the locus of the eigenvalues when paremete
change. Bifurcations occur when parameter values are batthere are eigenval-
ues with zero real part. Computing environments such LabVIEMTLAB and
Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model

Considerthe linear bicycle model given by equati®i7)in Sectior3.2 Introducing
the state variables; = ¢, X, = J, X3 = ¢ andxs = ¢ and setting the steering
torqueT = 0O, the equations can be written as

dx 0 I
dt | =M(Ko+ Kawd) —MCoyg

wherel is a 2x 2 identity matrix and is the velocity of the bicycle. Figur& 18a
shows the real parts of the eigenvalues as a function of igldeigure 4.18b
shows the dependence of the eigenvalues oh the velocityvg. The figures show
that the bicycle is unstable for low velocities because tigemvalues are in the
right half-plane. As the velocity increases, these eigem®gamove into the left
half-plane, indicating that the bicycle becomes selfiitalg. As the velocity is
increased further, there is an eigenvalue close to themattigit moves into the right

X =: AX,
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half-plane, making the bicycle unstable again. Howeves, ¢igenvalue is small
and so it can easily be stabilized by a rider. FigduEBashows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. \Y%

Parametric stability diagrams and bifurcation diagrans paovide valuable
insights into the dynamics of a nonlinear system. It is Uguedcessary to carefully
choose the parameters that one plots, including combihiagatural parameters
of the system to eliminate extra parameters when possildmpQter programs
such aAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tcesig feedback laws
that stabilize an equilibrium point and provide a desiregtleof performance.
However, for some classes of problems the feedback costrallist be nonlinear to
accomplish its function. By making use of Lyapunov functieve can often design
a nonlinear control law that provides stable behavior, asavein Examplet.12

One way to systematically design a nonlinear controllemidegin with a
candidate Lyapunov functiol (x) and a control system = f(x, u). We say
that V (x) is acontrol Lyapunov functiofif for every x there exists ai such that
V(x) = i—‘)f f(x,u) < 0. In this case, it may be possible to find a functioix)
such thatu = a(x) stabilizes the system. The following example illustrates th
approach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics anddaosimial systems to
reduce the effects of noise and vibrations. The idea is tdljoeduce the effect of
noise by generating opposing signals. A pair of headphoitaswise cancellation
such as those shown in Figutel9ais a typical example. A schematic diagram of
the system is shown in Figu#e19h The system has two microphones, one outside
the headphones that picks up exterior nois@d another inside the headphones that
picks up the signad, which is a combination of the desired signal and the externa
noise that penetrates the headphone. The signal from theoextgcrophone is
filtered and sent to the headphones in such a way that it cathestxternal noise
that penetrates into the headphones. The parameters of énefiétadjusted by a
feedback mechanism to make the noise signal in the interitabphone as small
as possible. The feedback is inherently nonlinear becawaszsitby changing the
parameters of the filter.

To analyze the system we assume for simplicity that the aipen of external
noise into the headphones is modeled by a first-order dynégsyisgem described
by

dz

gz _ 4.22
it a0z + bon, (4.22)

wherezis the sound level and the paramet&ys< 0 andbp are not known. Assume
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Figure 4.19:Headphones with noise cancellation. Noise is sensed by the exterior hmcr®p
(a) and sent to a filter in such a way that it cancels the noise that pen¢hatesad phone
(b). The filter parametem andb are adjusted by the controllé3.represents the input signal
to the headphones.

that the filter is a dynamical system of the same type:

d
d—lfzaw+bn.

We wish to find a controller that updatesand b so that they converge to the
(unknown) parametera, andby. Introducex; = e = w —z, X, = a — g and
X3 = b — bp; then

Xm

a =ag(w — 2) + (a—ag)w + (b — bg)n = apXy + Xow + X3N. (4.23)

We will achieve noise cancellation if we can find a feedbackflawchanging the
parameters. andb so that the erroe goes to zero. To do this we choose

1
V (X1, X2, X3) = E(axf + X5 + x3)
as a candidate Lyapunov function f@r.23. The derivative oV is

V = O X1X1 + XoXo + X3X3 = aaoxf + Xo(Xo + owXy) + X3(X3 + onxy).

Choosing
Xo = —qwX] = —awe, X3 = —aNX; = —ane, (4.24)

we find thatvV = aaoxf < 0, and itfollows that the quadratic function will decrease
as long a® = x; = w — z # 0. The nonlinear feedback .4 thus attempts to
change the parameters so that the error between the sigh#i@mnoise is small.
Notice that feedback law}(24) does not use the modet.@2 explicitly.

A simulation of the system is shown in Figu4e20. In the simulation we have
represented the signal as a pure sinusoid and the noise & lbmod noise. The
figure shows the dramatic improvement with noise cancefiafidne sinusoidal
signal is not visible without noise cancellation. The filtergraeters change quickly
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headpligme s
without noise cancellation, and the bottom left figure shows the signal wigle nancellation.
The right figures show the parametarandb of the filter.

from their initial valuesa = b = 0. Filters of higher order with more coefficients
are used in practice. \Y%

4.6 Further Reading

The field of dynamical systems has a rich literature that cheariaes the possi-
ble features of dynamical systems and describes how paiiambanges in the
dynamics can lead to topological changes in behavior. R#adatroductions to
dynamical systems are given by Stroga&@ir4 and the highly illustrated text by
Abraham and ShawyS82]. More technical treatments include Andronov, Vitt and
Khaikin [AVK87], Guckenheimer and Holme&H83 and Wiggins Wig9Q]. For
students with a strong interest in mechanics, the texts hpldfArn87] and Mars-
den and RatiuMR94] provide an elegant approach using tools from differential
geometry. Finally, good treatments of dynamical system$iau=t in biology are
given by Wilson Wil99] and Ellner and GuckenheimdeG0g. There is a large lit-
erature on Lyapunov stability theory, including the classkts by Malkin Mal59],
Hahn Hah67 and Krasovski Kra63. We highly recommend the comprehensive
treatment by KhalilKhaO1].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution ef differential
equation 4.1) given byx(t) with initial conditionx(tp) = Xo, thenX(z) = x(t —tp)
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is a solution of the differential equation

dx
= — F(x
3, - F®

with initial conditionX(0) = X, wherer =t — to.

4.2 (Flow in a tank) A cylindrical tank has cross sectiénm?, effective outlet
areaa m? and inflowq;, m3/s. An energy balance shows that the outlet velocity is
v = +/2gh m/s, whereg m/s’ is the acceleration of gravity ardis the distance
between the outlet and the water level in the tank (in met8ts)w that the system
can be modeled by

dh

a — 1
a = _K Zgh+ Zqin, qout:a\/ Zgh.

Use the parametels = 0.2,a = 0.01. Simulate the system when the inflow is zero
and the initial level i1 = 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system dbedrin Sectior8.1
Generate a phase portrait for the closed loop system on flahdr@ = 0), in third
gear, using a Pl controller (witky, = 0.5 andk; = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effedatafating the input
between 0 and 1.
4.4 (Lyapunov functions) Consider the second-order system

Xm dX2

— = —ax — = —bxg — cX

dt 1, at 1 2,
wherea, b, ¢ > 0. Investigate whether the functions

1 1 1 1
Vi) = 5X3+ x5, Va0 = 25X + 500+ ———x)°

are Lyapunov functions for the system and give any condittbat must hold.

4.5 (Damped spring—mass system) Consider a damped spring-sysiesn with
dynamics
mg + cq + kq = 0.
A natural candidate for a Lyapunov function is the total ggef the system, given
b
’ V = tmg? + L
2 . 2 T
Use the Krasovski—Lasalle theorem to show that the systesgistotically stable.

4.6 (Electric generator) The following simple model for an el@cgfenerator con-
nected to a strong power grid was given in Exer@sé
d?%p

EV |
szm_Pe= Pm—78|n(0.
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The parameter

a— Prax B EV

P, XP,

is the ratio between the maximum deliverable powgs = EV/ X and the me-
chanical poweiPp,.

(4.25)

(a) Considemr as a bifurcation parameter and discuss how the equilibipe o
ona.

(b) Fora > 1, show that there is a center@ = arcsinl/a) and a saddle at
» =7n — @o.
(c) Show thatifP,/J = 1 there is a solution through the saddle that satisfies

1/dp\2
é(d_(:) — @ +¢po—acosp —vaz—1=0. (4.26)

Use simulation to show that the stability region is the iiteof the area enclosed
by this solution. Investigate what happens if the systenm isquilibrium with a
value ofa that is slightly larger than 1 aralsuddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7(Lyapunov equation) Show that Lyapunov equatirif) always has a solution
if all of the eigenvalues oA\ are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear if® and start with the case wher has distinct
eigenvalues.)

4.8(Congestion control) Consider the congestion control jgmlaescribed in Sec-
tion3.4. Confirm that the equilibrium point for the system is given Quation 3.21)
and compute the stability of this equilibrium point usingreelr approximation.

4.9 (Swinging up a pendulum) Consider the inverted penduluncudised in Ex-
ample4.4, that is described by

6 = sind + ucosh,

where# is the angle between the pendulum and the vertical and theotsignal
u is the acceleration of the pivot. Using the energy function

. 1.
V(©,0) =cost — 1+ 592,

show that the state feedbagk= k(Vo — V)@ cost causes the pendulum to “swing
up” to the upright position.

4.10(Root locus diagram) Consider the linear system

dx 0 1 -1

e fo e 2o oo
with the feedbacki = —Kky. Plot the location of the eigenvalues as a function the
parametek.
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4.11(Discrete-time Lyapunov function) Consider a nonlineacdete-time systen@
with dynamicsx[k + 1] = f(x[k]) and equilibrium point. = 0. Suppose there.
exists a smooth, positive definite functidn R" — R suchtha¥/ (f (x))—V(x) <

0 for x # 0 and V(0) = 0. Show that. = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for anciletor was
shown in Exercis&.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified dtrthat has nonlinear
elements is shown in the figure below.

e e

CZ R4 R11 Cl
i w i

Ry V2 Ry Vi Ry + V1

The modification is obtained by making a feedback around eaetatpnal am-
plifier that has capacitors using multipliers. The sigaak v? + v35 — g is the
amplitude error. Show that the system is modeled by
d1)1 R4 1
dt R1 RsCy R11C1
do, 1 1 2 2 2
e RzCle + Rzzczvz(vo 0] — 03).

Show that the circuit gives an oscillation with a stable ligyitle with amplitude
vo. (Hint: Use the results of Examp#e8.)

2 2 2
v1(vg — vy —03),

4.13(Self-activating genetic circuit) Consider the dynamica genetic circuit that

implementsself-activationthe protein produced by the gene is an activator for the

protein, thus stimulating its own production through pesifeedback. Using the

models presented in Exam®el3 the dynamics for the system can be written as
dm  ap? dp

P — — = -0 4.27

for p, m > 0. Find the equilibrium points for the system and analyze tall
stability of each using Lyapunov analysis.

4.14 (Diagonal systems) LefA € R"*" be a square matrix with real eigenvalues
A1, ..., An @nd corresponding eigenvecters. . ., vy.
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(a) Show that if the eigenvalues are distingt £ Aj fori # j), theno; # o; for
i #£ .

(b) Show that the eigenvectors form a basisfrso that any vectok can be
written asx = >_ ajv; for a; € R.

(c) LetT = Jo1 02 ... vn] and show tha AT is a diagonal matrix of
the form @.8).
(d) Show that if some of thg; are complex numbers, thelcan be written as
A1 0
A= where Aj=1€R or Ai:[U w]
—w O
0 Ak

in an appropriate set of coordinates.
This form of the dynamics of a linear system is often refercedsgmodal form

4.15(Furuta pendulum) The Furuta pendulum, an inverted penduluarotating
arm, is shown to the left in the figure below.

Pendulum anglé/x
o
T
|
I
|
|
I
|
|
I
|
|
|
I
|
|
I

0 5 10 15 20
Angular velocityw

Consider the situation when the pendulum arm is spinning egnstant rate. The
system has multiple equilibrium points that depend on trgukan velocityw, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jof — Jpwd sind cosd — mygl sing = 0,

whereJ, is the moment of inertia of the pendulum with respect to it®pim,, is
the pendulum mass,is the distance between the pivot and the center of mass of
the pendulum and is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the conalfipfor stability of each
equilibrium point (in terms ofup).

(b) Consider the angular velocity as a bifurcation paramete verify the bifur-
cation diagram given above. This is an example pitehfork bifurcation
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4.16 (Routh-Hurwitz criterion) Consider a linear differentiajuation with the
characteristic polynomial

AS)=s>+as+ay, A(S) =S+ &S + as + as.

Show that the system is asymptotically stable if and onlylitted coefficientsy
are positive and i&;a, > as. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.



Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthtéon between
force on a spring and displacement of the spring is always nonlinear te stegree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablylinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

Robert H. CannorDynamics of Physical Systendi967 [Can03.

In Chapters2—4 we considered the construction and analysis of differentia
equation models for dynamical systems. In this chapter weiafize our results to
the case of linear, time-invariant input/output systemag €entral concepts are the
matrix exponential and the convolution equation, througicivwe can completely
characterize the behavior of a linear system. We also dessome properties of
the input/output response and show how to approximate aneamlsystem by a
linear one.

5.1 Basic Definitions

We have seen several instances of linear differential @sin the examples in the
previous chapters, including the spring—mass system (ddrogcillator) and the
operational amplifier in the presence of small (nonsatugaiimput signals. More
generally, many dynamical systems can be modeled accubgtihear differential
equations. Electrical circuits are one example of a broaab@ésystems for which
linear models can be used effectively. Linear models aretatsadly applicable in
mechanical engineering, for example, as models of smaihtiens from equilibria
in solid and fluid mechanics. Signal-processing systemsaydiired) digital filters of
the sortused in CD and MP3 players, are another source of ganaxes, although
these are often best modeled in discrete time (as deschibeubie detail in the
exercises).

In many cases, wereatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linearbehthat led Harold
S. Black to the invention of the negative feedback amplifiem@dt all modern
signal processing systems, whether analog or digital aes#idack to produce linear
or near-linear input/output characteristics. For thestesys, it is often useful to
represent the input/output characteristics as lineagrigg the internal details
required to get that linear response.
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For other systems, nonlinearities cannot be ignored, édpe€one cares about
the global behavior of the system. The predator—prey proldeome example of
this: to capture the oscillatory behavior of the interdefsstt populations we must
include the nonlinear coupling terms. Other examples ohelswitching behavior
and generating periodic motion for locomotion. Howeveryvé care about what
happens near an equilibrium point, it often suffices to apiprate the nonlinear
dynamics by their local linearization, as we already exgdidsriefly in Sectio.3.
The linearization is essentially an approximation of thelimear dynamics around
the desired operating point.

Linearity

We now proceed to define linearity of input/output systemsanfanmally. Consider
a state space system of the form

dx
9= f(x,u), y = h(x, u), (5.1)

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-outpuedagtakingp = q = 1. We
also assume that all functions are smooth and that for amahsoclass of inputs
(e.g., piecewise continuous functions of time) the sohgiof equation3.1) exist
for all time.

It will be convenient to assume that the origin= 0, u = 0 is an equilibrium
point for this systemX = 0) and thath(0, 0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose fxatue) # (0, 0) is an equilibrium point
of the system with outpufe = h(Xe, Ug). Then we can define a new set of states,
inputs and outputs,

X=X—=Xe, UO=U—Ue, Y=Y—VYe

and rewrite the equations of motion in terms of these vaesbl

%f( = f(X+ Xe, 0+ Ug) =: f(X,0),

¥ = h(X + Xe, G + Ue) — Ye =: (X, 0).
In the new set of variables, the origin is an equilibrium paeifth output O, and
hence we can carry out our analysis in this set of variablase@e have obtained
our answers in this new set of variables, we simply “tramsl#tem back to the
original coordinates using = X + Xe, U = 0 + Ug andy = ¥ + Ve.

Returning to the original equations.{), now assuming without loss of gener-
ality that the origin is the equilibrium point of interestewvrite the outputy(t)
corresponding to the initial condition(0) = Xg and inputu(t) asy(t; Xg, u). Using
this notation, a system is said to bdirmear input/output systenti the following
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Figure 5.1: Superposition of homogeneous and particular solutions. The firstirowssthe
input, state and output corresponding to the initial condition responsesetioad row shows
the same variables corresponding to zero initial condition but nonzeub. ifpe third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:
() yt; X1+ Bxz, 0) = ay(t; X1, 0) + Ay(t; X2, 0),
(i) y(t; axo, 6u) = ay(t; Xo, 0) + Jy(t; O, u), (5.2)
(iif)  y(t; 0,6us + y uz) = dy(t; 0, u1) + y y(t; O, uz).

Thus, we define a system to be linear if the outputs are joinibali in the initial
condition responséu = 0) and the forced respongr(0) = 0). Property (iii) is a
statement of th@rinciple of superpositionthe response of a linear system to the
sum of two inputsl; andu; is the sum of the outputg andy, corresponding to
the individual inputs.

The general form of a linear state space system is

%:AH Bu  y=Cx+Du, (5.3)

where A € R™" B € R™P, C € R¥*"andD € RY*P. In the special case of a
single-input, single-output system,is a column vectoIC is a row vector and

is scalar. Equationy(3) is a system of linear first-order differential equationshwit
inputu, statex and outpuly. It is easy to show that given solutiorg(t) andx,(t)
for this set of equations, they satisfy the linearity coiodis.

We definexy (t) to be the solution with zero input (themogeneous solutipn
and the solutiorxp(t) to be the solution with zero initial condition (@articular
solution. Figure5.lillustrates how these two individual solutions can be super
posed to form the complete solution.
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It is also possible to show that if a finite-dimensional dynaahisystem is
input/output linear in the sense we have described, it canys be represented
by a state space equation of the forn3j through an appropriate choice of state
variables. In Sectiob.2we will give an explicit solution of equatiorb(3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

dx =ax+u y =X
dt ’ ’
with X(0) = Xp. Letu; = Asinw;t andu, = B cosw,t. The homogeneous solution
is Xn(t) = e?'xg, and two particular solutions witk(0) = 0 are
—01€ + w1 cosmit + asinwat
a2+ w?

el — acoswot + wy Sinwot

a2 + w3 '
Suppose that we now choos€0) = aXg andu = u; + Uy. Then the resulting
solution is the weighted sum of the individual solutions:

Awq n Ba
a2+ w?  a?+ o3

Xp1(t) = —A

b

a
sz(t) =B

X(t) = et (axo +

. . 54
A% cosmit 4+ asinw;t LB —acoswyt + wyp Sinwat 4
a2+ wf a2 + o} '
To see this, substitute equatida4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. \Y%

Time Invariance

Time invariancds an important concept that is used to describe a systemevhos
properties do not change with time. More precisely, for atimvariant system if
the inputu(t) gives outputy(t), then if we shift the time at which the inputis applied
by a constant amout u(t + a) gives the outpuy(t + a). Systems that are linear
and time-invariant, often callddl'| systemshave the interesting property that their
response to an arbitrary input is completely charactetettieir response to step
inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first ctarthe response
to a piecewise constant input. Assume that the systemiiglinit rest and consider
the piecewise constant input shown in Figbr2a The input has jumps at timég
and its values after the jumps aréy). The input can be viewed as a combination
of steps: the first step at tinig has amplitudei(ty), the second step at tintehas
amplitudeu(t;) — u(ty), etc.

Assuming that the system is initially at an equilibrium gdiso that the initial
condition response is zero), the response to the input cabtiad@ed by superim-
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant sigrize cap-
resented as a sum of step signals (a), and the resulting output is the soenindividual
outputs (b).

posing the responses to a combination of step inputsHL(&) be the response to
a unit step applied at time 0. The response to the first stepnsHiife — to)u(to),

the response to the second stefHi& — t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t) = H(t — to)u(to) + H(t — ty) (u(ty) — u(to)) + - -
= (H(t —to) — H(t —t))u(to) + (H(t —t)) — H({t —t))u(ty) + - -

th <t

= Zoo(H (t—ty) —H( - tn+1))u(tn)
n=0
th <t

:ZO H(t_tn)_ H(t_tn+l)

tn+1 - 1:n

u(tn) (tn+l - tn)-

An example of this computation is shown in Fig&2h

The response to a continuous input signal is obtained by datkia limit as
tha1 — th — 0, which gives

y(t) = /0t H'(t — r)u(zr)dr, (5.5)

whereH’ is the derivative of the step response, also calledrtipilse response
The response of a linear time-invariant system to any inpuiticas be computed
from the step response. Notice that the output depends ortlyeoinput since we
assumed the system was initially at res{)) = 0. We will derive equationg.5)
in a slightly different way in the Sectidb.3.
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5.2 The Matrix Exponential

Equation 6.5) shows that the output of a linear system can be written astagral
over the inputsi(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditioWse begin by exploring

the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set dedéhtial equations
defines a linear input/output system, we have not fully comgbthie solution of the
system. We begin by considering the homogeneous responssgonding to the

system
y dx

— = Ax. 5.6
T (5.6)
For thescalardifferential equation
dx
— = ax, xeR,aeR,
dt

the solution is given by the exponential
x(t) = e*'x(0).

We wish to generalize this to the vector case, whebecomes a matrix. We define
the matrix exponentiaas the infinite series

1 2 3
_|+x+2x+ x zkl (5.7)

whereX € R™" is a square matrix antlis then x n identity matrix. We make
use of the notation

XO=1, X?=XX,  X"=X"1x,

which defines what we mean by the “power” of a matrix. Equat)(is easy to
remember since it is just the Taylor series for the scalaoe&ptial, applied to the
matrix X. It can be shown that the series in equatidiTyconverges for any matrix
X e R™" in the same way that the normal exponential is defined for aalasc
aeR.

ReplacingX in equation 5.7) by At, wheret € R, we find that

1 1 1
At 2:2 343, . kik
=1+ At + =A% + !At+ _Ek!At

and differentiating this expression with respect tives

1 1
— Mo A+ A% AR = A ARt = At 5.8
gt T ATAtE AT 2.5 8
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Multiplying by x(0) from the right, we find thak(t) = eA'x(0) is the solution
to the differential equation5(6) with initial condition x(0). We summarize this
important result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6) is given by
x(t) = e*x(0).

Notice that the form of the solution is exactly the same as¢atar equations,
but we must put the vectot(0) on the right of the matrie”t.

The form of the solution immediately allows us to see that thetson is linear
in the initial condition. In particular, ikn1(t) is the solution to equatiorb(6) with
initial conditionx(0) = Xp1 andxp2(t) with initial condition x(0) = Xg, then the
solution with initial conditionx(0) = aXo1 + SXoz IS given by

x(t) = et (OCX01 + ﬂon) = (aeAtxm + ﬂeAtxog) = aXny(t) + SXxn2(1).
Similarly, we see that the corresponding output is given by

y(t) = CxX(t) = ayni(t) + Syn2(1),

whereyn (t) andyh,(t) are the outputs correspondingxq (t) andxpa(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful in understandiagi®concepts is the
second-order system given by

4=u, y=4q.

This system is called double integratobecause the inputis integrated twice to
determine the output.
In state space form, we write= (q, ) and

dx [0 1 X + 0 y
dt |0 O 1]
The dynamics matrix of a double integrator is
01
210 9]
and we find by direct calculation th&f = 0 and hence

1t
At
© —[o 1

Thus the homogeneous solutian=£ 0) for the double integrator is given by
X(t) = 1 t] [x(0)] _ [x(0) + tx2(0)
10 1) | O] X2(0) ’
y(t) = x1(0) + tx2(0).
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Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—magssywith zero damping,
is

q+ a)gq =u.

Putting the system into state space form, the dynamics nfatrthis system can
be written as

A 0 o and &M — co_Scoot Sinwot '
—wg O —Sinwpt  COSwot

This expression foe*! can be verified by differentiation:

deAt_ —wp Sinwpt W COSwot
dt =~ | —wocoswot —awgSinwot

_ 0 g co§wot Sinwot _ At
—wg O —Sinwpt  coSwgt

The solution is then given by

A [ coswot  sinwot | [*1(0)
x(t) = €e"x(0) = [—sinwot cosCoot] [x2(0) '

If the system has damping,
G + 20 w0q + w5q = U,
the solution is more complicated, but the matrix exponénta be shown to be

é-eia)dt _ é»e—iwd'[ N eiwdt + e—ia)dt eiwd'[ _ e—iwdt
ot 2021 2 2/2-1
e ) e—iwdt _ eiwdt é«e—iwdt _ (ei“’dt eia)dt + e—iwdt

— +
2/c2-1 2/c2-1 2

wherewy = wo/(? — 1. Note thatwg and,/¢? — 1 can be either real or complex,
but the combinations of terms will always yield a real valoethe entries in the
matrix exponential. \%

Animportant class of linear systems are those that can hedeul into diagonal
form. Suppose that we are given a system

dx_AX
dt

such that all the eigenvalues Afare distinct. It can be shown (Exercéd 4) that
we can find an invertible matriX such thafl AT~ is diagonal. If we choose a set
of coordinateg = T X, then in the new coordinates the dynamics become

dz dx
=T =TAx=TAT 1z
dt dt

By construction ofT, this system will be diagonal.
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Now consider a diagonal matriA and the correspondinith power of At,
which is also diagonal:

1 0 2Ktk 0
A A2 (A= 2Kt | ’
0 e 0 ' Ktk
It follows from the series expansion that the matrix expaia¢is given by
gt 0
eAt — e)»Zt '
0 et

A similar expansion can be done in the case where the eigewalre complex,
using a block diagonal matrix, similar to what was done in i8ect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transfomkaigonal form. They
can, however, be transformed to a closely related formeddheJordan form in
which the dynamics matrix has the eigenvalues along theodelg\When there are
equal eigenvalues, there may be 1's appearing in the s@genial indicating that
there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it cenwritten
as

N 0 O A1 0 0
0 »- 0 0 O 0 4 1 0
J=1]: ... |, where J =
0 O J-1 O 0 0 A1
0 O 0 X 0 0 0 A
(5.9)

Each matrixJ; is called aJordan block and ; for that block corresponds to an
eigenvalue ofl. Afirst-order Jordan block can be represented as a systenstngs

of an integrator with feedback A Jordan block of higher order can be represented
as series connections of such systems, as illustrated ime5gRi

Theorem 5.2(Jordan decompositionAny matrix Ae R"™*" can be transformed
into Jordan form with the eigenvalues of A determiningn the Jordan form.

Proof. See any standard text on linear algebra, such as St&ir&f]. The special
case where the eigenvalues are distinct is examined in Bedrdi4 O

Converting a matrix into Jordan form can be complicatedhcalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly resging since there is no
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X1 X1 X2 X1 X2 X2

J J J J J J

A A A A A Li

Figure 5.3: Representations of linear systems where the dynamics matrices aap Blocks.
A first-order Jordan block can be represented as an integrator withdek4, as shown on
the left. Second- and third-order Jordan blocks can be represensatias connections of
integrators with feedback, as shown on the right.

requirement that the individual’s be unique, and hence for a given eigenvalue we
can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the maiaix be computed
in terms of the Jordan blocks:

e 0 ... O
J .
|0 & e (5.10)
: .0
0 ... 0 ek

This follows from the block diagonal form of. The exponentials of the Jordan
blocks can in turn be written as

t2 tn—l 3

(1t &5 . G
n-2
0 1 R T
ett=|. 1 .. |et (5.11)
0 ... 0 1

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexwatNote thatt may be
complex, in which case the transformatibthat converts a matrix into Jordan form
will also be complex. Wheii has a nonzero imaginary component, the solutions
will have oscillatory components since

glotiot _ ot (coswt + i sinwt).

We can now use these results to prove Theatenwhich states that the equilibrium
pointx. = 0 of a linear system is asymptotically stable if and only ifiRe< 0.

Proof of Theorend.1 LetT € C"™" be an invertible matrix that transformsinto
Jordan formJ = T AT~L. Using coordinateg = T x, we can write the solution
z(t) as

z(t) = e’'z(0).
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Since any solutior(t) can be written in terms of a solutia(t) with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the tséormed coordinates.
The solutiorz(t) can be written in terms of the elements of the matrix exponen-
tial. From equationg.11) these elements all decay to zero for arbitrai@ if and
only if Re; < 0. Furthermore, if any,; has positive real part, then there exists an
initial conditionz(0) such that the corresponding solution increases withoutdou
Since we can scale this initial condition to be arbitrarilyadimit follows that the
equilibrium point is unstable if any eigenvalue has positeal part. 0

The existence of a canonical form allows us to prove many ptigseof linear
systems by changing to a set of coordinates in whichth®atrix is in Jordan form.
We illustrate this in the following proposition, which folivs along the same lines
as the proof of Theorerh.1

Proposition 5.3. Suppose that the system

dx
_:A
at = X

has no eigenvalues with strictly positive real part and omenore eigenvalues
with zero real part. Then the system is stable if and only if Jbelan blocks
corresponding to each eigenvalue with zero real part ardasod x 1) blocks.

Proof. See Exercisé.ab. O
The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft suchatsiescribed in Exam-
ple 2.9. Suppose that we choosg = u, = 0 so that the dynamics of the system
become

Z4
Z5
dz
az _ A , (5.12)
dt —gsinzs — = 24
g(coszz — 1) — & 75
0

wherez = (x, Y, 0, X, Y, 6). The equilibrium points for the system are given by
setting the velocitiex, y andé to zero and choosing the remaining variables to
satisfy

—gsinzze =0

— V4 =0,=0.
g(coszze — 1) = 0 3e = e

This corresponds to the upright orientation for the aircfdéite thatx, andy, are
not specified. This is because we can translate the systemwo(apeght) position
and still obtain an equilibrium point.
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ol Bl [ e

(a) Mode 1 (b) Mode 2

Figure 5.4: Modes of vibration for a system consisting of two masses connectedimgsp
In (a) the masses move left and right in synchronization in (b) they rtaward or against
each other.

To compute the stability of the equilibrium point, we compthie linearization
using equation4.11):

(0 0 O 1 0 0)
00 O 0 1 0
A—ﬁ |00 O 0 0 1
FY: . 0 0 —g —-c¢/m 0 o] I
00 O 0O —-c¢/m O
00 O 0 0 0

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0, —c/m, —c/mj}.

We see that the linearized system is not asymptoticallylestsibce not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense oubyapwe must
make use of the Jordan form. It can be shown that the JordandbA is given by

(0|0 O O O 0 )
0/0 1 0| O 0
J_0001O 0
~10/0 O O] O 0
0|0 0 O —c/m| O
| 0|0 0 O] O |—-c/m |

Since the second Jordan block has eigenvalue 0 and is not kegigpnvalue, the
linearization is unstable. \%

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pesorof the types of
behavior the system can exhibit. For oscillatory systeims t¢rmmodeis often
used to describe the vibration patterns that can occur. &igdrillustrates the
modes for a system consisting of two masses connected mgspne pattern is
when both masses oscillate left and right in unison, andnemds when the masses
move toward and away from each other.
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o Slow mode X1
Fast ~ 0.5 - — =X |
0.5 x =
0
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X1 Timet

Figure 5.5: The notion of modes for a second-order system with real eigenvalhedeft
figure shows the phase portrait and the modes corresponding to selthiamstart on the
eigenvectors (bold lines). The corresponding time functions are sbowvime right.

The initial condition response of a linear system can be &mrith terms of a
matrix exponential involving the dynamics matéx The properties of the matri&
therefore determine the resulting behavior of the systawmerG matrixA € R™",
recall that is an eigenvector of with eigenvaluel if

Av = iv.

In generall ando may be complex-valued, althoughA¥fis real-valued, then for
any eigenvalué. its complex conjugate* will also be an eigenvalue (with* as
the corresponding eigenvector).

Suppose first that andv are a real-valued eigenvalue/eigenvector pair&or
If we look at the solution of the differential equation fof0) = v, it follows from
the definition of the matrix exponential that
At 1 242 12t2 it
e v:(l +At+§At +~--)D=D+/1tU+TD+--'=eAD.

The solution thus lies in the subspace spanned by the eigenv€be eigenvalue
/. describes how the solution varies in time, and this solusarften called anode
of the system. (In the literature, the term “mode” is als@pftised to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectorando, it follows that

Xi (1) B ey, b

X (t) N e/“oj N j ’
and hence the ratios of the components of the state constants for a (real) mode.
The eigenvector thus gives the “shape” of the solution andsis ealled anode
shapeof the system. Figur&.5illustrates the modes for a second-order system
consisting of a fast mode and a slow mode. Notice that the gtatables have the

same sign for the slow mode and different signs for the fasteno
The situation is more complicated when the eigenvaludsaye complex. Since
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A has real elements, the eigenvalues and the eigenvectarsrapex conjugates
J =0 iwando = u=+iw, which implies that
v+ 0" v —0"

2 YT T
Making use of the matrix exponential, we have

e’y = ' (u+iw) = &' ((ucosaut — w sinwt) + i (usinwt + w cosat)),
from which it follows that

1 .
eMlu = Q(GNU + eAtv*) = ue’' coswt — we’t sinwt,
At 1 At At x t i ot
e wzﬁ(e v —eto ) = ué€" sinwt + we”" coswt.

A solution with initial conditions in the subspace spanngdh®e real paru and
imaginary parto of the eigenvector will thus remain in that subspace. Thetismiu
will be a logarithmic spiral characterized byandw. We again call the solution
corresponding td a mode of the system, amdthe mode shape.

If a matrix A hasn distinct eigenvaluegs, ..., 4,, then the initial condition
response can be written as a linear combination of the mddesee this, suppose
for simplicity that we have all real eigenvalues with copasding unit eigenvectors
v1, ..., 0n. From linear algebra, these eigenvectors are linearly iedégnt, and
we can write the initial conditio(0) as

X(O) = Q101 + Q202 + - -+ + ApOn.
Using linearity, the initial condition response can be teritas
X(t) = 0161 + 02603 + - - - + an€ton.

Thus, the response is a linear combination of the modes ofyters, with the

amplitude of the individual modes growing or decayings The case for distinct
complex eigenvalues follows similarly (the case for notidet eigenvalues is more
subtle and requires making use of the Jordan form discuss$led previous section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Fidgude but with the addition of
dampers on each mass. The equations of motion of the system are

MGy = —2kqy — cds + Kap, md, = kop — 2kgp — Clpp.

In state space form, we define the state t& be (q:1, 0o, d1, 02), and we can rewrite
the equations as

0 0 1 0 )
0 0 0 1
dx | 2k k c o |«
dt m m m
k& 5 _c
m m
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We now define a transformatian= T x that puts this system into a simpler form.
Letz; = 2(th + %), 2o = 21, 25 = 3(01 — Gp) andz, = 73, so that

1 1 0 0
1o 0 1 1

Z=Tx= 511 -1 0 o X.
0O 0 1 -1
In the new coordinates, the dynamics become
0 1 0 0]
k
dz |™m m 2 0©
- = Z,
dt 0 0 0 1
k
o o -X_¢
L m mA

and we see that the system is in block diagonahfoda) form.

Inthez coordinates, the statesandz, parameterize one mode with eigenvalues
A~ ¢/(2m) £+ i/k/m (for ¢ small), and the statesy andz, another mode with
A ~ ¢/(2m) £ i+/3k/m. From the form of the transformatioh we see that these
modes correspond exactly to the modes in Figuee in which q; andg, move
either toward or against each other. The real and imaginaty péthe eigenvalues
give the decay rates and frequencie& for each mode. \%

5.3 Input/Output Response

In the previous section we saw how to compute the initial doydresponse using
the matrix exponential. In this section we derive the coattoh equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equatiod) (repeated here:
d
d—’t( — AX+Bu,  y=Cx+Du. (5.13)

Using the matrix exponential, the solution to equatiéril® can be written as
follows.

Theorem 5.4. The solution to the linear differential equati¢®.13) is given by
t
x(t) = e*x(0) +/ A9 Bu(r)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp§Br8) of the
matrix exponential. This gives
dx

t
e A x(0) +/ A9 Bu(r)dr + Bu(t) = Ax + Bu,
0
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(a) Pulse and impulse functions (b) Pulse and impulse responses

Figure 5.6: Pulse response and impulse response. (a) The rectangles shosvgfulsdth

5, 25 and 08, each with total area equal to 1. The arrow denotes an impiselefined

by equation $.17). The corresponding pulse responses for a linear system with elgesva

A = {—0.08, —0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duratin 0

which proves the result. Notice that the calculation is esaly the same as for
proving the result for a first-order equation. O

It follows from equations§.13 and 6.14) that the input/output relation for a
linear system is given by
t
y(t) = CeMx(0) +/ Ccer = Bu(r)dr + Du(t). (5.15)
0
It is easy to see from this equation that the output is joititigar in both the
initial conditions and the input, which follows from the darity of matrix/vector
multiplication and integration.

Equation .15 is called theconvolution equatiorand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetéhy the matrixA, play
a critical role in both the stability and performance of thstem. Indeed, the matrix
exponential describdsthwhat happens when we perturb the initial condition and
how the system responds to inputs.

Another interpretation of the convolution equation can ivemgusing the concep
of theimpulse responsef a system. Consider the application of an input signél
u(t) given by the following equation:

0 t<O
ut) =p(t)y=11/e 0<t<e (5.16)
0 t>e.

This signal is gulseof duratione and amplitude J¢, as illustrated in Figur.6a
We define animpulsed(t) to be the limit of this signal as — 0:

a(t) = lim p(t). (5.17)
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This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction in understanding theorese of a system. Note
that the integral of an impulse is 1:

t t t
/5(r)dr=/ lim pg(t)dr=lim/ pe(t) dz
0 0 e—0 e—>0 0
:Iim/l/edrzl t>0.
0

e—0
In particular, the integral of an impulse over an arbitsashort period of time is
identically 1.
We define thémpulse responsef a systenmh(t) to be the output corresponding
to having an impulse as its input:

t
h(t) =/0 Cer=IBg(r)dr = CEeMB, (5.18)

where the second equality follows from the fact ) is zero everywhere except
the origin and its integral is identically 1. We can now wtfte convolution equation
in terms of the initial condition response, the convolutidrthe impulse response
and the input signal, and the direct term:

y(t) = CeMx(0) + /t h(t — 7)u(r)dz + Du(t). (5.19)
0

One interpretation of this equation, explored in Exer&s is that the response
of the linear system is the superposition of the response iofmite set of shifted
impulses whose magnitudes are given by the inpij. This is essentially the
argument used in analyzing Figuse2 and deriving equation5(5). Note that the
second termin equatiob.(19 is identical to equatiorg(5), and it can be shown that
the impulse response is formally equivalent to the dereatif the step response.

The use of pulses as approximations of the impulse functism atovides a
mechanism for identifying the dynamics of a system from daigure5.6bshows
the pulse responses of a system for different pulse widthsicél that the pulse
responses approach the impulse response as the pulse wikhazero. As a
general rule, if the fastest eigenvalue of a stable systemndad part-omay, then a
pulse of lengtte will provide a good estimate of the impulse respongeifax < 1.
Note that for Figuré.6, a pulse width ot = 1 s givesomax = 0.62 and the pulse
response is already close to the impulse response.

Coordinate Invariance

The components of the input vectoand the output vectarare given by the chosen
inputs and outputs of amodel, but the state variables depetitk coordinate frame
chosen to represent the state. This choice of coordinatestafhe values of the
matricesA, B andC that are used in the model. (The direct telbms not affected
since it maps inputs to outputs.) We now investigate sombhetbnsequences of
changing coordinate systems.
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs Widsstif
k and a viscous damper with damping coefficienThe mass on the right is driven through
a spring connected to a sinusoidally varying attachment.

Introduce new coordinates by the transformatiorz = Tx, whereT is an
invertible matrix. It follows from equatiorg(3) that

d o
d—tz — T(Ax+ BU) = TAT 'z4+ TBu=: Az+ Bu,

y=Cx+Du=CT 'z+ Du=:Cz+ Du.

The transformed system has the same form as equdii8) ut the matrices,
B andC are different:

A=TATY, B=TB, C=cCTL. (5.20)

There are often special choices of coordinate systems thatad to see a particular
property of the system, hence coordinate transformatiange used to gain new
insight into the dynamics.

We can also compare the solution of the system in transfocoeddinates to
that in the original state coordinates. We make use of aniitapbproperty of the
exponential map,

el ST _ TeST_l,
which can be verified by substitution in the definition of the mxagéxponential.
Using this property, it is easy to show that

. t B
X(t) =T 'z(t) =T NTxO0) + T~* / A= By(r) dr.
0

From this form of the equation, we see that if it is possiblerém$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationieruntransformed state
x by simple matrix multiplications. This technique is illusted in the following
example.

Example 5.6 Coupled spring—mass system

Consider the coupled spring—mass system shown in Figarerhe input to this
system is the sinusoidal motion of the end of the rightmoshgpand the output
is the position of each masg, andg,. The equations of motion are given by

md, = —2kaq; — cgr + Kp, mé, = kap — 2kge — g, + ku.
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In state space form, we define the state ta be (g1, 02, 41, ¢2), and we can rewrite

the equations as

0 0 1 0 0
0 0 0 1 0
dx 2k k c
—=|-—— - — 0 |IX4+]10]u
dt m m m K
k 2k 0 c -
L' m m m m

This is a coupled set of four differential equations and iseqcdmplicated to solve
in analytical form.

The dynamics matrix is the same as in Exantplg and we can use the coor-
dinate transformation defined there to put the system in nfodal:

[ 0 1 0 0] [ 0 )
k c
- = 0 0 L
dz m 2m
- lo o o 1|*F| o Y™
k k
0 0 _3_ _° -

L m m ! 2m

Note that the resulting matrix equations are block diaganal hence decoupled.
We can solve for the solutions by computing the solutionsvaf $ets of second-
order systems represented by the stéesz,) and(zs, z4). Indeed, the functional
form of each set of equations is identical to that of a singleng—mass system.
(The explicit solution is derived in Sectidh3)

Once we have solved the two sets of independent second-egdations, we
can recover the dynamics in the original coordinates byrtmgthe state transfor-
mation and writingx = T~!z. We can also determine the stability of the system
by looking at the stability of the independent second-osystems. \Y%

Steady-State Response

Given a linear input/output system
dx

— = AX+ Bu,
dt *

the general form of the solution to equatidhql) is given by the convolution
equation:

y = Cx+ Du, (5.21)

t
y(t) = CeMx(0) +/ ce\t=IBu(r)dr + Du(t).
0

We see from the form of this equation that the solution cassisan initial condition
response and an input response.

The input response, corresponding to the last two terms iedhation above,
itself consists of two components—tli@nsient responsand thesteady-state
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Figure 5.8: Transient versus steady-state response. The input to a linear systieowis in
(a), and the corresponding output witf0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

responseThe transient response occurs in the first period of time #feeinput
is applied and reflects the mismatch between the initial ¢mmdand the steady-
state solution. The steady-state response is the portidreaiutput response that
reflects the long-term behavior of the system under the giveuts. For inputs that
are periodic the steady-state response will often be pieriadd for constant inputs
the response will often be constant. An example of the teemisind the steady-state
response for a periodic input is shown in Fig6t8,

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to anothemiit step(sometimes called the Heav-
iside step function) is defined as

0t=0

uzs(t)=i1 t> 0.

Thestep responsef the system3.21) is defined as the outpytt) starting from zero
initial condition (or the appropriate equilibrium pointy@given a step input. We
note that the step input is discontinuous and hence is nctipatly implementable.
However, it is a convenient abstraction that is widely usestudying input/output
systems.

We can compute the step response to a linear system usingiielgtion
equation. Settingk(0) = 0 and using the definition of the step input above, we
have

t t
y(t) =/ CeA(t—r)Bu(T)dT + DLI(t) — C/ eA(t—r)BdT +D
0 0

t
= c/ e~ Bdo + D =C (A'e"B)|’_,+ D
0

=CA'eMB-CA'B+D.
If A has eigenvalues with negative real part (implying that thigi is a stable
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and stasaly-s
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we cavrite the solution as
y(t)=CAeA"B+D-CA™B, t>0. (5.22)

transient steady-state

The first term is the transient response and decays to zdresasc. The second
term is the steady-state response and represents the V¥ahee @utput for large
time.

A sample step response is shown in Figbrg@ Several terms are used when
referring to a step response. Theady-state valuegyof a step response is the
final level of the output, assuming it converges. Tise time T is the amount of
time required for the signal to go from 10% of its final value @® of its final
value. Itis possible to define other limits as well, but in tho®k we shall use these
percentages unless otherwise indicated. Glershoot M is the percentage of the
final value by which the signal initially rises above the finaluea This usually
assumes that future values of the signal do not overshodirthlevalue by more
than this initial transient, otherwise the term can be amdig. Finally, thesettling
time T is the amount of time required for the signal to stay within @®ts final
value for all future times. The settling time is also somesmiefined as reaching 1%
or 5% of the final value (see ExerciSeY). In general these performance measures
can depend on the amplitude of the input step, but for lingstems the last three
guantities defined above are independent of the size of the ste

Example 5.7 Compartment model

Consider the compartment model illustrated in FigbwE)and described in more
detail in SectiorB.6. Assume that a drug is administered by constant infusion in
compartmen¥; and that the drug has its effect in compartméntTo assess how
quickly the concentration in the compartment reaches gtstate we compute the
step response, which is shown in Figird . The step response is quite slow,
with a settling time of 39 min. Itis possible to obtain thesgte-state concentration
much faster by having a faster injection rate initially, &aswn in Figure5.1Cc.
The response of the system in this case can be computed byrmombivo step
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Figure 5.10:Response of acompartment model to a constant drug infusion. A sitiajpliem
of the system is shown in (a). The step response (b) shows the rateagfitation buildup
in compartment 2. In (c) a pulse of initial concentration is used to speddeugsponse.

responses (Exercige3). \Y%

Another common input signal to a linear system is a sinuswid combination
of sinusoids). Thé&requency responsd an input/output system measures the way in
which the system responds to a sinusoidal excitation on fitssioputs. As we have
already seen for scalar systems, the particular solutisocéated with a sinusoidal
excitation is itself a sinusoid at the same frequency. Hemeean compare the
magnitude and phase of the output sinusoid to the input. gemnerally, if a system
has a sinusoidal output response at the same frequencyiaptitéorcing, we can
speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipagon 6.15) for
u = coswt. This turns out to be a very messy calculation, but we can ma&ef
the fact that the system is linear to simplify the derivatibmparticular, we note
that

coswt = %(eiwt + e‘i“’t).

Since the system is linear, it suffices to compute the respdrtbe gystem to the
complex inputu(t) = et and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding#oi w ands = —iw.

Applying the convolution equation to the input= €% we have

t
y(t) = Ce’x(0) +/ ceM=IBe"dr + De®
0

t
= CeMx(0) + CeA‘/ eS'=A"Bdr + De’,
0

If we assume that none of the eigenvaluesfoére equal tes = =+iw, then the
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matrixs| — Ais invertible, and we can write
t
y(t) = Cerx(0) + CeM ((sl _ A Le6I-Ar B) ]O + Dest

— Cerx(0) 4+ CeMl(sl — A)‘l(e(s"A)t _ I)B + De’

=Ce\'x(0) + C(sl — A~ 1e'B — CeM(sl — A)"1B + De™,
and we obtain

y(t) = CeAt(x(O) — (sl - A)—ls) + (C(s| —AB+ D)est. (5.23)

transient steady-state

Notice that once again the solution consists of both a teaigiomponent and a
steady-state component. The transient component decagsdadf zhe system is
asymptotically stable and the steady-state componenboptional to the (com-
plex) inputu = e,
We can simplify the form of the solution slightly further swriting the steady-
state response as , _
ySS(t) — Melﬁest — Me(st—H@),

where .
Me? =C(sl — AB+D (5.24)

andM and@ represent the magnitude and phase of the complex nu@sdr—
A)"1B + D. Whens = iw, we say thaitM is thegain andé is the phaseof the
system at a given forcing frequeney Using linearity and combining the solutions
fors = +iwands = —iw, we can show thatif we have an inpu= A, sin(wt+ )
and an outpuy = Ay sin(wt + ¢), then

gain(w) = % =M, phaséw) = ¢ — v = 6.

u
The steady-state solution for a sinusaie= coswt is now given by

Vss(t) = M coqwt + 6).

If the phasé is positive, we say that the outpleadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in FigbrEla The dashed line
shows the input sinusoid, which has amplitude 1. The outpussiid is shown as a
solid line and has a different amplitude plus a shifted phake gain is the ratio of
the amplitudes of the sinusoids, which can be determineddssnring the height
of the peaks. The phase is determined by comparing the raticedgime between
zero crossings of the input and output to the overall perfad@sinusoid:

0 =—-27 - —.
T
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Figure 5.11: Response of a linear system to a sinusoid. (a) A sinusoidal input ofitnedgn
A, (dashed) gives a sinusoidal output of magnitége(solid), delayed byA T seconds. (b)
Frequency response, showing gain and phase. The gain is giver logtit of the output
amplitude to the input amplitud® = A,/A,. The phase lag is given ly= -2z AT/ T,
it is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot Hmvgain and
phase in equatiorb(24 depend orw (throughs = iw). Figure5.11bshows an
example of this type of representation.

Example 5.8 Active band-pass filter

Consider the op amp circuit shown in Figuréd.2a We can derive the dynamics of
the system by writing theodal equationswhich state that the sum of the currents
at any node must be zero. Assuming that= v, = 0, as we did in SectioB.3,

we have D1 — D2 d1)2 dl)z 03 dl)3
0= R _Cla’ 0=C1E+EZ+C2H.
Choosingv, andos as our states and using these equations, we obtain
dl)z D1 — L2 dl)3 —03 D1 — L2
dt ~ RGC;° dt  RC, RC; '
Rewriting these in linear state space form, we obtain
1 1
dx " RC, 0 RiCq
Tl 1 1 X+ 1 | W y = [0 1] X, (5.25)
RC.  RC, RiC;

wherex = (v, v3), U = v andy = vs.
The frequency response for the system can be computed usiatj@yb.24):

R, R.Cis
Ri1 (1 4+ RiC15)(1 + RCys) ’
The magnitude and phase are plotted in Figufebfor R; = 100Q, R, = 5 kQ

s=low.

Mel? =C(sl — A'B+D =—
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp withrR®o
filters arranged to provide a band-pass filter. The plot in (b) showsdimeagd phase of the
filter as a function of frequency. Note that the phase starts ath9@to the negative gain of
the operational amplifier.

andC; = C, = 100 pF. We see that the circuit passes through signals with
frequencies at about 10 rad/s, but attenuates frequeneiew 5 rad/s and above
50 rad/s. At 0.1 rad/s the input signal is attenuated by 20.05). This type of
circuit is called aband-pass filtesince it passes through signals in the band of
frequencies between 5 and 50 rad/s. \Y%

As in the case of the step response, a number of standardpesfe defined
for frequency responses. The gain of a system &t 0 is called thezero frequency
gainand corresponds to the ratio between a constant input arsiehdy output:

Mo = —-CA™ B+ D.

The zero frequency gain is well defined onlyAfis invertible (and, in particular, if

it does not have eigenvalues at 0). Itis also important te tiwt the zero frequency
gain is a relevant quantity only when a system is stable ateutorresponding
equilibrium point. So, if we apply a constant input= r, then the corresponding
equilibrium pointx, = —A~!Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero fesguy gain is often called
the DC gain DC stands for direct current and reflects the common separafi
signals in electrical engineering into a direct currentdZeequency) term and an
alternating current (AC) term.)

Thebandwidthwy, of a system is the frequency range over which the gain has
decreased by no more than a factor p{/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth isftequency where
the gain has decreased by\12 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequenttie reference gain
is taken as the high-frequency gain. For a system such asatifiass filter in
Example5.8, bandwidth is defined as the range of frequencies where timeigai
larger than 1./2 of the gain at the center of the band. (For Exanfp8this would
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dyinarof an
atomic force microscope in contact mode. The plot in (b) shows the gaipbase for the
piezo stack. The response contains two frequency peaks at ressnafrthe system, along
with an antiresonance at = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

give a bandwidth of approximately 50 rad/s.)

Another important property of the frequency response isrés®nant peak
M, the largest value of the frequency response, angéad frequency,,, the
frequency where the maximum occurs. These two propertiesideshe frequency
of the sinusoidal input that produces the largest possilieut and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomicdamicroscope in
contact mode, discussed in Secti®®. The basic dynamics are given by equa-
tion (3.23. The piezo stack can be modeled by a second-order systenumth
damped natural frequeneys and damping ratigz. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
ax | —ke/(Mi+my) —Co/(Mi+my) 1/my 0 X 4 O,
dt 0 0 0 w3 0 ’
0 0 —w3 —203w3 w3
y= m; mko m; Cy 1 O] .
me+my Lmp+my mg+m;

where the input signal is the drive signal to the amplifier dreddutput is the elon-
gation of the piezo. The frequency response of the systenoversim Figure5.13h
The zero frequency gain of the systenMg = 1. There are two resonant poles with
peaksM;; = 2.12 atwmr1 = 238 krad's andM;, = 4.29 atomr, = 746 krad's.
The bandwidth of the system, defined as the lowest frequencyevthe gain is
V2 less than the zero frequency gaingis = 292 krad's. There is also a dip in
the gainMy = 0.556 forwmg = 268 krad's. This dip, called aantiresonancgis
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associated with a dip in the phase and limits the performarien the system is
controlled by simple controllers, as we will see in Chagdf@r \Y%

Sampling

It is often convenient to use both differential and differerequations in modeling
and control. For linear systems it is straightforward tao&farm from one to the
other. Consider the general linear system described bytiegua.13 and assume
that the control signal is constant over a sampling intepfalbonstant lengtfn. It
follows from equation%.14) of Theoremb.4that

t+h
x(t + h) = eA"x(t) +/ AN -IByY(r)dr = Ox(t) + Cu(t), (5.26)
t

where we have assumed that the discontinuous control sigeahtinuous from
the right. The behavior of the system at the sampling titneskh is described by
the difference equation

x[k + 1] = Ox[K] + Tu[k],  y[K] = Cx[K] + Du[k]. (5.27)

Notice that the difference equatiob.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressiansalso be obtained if
the control signal is linear over the sampling interval.

The transformation from&(26) to (5.27) is calledsampling The relations be-
tween the system matrices in the continuous and sampledseuations are as
follows:

o=eM T = (/OheAsds)B; A:%Iogd), B:(/OheAsds)_ll“.

(5.28)
Notice that if A is invertible, we have

=A@ -1)B.

All continuous-time systems can be sampled to obtain aelisdime version,
but there are discrete-time systems that do not have a congatime equivalent.
The precise condition is that the matrdx cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

ylk + 1] = ay[K] + bu[K],

wherea = 0.43,b = 0.47 and the sampling period is = 60 s. A differential
equation model is needed if we would like to design contraitemns based on
continuous-time theory. Such a model is obtained by applgiqgation 5.28);
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hence loaa h .
A="92_ 00141 B= (/ eAtdt) b= 00116
h 0

and we find that the difference equation can be interpretegamaled version of
the ordinary differential equation

% — —0.0141x + 0.0114..

. . . \Y
5.4 Linearization

As described at the beginning of the chapter, a common sairiteear system

models is through the approximation of a nonlinear systera liyear one. These
approximations are aimed at studying the local behavior efstem, where the
nonlinear effects are expected to be small. In this sect®digcuss how to locally
approximate a system by its linearization and what can lzkad@out the approxi-
mation in terms of stability. We begin with an illustratioftbe basic concept using
the cruise control example from Chap8&r

Example 5.11 Cruise control
The dynamics for the cruise control system were derived ini@e8t1 and have
the form

1
m% = anuT(anv) — mgG sgnv) — EpCU Av? — mgsind, (5.29)

where the first term on the right-hand side of the equationaddince generated
by the engine and the remaining three terms are the rollinggdn, aerodynamic
drag and gravitational disturbance force. There is an daitilin (ve, Ug) When the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equatibr2®) around the equilibrium gives

d(o —
(Ddt v a(v — ve) — by(0 — Ge) + b(u — Ue) + higher order terms, (5.30)
where
4 Ueat2T'(atnve) — pC, Ave’ b, — gcoste. b= OtnT(anve)' .31

m
Notice that the term corresponding to rolling friction digaars ifo = 0. For a car
in fourth gear withwe = 25 m/s,fe = 0 and the numerical values for the car from
Section3.1, the equilibrium value for the throttle is = 0.1687 and the parameters
area = —0.0101,b = 1.32 andc = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed evolvime.
Figure5.14shows a simulation of a cruise controller with linear andlimaar
models; the differences between the linear and nonlineatelscare small, and
hence the linearized model provides a reasonable apprtogima \Y%
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controites gaek, = 0.5

andk, = 0.1.

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, sirgiéput nonlinear system

dx
— = f R" R
T (X, u), x e R",u eR, (5.32)

y = h(x, u), y eR,

with an equilibrium point akk = Xe, U = Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium p@iat ue),
we suppose that — xe andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared viigh(tower-order) linear
terms. This is roughly the same type of argument that is useshwie do small-
angle approximations, replacing girwith & and co% with 1 for 8 near zero.

As we did in Chapted, we define a new set of state variakteas well as inputs
v and outputso:

Z=X— Xe, D =U-— U, w =Y — h(Xe, Ug).

These variables are all close to zero when we are near théemui point, and so
in these variables the nonlinear terms can be thought oedsigimer-order terms in
a Taylor series expansion of the relevant vector fields (asgpfor now that these
exist).
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Formally, theJacobian linearizatiorof the nonlinear systenb(32) is

dz
- = Az+ Buo, w = Cz+ Do, (5.33)
where
of of oh oh
= — . B = — 5 C = — N D = — . (534)
0X ou oX ou

(Xe,Ue) (Xe,Ue) (Xe,Ue) (Xe,Ue)
The system§.33 approximates the original systers.82 when we are near the
equilibrium point about which the system was linearizedingsrheorem4.3, if
the linearization is asymptotically stable, then the ehrim pointx. is locally
asymptotically stable for the full nonlinear system.

Itis important to note that we can define the linearization eystem only near
an equilibrium point. To see this, consider a polynomiateys
dx

at =ap+ arX + apx® + azx> + u,

whereay # 0. A set of equilibrium points for this system is given ¥, Ue) =
(Xe, —80 — a1Xe — A2X2 — a3x3), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the systera- 0, u = 0. If we drop
the higher-order terms ir, then we get
dx

— = X + u,
dt Qo + a1X +

which isnotthe Jacobian linearization &, # 0. The constant term must be kept,

and itis not present irb(33. Furthermore, even if we kept the constant term in the
approximate model, the system would quickly move away froispoint (since it

s “driven” by the constant terrag), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has fae#itfor performing
linearization symbolically or numerically. The MATLAB commanr i mfinds the
equilibrium, andl i nnod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Exar@eThe nonlinear
equations of motion for the system are given by equati@®3—(2.25 and can
be written as

v cos(a(d) + 0) tans
dtl] ‘USIH(OC(5)+9) , a(é):arctar(aa )

—tano b

wherex, y andé are the position and orientation of the center of mass of the
vehicle,vq is the velocity of the rear whed,is the distance between the front and
rear wheels and is the angle of the front wheel. The functierid) is the angle
between the velocity vector and the vehicle’s length axis.
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We are interested in the motion of the vehicle about a sttdige path ¢ = 6p)
with fixed velocityvg # 0. To find the relevant equilibrium point, we first e 0
and we see that we must ha¥e= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in they direction is by definitiomotat equilibrium since
X2 + y? = 02 # 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviaftthe vehicle
from a straight line. For simplicity, we lét. = O, which corresponds to driving
along thex axis. We can then focus on the equations of motion inyttend 9
directions. With some abuse of notation we introduce theesta= (y, ) and
u = ¢. The system is then in standard form with

v sin(a(u) + Xp) atanu

f(x,u) = , a(u) = arctar( ) h(x, u) = x;.

Vo

b tanu
The equilibrium point of interest is given by= (0, 0) andu = 0. To compute the
linearized model around this equilibrium point, we makeafdbe formulas$.34).
A straightforward calculation yields

A— ﬁ . 0 oo B— ﬂ . al)o/b
- ox|x=0 |0 0O}” © oulx=0 | vo/b )’
u=0 u=0
h oh
c=2 _ [1 o] : D=2| =0
OX | x=0 ou | x=0
u=0 u=0
and the linearized system
d
d_)t( = Ax+ Bu, y =Cx+ Du (5.35)

thus provides an approximation to the original nonlinearadyics.

The linearized model can be simplified further by introducingmalized vari-
ables, as discussed in Secti®3. For this system, we choose the wheel base
as the length unit and the unit as the time required to traweheel base. The
normalized state is thus= (x;/b, X2), and the new time variable is = vgt/b.
The model $.35) then becomes

dz _ [ZZTJV“] - [8 é] zZ+ [yl] u  y= [1 o] z, (5.36)

dr
wherey = a/b. The normalized linear model for vehicle steering with ngoshg
wheels is thus a linear system with only one parameter. \Y%

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into those of a linear one. We illustrageliasic idea with an
example.
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Figure 5.15: Feedback linearization. A nonlinear feedback of the fore a(x, v) is used
to modify the dynamics of a nonlinear process so that the responsefiemputo to the
outputy is linear. A linear controller can then be used to regulate the system’s dysiam

Example 5.13 Cruise control
Consider again the cruise control system from Exarbpld, whose dynamics are
given in equationg.29:

d 1
md_i = anuT (an) — MgG sgn) — EpCd Av? — mgsiné.

If we chooseau as a feedback law of the form

1
u u + mgG sgnv) + EpC,) sz) , (5.37)

_ 1
B anT (anv) (

then the resulting dynamics become

do
— =u+d 5.38
mdt u +d, ( )
whered = —mgsiné is the disturbance force due the slope of the road. If we

now define a feedback law for (such as a proportional-integral-derivative [PI1D]
controller), we can use equatioB.87) to compute the final input that should be
commanded.

Equation 5.39 is a linear differential equation. We have essentiallyéiried”
the nonlinearity through the use of the feedback 188T). This requires that we
have an accurate measurement of the vehicle velacig well as an accurate
model of the torque characteristics of the engine, geangatirag and friction
characteristics and mass of the car. While such a model igematrally available
(remembering that the parameter values can change), if sigrda good feedback
law for u’, then we can achieve robustness to these uncertainties. \Y%

More generally, we say that a system of the form

dx
a = f(X, U), y: h(X),

is feedback linearizablé& we can find a control lawu = a(x, v) such that the
resulting closed loop system is input/output linear withutw and outputy, as
shown in Figures.15 To fully characterize such systems is beyond the scope of
this text, but we note that in addition to changes in the inine general theory also
allows for (nonlinear) changes in the states that are use@dgoribe the system,
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keeping only the input and output variables fixed. More defilthis process can
be found in the textbooks by Isidofsj95] and Khalil [Kha01].

One case that comes up relatively frequently, and is hencéhwspecial mention,@
is the set of mechanical systems of the form

M(@)d + C(q,q) = B(a)u.

Hereq e R" is the configuration of the mechanical systelh(q) € R™" is

the configuration-dependent inertia mati@(g, q) € R" represents the Coriolis
forces and additional nonlinear forces (such as stiffnadsfiaction) andB(q) e
R"™P is the input matrix. Ifp = n, then we have the same number of inputs and
configuration variables, and if we further have tB4t)) is an invertible matrix for

all configurationgy, then we can choose

u=B"Yq)(M(@v +C(q,q). (5.39)
The resulting dynamics become

M@4=M@» =  (=vo,

which is a linear system. We can now use the tools of lineatresygheory to
analyze and design control laws for the linearized systemembering to apply
equation $.39 to obtain the actual input that will be applied to the system

This type of control is common in robotics, where it goes by tiaene of
computed torqueand in aircraft flight control, where it is calledi/namic inver-
sion Some modeling tools like Modelica can generate the codehiiirtiverse
model automatically. One caution is that feedback linedidn can often cancel
out beneficial terms in the natural dynamics, and hence it imisised with care.
Extensions that do not require complete cancellation ofineatities are discussed
in Khalil [Kha0]] and Krsti¢ et al. KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical aad be found in most
books on dynamics and control theory, including early warkscontrol such as
James, Nichols and PhillipdiNP47 and more recent textbooks such as Dorf and
Bishop [DBO04], Franklin, Powelland Emami-NaeirfPEN0j3and OgataQga01l.

An excellent presentation of linear systems based on theixm@&tponential is
given in the book by Brocketgro7(, a more comprehensive treatment is given by
Rugh [Rug93 and an elegant mathematical treatment is given in Sor8ag98.
Material on feedback linearization can be found in booksanlinear control theory
such as Isidorilgi95] and Khalil [Kha0J]. The idea of characterizing dynamics by
considering the responses to step inputs is due to Heayfsédaso introduced an
operator calculus to analyze linear systems. The unit stéperefore also called
theHeaviside step functionalysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of latknathematical rigor,
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as described in the biography by Nahiah8§. The difficulties were cleared up
later by the mathematician Laurent Schwartz who develapstibution theory
in the late 1940s. In engineering, linear systems havetioadily been analyzed
using Laplace transforms as described in Gardner and Ba@B47. Use of
the matrix exponential started with developments of cdritreory in the 1960s,
strongly stimulated by a textbook by Zadeh and Desd®€3]. Use of matrix
techniques expanded rapidly when the powerful methodsroinig linear algebra
were packaged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

5.1 (Response to the derivative of a signal) Show that(if) is the output of a
linear system corresponding to inpwit), then the output corresponding to an
input u(t) is given byy(t). (Hint: Use the definition of the derivativei(t) =
Iim5—>0(y(t + 6) - y(t))/f)

5.2(Impulse response and convolution) Show that a sig(talcan be decompose@
in terms of the impulse functiodi(t) as

t
u(t) =/0 o(t —r)u(r)dr

and use this decomposition plus the principle of superoosib show that the
response of a linear system to an inp(t) (assuming a zero initial condition) can
be written as

t
y(t) = /0 h(t — o)u() dr,

whereh(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the céommgratr model
given in Examplées.7. Compute the step response for the system and compare it
with Figure5.10h Use the principle of superposition to compute the resptmse
the 5 s pulse input shown in FigukelOc Use the parameter valugs = 0.1,

k1 =0.1, kz =05 andbo = 1.5.

5.4 (Matrix exponential for second-order system) Assume¢hatl and letwy =
woy/1 — 2. Show that

—fwp g e~ ¢l coswgt € ¢t sinegt
eXp — _ = _ —(a)ot H —Cwot .
d Co e sinwgt € COSwqt

5.5(Lyapunov function for a linear system) Consider a lineatsynx = Ax with
Rel; < O for all eigenvalued; of the matrixA. Show that the matrix

P=/ AT Qe dr
0

defines a Lyapunov function of the fors(x) = x" P x.
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5.6 (Nondiagonal Jordan form) Consider a linear system withrdaloform that is
non-diagonal.

(a) Prove Propositioh.3by showing that if the system contains a real eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an iht@ndition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalugsRél = 0 by
using the block Jordan form

0 w 1 O
3 - 0 0 1
' 10 0 0 o
0 0 —w O
5.7 (Rise time for a first-order system) Consider a first-orderesysif the form
dx N _
e , y =X.

We say that the parameteis thetime constantor the system since the zero input
system approaches the originexd/*. For a first-order system of this form, show
that the rise time for a step response of the system is appat&ly 2, and that
1%, 2%, and 5% settling times approximately correspondsao, 4z and .

5.8 (Discrete-time systems) Consider a linear discrete-tiyséesn of the form
X[k 4+ 1] = AX[K] + Bu[K], y[k] = Cx[Kk] + Du[kK].

(a) Show that the general form of the output of a discrete-limear system is
given by the discrete-time convolution equation:

k—1
y[k] = CAX[0] + > CA<IT'BU[j] + Dulk].
j=0
(b) Show that a discrete-time linear system is asymptoticadible if and only if
all the eigenvalues ol have a magnitude strictly less than 1.

(c) Letu[k] = sin(wk) represent an oscillatory input with frequeney< = (to
avoid “aliasing”). Show that the steady-state componenhefresponse has gain
M and phasé, where

Me? = C(“l — A)"IB + D.
(d) Show that if we have a nonlinear discrete-time system
X[k+ 1] = f(x[K],u[k]), x[kK] eR", ueR,
y[Kl = h(x[k], u[k]),  yeR,

then we can linearize the system around an equilibrium gainue) by defining
the matricesA, B, C andD as in equation3.34).
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5.9 (Keynesian economics) Consider the following simple Keyae macroeco-
nomic model in the form of a linear discrete-time systemussed in Exercisg.8

Clt+1] a a Clt] a
[I[t+1]] - [ab—b ab] [|[t]] + [ab] G[t],
Y[t] = C[t] + I[t] + GIt].

Determine the eigenvalues of the dynamics matrix. Whentaartagnitudes of
the eigenvalues less than 1? Assume that the system is ibeigun with constant
values capital spendin@, investmentl and government expenditute. Explore

what happens when government expenditure increases by W6&othe values
a=0.25andb = 0.5.

5.10 Consider a scalar system

dx
Z_o1-x3+u
at +

Compute the equilibrium points for the unforced system=0) and use a Taylor
series expansion around the equilibrium point to compueditiearization. Verify
that this agrees with the linearization in equatiér8Q).

5.11(Transcriptional regulation) Consider the dynamics ofradie circuit that im-
plementself-repressionthe protein produced by a gene is arepressor for that gene,
thus restricting its own production. Using the models pnésea in Example2.13

the dynamics for the system can be written as

dm a dp

B, —ym—u, — = fm—4p, 5.40

dt ~ Iq k@ T*T7 ar ~Am—op (5.40)
whereu is a disturbance term that affects RNA transcription emg > 0. Find
the equilibrium points for the system and use the lineargggthmics around each
equilibrium point to determine the local stability of theudldbrium point and the
step response of the system to a disturbance.



Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage olamernaccumula-
tion of past causes. We must, of course, demand that the set of irgttesX be sufficiently
rich to carry all information about the past history &f to predict the effect of the past upon
the future. We do not insist, however, that the state isghstsuch information although this
is often a convenient assumption.

R.E.Kalman, P.L. Falband M. A. Arbiippics in Mathematical System Thedt969 KFAG9].

This chapter describes how the feedback of a system’s stateeazsed to shape
the local behavior of a system. The concept of reachabilitytieduced and used
to investigate how to design the dynamics of a system thr@sgignment of its
eigenvalues. In particular, it will be shown that underagrtonditions itis possible
to assign the system eigenvalues arbitrarily by apprapfestdback of the system
state.

6.1 Reachability

One of the fundamental properties of a control system is wéeof points in the
state space can be reached through the choice of a contubl itjurns out that the
property of reachability is also fundamental in undersiagdhe extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx
2 _ Ax+ B 6.1
T X+ Bu, (6.1)

wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
question is whether it is possible to find control signals sb &my point in the state
space can be reached through some choice of input. To stigjynh define the
reachable seR(xg, < T) as the set of all points; such that there exists an input

u(t), 0 <t < T that steers the system froxi0) = Xo to X(T) = X, as illustrated
in Figure6.1a

Definition 6.1 (Reachability) A linear system iseachabléf for any xg, x; € R"
there exists a > 0 andu: [0, T] — R such that the corresponding solution
satisfiex(0) = xg andx(T) = X;.
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A e

/ 7 \HL S
Xo i i "y
i

R(X, < T)

4
v
(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. The&gt,, < T) shown in (a) is the set
of points reachable fromy in time less thaT . The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizonmtakarand the control
inputs drawn as vertical arrows. The set of achievable equilibrium pigirite x axis. By
setting the control inputs as a function of the state, it is possible to steer tieensisthe
origin, as shown on the sample path.

The definition of reachability addresses whether it is posgibteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrimmntp of the system
(since we can remain at those points once we get there). Thaf aitpossible
equilibria for constant controls is given by

E = {Xe : A% + BUe = 0 for someu, € R}.

This means that possible equilibria lie in a one- (or posdilgher) dimensional
subspace. If the matriA is invertible, this subspace is spanned4y' B.
The following example provides some insight into the positidos.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratowse dynamics are
given by

dxg dx

at = dt
Figure6.1bshows a phase portrait of the system. The open loop dynamiedl)
are shown as horizontal arrows pointed to the right¢or- 0 and to the left for
X2 < 0. The control input is represented by a double-headed arrdiei vertical
direction, corresponding to our ability to set the valuepfThe set of equilibrium
points€ corresponds to the; axis, withue = 0.

Suppose first that we wish to reach the origin from an initialditton (a, 0).
We can directly move the state up and down in the phase plahedmust rely
on the natural dynamics to control the motion to the left agttr If a > 0, we
can move the origin by first setting < 0, which will causex, to become negative.
Oncex, < 0, the value of; will begin to decrease and we will move to the left.
After a while, we can seit, to be positive, moving, back toward zero and slowing
the motion in thex; direction. If we bringx, > 0, we can move the system state in
the opposite direction.
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Figure6.1bshows a sample trajectory bringing the system to the oridate
that if we steer the system to an equilibrium point, it is flolgsto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transientafashi \Y%

To find general conditions under which a linear system is ralleh we will
first give a heuristic argument based on formal calculatiatfsmwpulse functions.
We note that if we can reach all points in the state space gtreaome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability
When the initial state is zero, the response of the system toputu(t) is given
by .
x(t) = / et Bu(r) dr. (6.2)
0

If we choose the input to be a impulse functid) as defined in Sectioh.3, the
state becomes

t dx
Xs =/ ert=IBs(r)dr = d—ts =e'B
0

(Note that the state changes instantaneously in resporike impulse.) We can
find the response to the derivative of an impulse function kintathe derivative
of the impulse response (Exercisd):

d
X(‘;:d—?:AGAtB‘

Continuing this process and using the linearity of the systee input
U(t) = a15(t) + a20(t) + azd(t) + - - - + and " (1)
gives the state
X(t) = 01€™B + a, AN B + a3A%eMB + - - - + an, AT eAB.
Taking the limit ag goes to zero through positive values, we get
tir&x(t) = a1B 4+ 02AB+ a3A?B + - - - 4+ 0, A"1B.

On the right is a linear combination of the columns of the iratr
W = [B AB ... A”‘lB]. (6.3)

To reach an arbitrary point in the state space, we thus rethat there ara linear
independent columns of the math¥. . The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themdsives is a very
violent signal. To see that an arbitrary point can be reaghitdsmoother signals
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we can make use of the convolution equation. Assuming tleainitial condition
is zero, the state of a linear system is given by

t t
x(t) = / A=Y Bu(r)dr = / eM Bu(t — 7)dr.
0

0
It follows from the theory of matrix functions, specificallgag Cayley—Hamilton
theorem (see Exercig10), that

e™ = lao(r) + Aoa(t) + -+ + A" tan_1 (1),

whereq; () are scalar functions, and we find that
t

t
X(t) = B/O ao(t)u(t —r)dz + AB/0 ar(t)ut — r)de

t
ot An_lB/ oan_1(z)u(t — r)dz.
0

Again we observe that the right-hand side is a linear contimnaf the columns
of the reachability matri¥\; given by equation@.3). This basic approach leads to
the following theorem.

Theorem 6.1 (Reachability rank condition)A linear system is reachable if and
only if the reachability matrix Wis invertible.

The formal proof of this theorem is beyond the scope of this lbex follows
along the lines of the sketch above and can be found in mostsbon linear
control theory, such as Callier and DescebP]] or Lewis [Lew03. We illustrate
the concept of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Exar2dlend shown in Figuré.2
Recall that this system is a model for a class of examplesichvthe center of mass
is balanced above a pivot point. One example is the SegwayrirRerB@nsporter
shown in Figurés.2g about which a natural question to ask is whether we can move
from one stationary point to another by appropriate appticeof forces through
the wheels.

The nonlinear equations of motion for the system are givergiragon .9

and repeated here:
(M +m)p—mlcos#d = —cp —mlsind 62 + F, (6.4)
(J +ml?»d —mlcost p = —y 6 + mglsing. '

For simplicity, we takec = y = 0. Linearizing around the equilibrium point
Xe = (p, 0, 0, 0), the dynamics matrix and the control matrix are

0 0 10 0
0 0 01 0
A=lo mazgiu o o B=[am|
0 Mimgl/u 0 O Im/u
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown in (agxaaple of
a balance system that uses torque applied to the wheels to keep the rigkt. ypsimplified
diagram for a balance system is shown in (b). The system consists a§samtm a rod of
lengthl connected by a pivot to a cart with mags

wherey = M J — m?12, M; = M +mandJ, = J+ ml2. The reachability matrix
is

0 J/u 0 gl®m3/u?
| o Im/u 0 gl?m?(m+ M)/ u?
W= o gl*m®/u? 0 (6:5)
Im/u 0  glPm?(m+ M)/u? 0
The determinant of this matrix is
g2l 4m?
det(W,) = 0,
V=" 7

and we can conclude that the system is reachable. This inthi¢sve can move

the system from any initial state to any final state and, inigaer, that we can

always find an input to bring the system from an initial statetequilibrium point.
\Y%

It is useful to have an intuitive understanding of the meran that make a
system unreachable. An example of such a system is given urd=6g3 The
system consists of two identical systems with the same ir@@legrly, we cannot
separately cause the first and the second systems to do sognditiérent since
they have the same input. Hence we cannot reach arbitraegstand so the system
is not reachable (Exercige3d).

More subtle mechanisms for nonreachability can also odeurexample, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists weciarH such that

d
0= &Hx= H(Ax+ Bu), forall u.
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Figure 6.3: An unreachable system. The cart—pendulum system shown on thedefshrale
input that affects two pendula of equal length and mass. Since thesfaffeeting the two
pendula are the same and their dynamics are identical, it is not possiblgttardy control

the state of the system. The figure on the right is a block diagram repaésenof this

situation.

ThenH is in the left null space of botA andB and it follows that
HW = H [B AB .. A”-lB] —0.

Hence the reachability matrix is not full rank. In this cageye have an initial
conditionxp and we wish to reach a state for which Hxg # HX¢, then since
Hx(t) is constant, no input can move fromxg to Xs.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesoent to change
coordinates and write the dynamics of the system in the fbamed coordinates
z = T x. One application of a change of coordinates is to conversgesyinto a
canonical form in which it is easy to perform certain typesiodlysis.

A linear state space system isregachable canonical fornf its dynamics are
given by

[—ay —a, —az ... -—a, 1
1 0 o ... 0 0

z_1o 1 0o ... oz4|o].

dt : : : (6.6)
| 0 1 0 0

y=[b b by ... bn]z+du.

A block diagram for a system in reachable canonical form @sshin Figure6.4.
We see that the coefficients that appear in Ah@nd B matrices show up directly
in the block diagram. Furthermore, the output of the system $mple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable w@abform is given
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d bl b2 bn—l bn
u \2/ f Z f Z L f Zn—1 f Zn
-1 a a an—1 an
' ' '

Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inpridiepn the weighted
values of the states. The output is given by an appropriate combinatibe sf/stem input
and other states.

by
A(s) =" 4+ st

+ -+ an-1S+ an. (6.7)
The reachability matrix also has a relatively simple strrectu

1 —a al-a

*

0 1 —a - =
W, = [B AB ... AW4B] =|: S

0 0 0 1 =

0 0 0o ... 1

wheresx indicates a possibly nonzero term. This matrix is full ramcsi no col-
umn can be written as a linear combination of the others tsecafithe triangular
structure of the matrix.

We now consider the problem of changing coordinates sudtitiealynamics
of a system can be written in reachable canonical form.AeB represent the
dynamics of a given system add B be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system intohaale canonical
form using a coordinate transformatiar= T x. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformgstam are

A=TATY, B=TB.

The reachability matrix for the transformed system then bex

W= (8 A ... A”—1|§].
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Transforming each element individually, we have
AB=TAT ITB=TAB,
A’B = (TAT H2TB=TAT ITATITB=TA?B,

A"B=TA"B,
and hence the reachability matrix for the transformed syste
\M:T[B AB ... N4B]=Tw. (6.8)
SinceW,; is invertible, we can thus solve for the transformatibrihat takes the
system into reachable canonical form:
T =WWw?!
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dX_aa)X Ou
a_—a}a—i_l'

We wish to find the transformation that converts the systeargdchable canonical

form: a a 1

A | T TR 5
The coefficientsa; anda, can be determined from the characteristic polynomial
for the original system:
2 2, 2 & = —2a,
A(s) = det(sl — A) =s"—2as+ (a“+ 0°) = ) )
L =a" 4+ .

The reachability matrix for each system is
. 0 w & 1 —a
w=2o] wefo T
The transformatiom becomes
—_— —(ap+a)o 1 [a/w 1
T=WW1l= =
T [ 1w 0 | 1/0 0f°
and hence the coordinates
[Zl] [aXl/CO—FXz‘
= X =
7 X1/® ]

put the system in reachable canonical form. \%

We summarize the results of this section in the followingtieen.
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d
Controller Process
X = AX+ Bu
r — y
y=Cx+ Du

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

Theorem 6.2 (Reachable canonical formlet A and B be the dynamics and
control matrices for a reachable system. Then there existswtormation z= T x
such that in the transformed coordinates the dynamics antt@anatrices are in
reachable canonical forr(6.6) and the characteristic polynomial for A is given by

det(sl — A) =s"+a;s" 1+ ... +a,_1S+ an.

One important implication of this theorem is that for anyategble system, we
can assume without loss of generality that the coordinatestasen such that the
system is in reachable canonical form. This is particulaskgful for proofs, as we
shall see later in this chapter. However, for high-ordetesys, small changes in
the coefficients; can give large changes in the eigenvalues. Hence, the fgacha
canonical form is not always well conditioned and must belwgi¢gh some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the afedesigning
the dynamics of a system through feedback of the state. WexsgLme that the
system to be controlled is described by a linear state madehas a single input
(for simplicity). The feedback control law will be developstép by step using a
single idea: the positioning of closed loop eigenvalueseisirgd locations.

State Space Controller Structure

Figure6.5is a diagram of a typical control system using state feedb&le& full
system consists of the process dynamics, which we take fodur] the controller
elementK andk;, the reference input (or command signaBnd process distur-
bancedl. The goal of the feedback controller is to regulate the outpthie system
y such that it tracks the reference input in the presence tiirti@nces and also
uncertainty in the process dynamics.

An important element of the control design is the perforneasigecification.
The simplest performance specification is that of stabilitythe absence of any
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disturbances, we would like the equilibrium point of theteys to be asymptotically
stable. More sophisticated performance specificationsaylgiinvolve giving de-
sired properties of the step or frequency response of thiersysuch as specifying
the desired rise time, overshoot and settling time of the s#eponse. Finally, we
are often concerned with the disturbance attenuation ptiepeof the system: to
what extent can we experience disturbance ingwtsd still hold the outpuy near
the desired value?
Consider a system described by the linear differential egma

d
d—’t(=Ax+ Bu,  y=Cx+Du, 6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference valueand hold it there. Notice that it may not be
possible to maintain all equilibria; see Exerct8.

We begin by assuming that all components of the state vectcomaasured.
Since the state at tintecontains all the information necessary to predict the fitur
behavior of the system, the most general time-invariantroblaw is a function of
the state and the reference input:

u=a(x,r).
If the feedback is restricted to be linear, it can be written a
u=—-Kx+Kkr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in FigUBeT he negative
sign is a convention to indicate that negative feedbackasitirmal situation. The
closed loop system obtained when the feedb&ck( is applied to the systen® (9)
is given by dx

§p = (A= BK)X+ Bkr. (6.11)

We attempt to determine the feedback gHirso that the closed loop system has
the characteristic polynomial

p(s) =s"+ ps" 7t + -+ + pro1S+ P (6.12)

This control problem is called thredgenvalue assignment problempole placement
problem(we will define poles more formally in Chapt8y.

Note thatk, does not affect the stability of the system (which is detesdiby
the eigenvalues oh — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the adsep system are given
by

Xe = —(A— BK)_lBkrr: Ye = CXe + DU,

hencek, should be chosen such that=r (the desired output value). Sinkeis
a scalar, we can easily solve to show thdDit= 0 (the most common case),

k- =—1/(C(A— BK)™'B). (6.13)
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Notice thatk; is exactly the inverse of the zero frequency gain of the cdsep
system. The solution foD # 0 is left as an exercise.

Using the gainK andk;, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to condtauch a state feedback
control law, we begin with a few examples that provide som&ddiatuition and
insights.

Example 6.4 Vehicle steering
In Example5.12we derived a normalized linear model for vehicle steeringe Th
dynamics describing the lateral deviation were given by

_|o1 _ |
a=loo) e li)
c= [1 o] , D=0
The reachability matrix for the system is thus
_ _|{» 1
m4_.[B AB]__[l 0].

The system is reachable since Wgt= —1 # 0.

We now want to design a controller that stabilizes the dycarand tracks a
given reference valueof the lateral position of the vehicle. To do this we introduc
the feedback

U= —Kx+kr =—kixg — koxo + kr,

and the closed loop system becomes

d_X_ B . —ykl 1—}’k2 ka
dt_(A BK)X+B|<fr—[_kl —ky ]X+[kr ]r, (6.14)

y=Cx+Du= [1 0] X.
The closed loop system has the characteristic polynomial

Ss+yk yko—1
Ky s+ ks

Suppose that we would like to use feedback to design the dysamhthe system
to have the characteristic polynomial

det(sl — A+ BK):det[ ] = 5%+ (yki + k2)s + ky.

P(S) = $% 4 20ccS + o?.

Comparing this polynomial with the characteristic polynahof the closed loop
system, we see that the feedback gains should be chosen as

ki = a)g, ko = 20corc — ya)g.
Equation 6.13 givesk, = k; = »?, and the control law can be written as

U=Ki(r —x1) — koXo = 02(r — X1) — (20cc — y 02)Xa.
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Figure 6.6: State feedback control of a steering system. Step responses obtéinedmy
trollers designed witly; = 0.7 andw, = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increagindut that largeo. also give large initial control
actions. Step responses obtained with a controller designedwwith 1 and;, = 0.5, 0.7
and 1 are shown in (b).

The step responses for the closed loop system for differdmesaf the design
parameters are shown in Figug®. The effect ot is shown in Figuré.6a which
shows that the response speed increases with increasinghe responses for
we = 0.5 and 1 have reasonable overshoot. The settling time is abaatrlengths
for o = 0.5 (beyond the end of the plot) and decreases to about 6 cahtefuy
we = 1. The control signad is large initially and goes to zero as time increases
because the closed loop dynamics have an integrator. Tia ugitue of the control
signal isu(0) = k. = w?r, and thus the achievable response time is limited by the
available actuator signal. Notice in particular the draoiatrease in control signal
whenw, changes from 1 to 2. The effectafis shown in Figuré.6hb The response
speed and the overshoot increase with decreasing dampsimyg these plots, we
conclude that reasonable values of the design paramegdistaaven. in the range
of 0.5t0 1 and; ~ 0.7. \Y,

The example of the vehicle steering system illustrates hate seedback can
be used to set the eigenvalues of a closed loop system toaaybialues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasrad the system are
the coefficients of the characteristic polynomial. It is #fere natural to consider
systems in this form when solving the eigenvalue assignimedtiem.
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Consider a system in reachable canonical form, i.e,

—a; —a —azg ... —ady 1

4z 1 0 o ... 0 0

dt : S 0 (6.15)
0 1 0 0

y=Cz= [bl b, --- bn] z

It follows from(6.7) that the open loop system has the characteristic polyriomia
det(sl — A) =s"+a;s" 1+ ... +a,_1S+ an.

Before making a formal analysis we can gain some insight bgstigating the
block diagram of the system shown in Fig@d. The characteristic polynomial is
given by the parametesg in the figure. Notice that the parameégican be changed
by feedback from statg, to the inputu. It is thus straightforward to change the
coefficients of the characteristic polynomial by state femttb

Returning to equations, introducing the control law

U= —-Kz+kr = —kizy —kozp — - - - — knzn + ki1, (6.16)

the closed loop system becomes

(—ay —k; —a,—ky —ag—ks ... —a,—k, ke
ez | 5 1 o o |.lol,
dt : . . : |

0 1 o 0
y = :bl by - bn]z.

(6.17)
The feedback changes the elements of the first row oftheatrix, which corre-
sponds to the parameters of the characteristic polynoitii@ .closed loop system
thus has the characteristic polynomial

s+ (a1 + k)S" 4 (@2 + k2)S" 2+ -+ (Bno1 + Kn1)S + an + ko
Requiring this polynomial to be equal to the desired closeq lpolynomial
p(s) ="+ pis" M + - + pr1S+ po,
we find that the controller gains should be chosen as
ki = p1—ay, ko= p2 — &, ko = pn — an.

This feedback simply replaces the parameggri® the system@.15 by p;. The
feedback gain for a system in reachable canonical form is thu

IZ=[pl—611 p2—ay --- pn_an]- (6.18)
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To have zero frequency gain equal to unity, the parametshould be chosen
as -
K = an + kn _ &

bn bn

Notice that it is essential to know the precise values ofipatarsa, andb, in order
to obtain the correct zero frequency gain. The zero frequgagyis thus obtained
by precise calibration. This is very different from obtaigihe correct steady-state
value by integral action, which we shall see in later sestion

(6.19)

Eigenvalue Assignment

We have seen through the examples how feedback can be usedign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that $kensys in reachable
canonical form. Consider the system

d
d—)t( — AX+Bu,  y=Cx+ Du. (6.20)

We can change the coordinates by a linear transformatien T x so that the
transformed system is in reachable canonical foBmi%). For such a system the
feedback is given by equatio®.16), where the coefficients are given by equa-
tion (6.18. Transforming back to the original coordinates gives #eriback

U=—-Kz+kr =—KTx+kr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadkdnsider the system
given by equatioii6.20), with one input and one output. L&ts) = s" 4+ a;s"* +
-+ 4+ an_1S + a, be the characteristic polynomial of A. If the system is rednbé,

then there exists a feedback
U= —Kx+kr

that gives a closed loop system with the characteristicrmtyial
p(s) =s"+ pas" T+ + Po_1S+ Pa
and unity zero frequency gain between r and y. The feedbaokiggiven by
K=KT=[p1—a1 p—ay .- pn—an]WrWFl, (6.21)

where a are the coefficients of the characteristic polynomial of ihetrix A and
the matrices WandW; are given by
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1 a3 & an—1
0 1 & an_2
Wo=[B AB - ATIB|, W= :
o o0 --- 1 a1
0O 0 O 1

The reference gain is given by
k- =—-1/(C(A- BK)'B).

For simple problems, the eigenvalue assignment problembeasolved by
introducing the elementk of K as unknown variables. We then compute the
characteristic polynomial

A(s) = det(s| — A+ BK)

and equate coefficients of equal powers td the coefficients of the desired char-
acteristic polynomial

ps) =s"+ pis" -+ po1S+ p.

This gives a system of linear equations to deternkjin@he equations can always
be solved if the system is reachable, exactly as we did in Elaéih

Equation 6.21), which is called Ackermann’s formulaAEk72, Ack85], can
be used for numeric computations. It is implemented in theTM#B function
acker. The MATLAB function pl ace is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an gstesn by modulating
the food supply. We use the predator—prey model introduceskction3.7. The
dynamics for the system are given by

dH H\  aHL
an _ H{1-") - H >0
ar — W ( k) cxn =Y
db _p3Hl 4l Lso

dt c+H

We choose the following nominal parameters for the systelmciwcorrespond to
the values used in previous simulations:

a=32, b=0.6, c¢=50,
d=056, k=125 r =16

We take the parameter corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a foodreedor the hares.
This is reflected in our model by the terim+ u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system aroumdetuilibrium
point of the systenm(He, L¢), which can be determined numerically to ke ~
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(20.6, 29.5). This yields a linear dynamical system

d [z 0.13 —-0.93] [z 17.2 z

dt 22]_[0.57 0 ][z2 o e =0 1|5
wherez; = L — Le, 2 = H — He ando = u. It is easy to check that the system
is reachable around the equilibriufn ») = (0, 0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamiahe system. This can
be done by the process of trial and error or by using some afttre systematic
techniques discussed in the remainder of the text. For nevgimiply choose the

desired closed loop eigenvalues to bé at {—0.1, —0.2}. We can then solve for
the feedback gains using the techniques described earhiah results in

K = [0.025 —0.052] .

Finally, we solve for the reference gakn, using equation@.13 to obtaink, =
0.002.
Putting these steps together, our control law becomes

v = _Kz+kr|—da

wherelL 4 is the desired number of lynxes. In order to implement thercbiaw,
we must rewrite it using the original coordinates for thetegs yielding

U=Ue— KX —Xe) +k(Lg— Ye)

H —20.6
L —295

This rule tells us how much we should modulates a function of the current
number of lynxes and hares in the ecosystem. Figurashows a simulation of
the resulting closed loop system using the parameters dedineee and starting
with an initial population of 15 hares and 20 lynxes. Notéd tha system quickly
stabilizes the population of lynxes at the reference vdlye-£ 30). A phase portrait
of the system is given in Figu&7h showing how other initial conditions converge
to the stabilized equilibrium population. Notice that tlymdmics are very different
from the natural dynamics (shown in FiguBe20). \Y%

— [0.025 —0.052] I ] +0.002(Lg — 29.5).

The results of this section show that we can use state feedbatésign the
dynamics of a system, under the strong assumption that weeasure all of the
states. We shall address the availability of the statesaméxt chapter, when we
consider output feedback and state estimation. In addifibeorem6.3, which
states that the eigenvalues can be assigned to arbitraatidos, is also highly
idealized and assumes that the dynamics of the process@smka high precision.
The robustness of state feedback combined with state eetisriatconsidered in
Chapterl2 after we have developed the requisite tools.
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Figure 6.7: Simulation results for the controlled predator—prey system. The population
lynxes and hares as a function of time is shown in (a), and a phaseipfrtthe controlled
system is shown in (b). Feedback is used to make the population statile-at20.6 and

e = 20.

6.3 State Feedback Design

The location of the eigenvalues determines the behavioratltbsed loop dynam-
ics, and hence where we place the eigenvalues is the maigndéscision to be
made. As with all other feedback design problems, thereradetoffs among the
magnitude of the control inputs, the robustness of the sysbeperturbations and
the closed loop performance of the system. In this sectiorxamine some of
these trade-offs starting with the special case of secodédraystems.

Second-Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second-order linear differential equationsaBse of their ubiquitous
nature, it is useful to apply the concepts of this chapteh#d specific class of
systems and build more intuition about the relationshipveen stability and per-
formance.

The canonical second-order system is a differential equatithe form

4 + 2rwoq + w5 = kadu, y=q. (6.22)
In state space form, this system can be represented as
dx 0 o 0
T [—wo —ZCwo] X + [ka] u, y = [1 0] X. (6.23)

The eigenvalues of this system are given by

A= —(wg £ wd((2-1),

and we see that the origin is a stable equilibrium poieigif> 0 ands > 0. Note
that the eigenvalues are complexif< 1 and real otherwise. Equations.22
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and 6.23 can be used to describe many second-order systems, inglddmped
oscillators, active filters and flexible structures, as shawthé examples below.

The form of the solution depends on the valug pWhich is referred to as the
damping ratiofor the system. If” > 1, we say that the systemaserdampegand
the natural response & 0) of the system is given by

BX10+ Xzoe_at _oXpot Xzoe_ﬁt
p—a p—a ’

wherea = wo(¢ ++/¢% — 1) andp = wo(¢ — /2 — 1). We see that the response
consists of the sum of two exponentially decaying signafs# 1, then the system

is critically dampedand solution becomes
y(t) = €74 (xq0 + (Xo0 + ¢ woX10)t).

Note that this is still asymptotically stable as longgs> 0, although the second
term in the solution is increasing with time (but more slowan the decaying
exponential that is multiplying it).

Finally, if 0 < ¢ < 1, then the solution is oscillatory and equatiér@) is said
to beunderdampedThe parameteny is referred to as theatural frequencyf the
system, stemming from the fact that for smalthe eigenvalues of the system are
A = —Cwo +iwgy/1— 2. The natural response of the system is given by

yt) =

. 1 .
y(t) = e_éwot (Xlo coswgt + (@Xlo + —Xzo) sma)dt) .
g OF]

wherewq = woy/1 — (2 is called thedamped frequencyFor ¢ <« 1, mg ~ wo
defines the oscillation frequency of the solution aigives the damping rate relative
to wo.

Because of the simple form of a second-order system, it isiplesto solve
for the step and frequency responses in analytical form. dheisn for the step
response depends on the magnitudg:of

¢
Na
yt) =k(1—eL+wet)), ¢=1L

y(t) = k(l — e ¢! coswgt — g ¢t sinwdt), <1

6.24)
_ 1 s —aot (—+/2-1) (
y(t)_k(l E(J&_-l 1)e
1 o /777
+§( 52_1—1)e (/e 1)), ¢>1

where we have takex(0) = 0. Note that for the lightly damped case & 1) we
have an oscillatory solution at frequenoy.

Step responses of systems with= 1 and different values aof are shown in
Figure 6.8 The shape of the response is determined bgnd the speed of the
response is determined ly (included in the time axis scaling): the response is
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Figure 6.8: Step response for a second-order system. Normalized step respdios the
system 6.23 for ¢ =0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizoigasan scaled units
wot; higher values ofvg result in a faster response (rise time and settling time).

faster ifwg is larger.

Inaddition to the explicit form of the solution, we can aleopute the properties
of the step response that were defined in Sedi@nFor example, to compute the
maximum overshoot for an underdamped system, we rewriteutpt as

e <! sin(wgt + (p)), (6.25)

1
yt) =kl 1- —
V1=
wheregp = arccog’. The maximum overshoot will occur at the first time in which
the derivative ofy is zero, which can be shown to be

M, = e 7¢/V I,

Similar computations can be done for the other charactesisfia step response.
Table6.1 summarizes the calculations.
The frequency response for a second-order system can alsunimuted ex-

Table 6.1: Properties of the step response for a second-order system with & 1.

Property Value c=05 =12 =1
Steady-state value k k k k
Rise time T =1/wp -€/®%  18/wy  2.2/awp 2.7 /o
Overshoot Mp=e V=2 16% 4% 0%

Settling time (2%) Ts ~ 4/¢wo 8.0/wy  5.9/wg 5.8/wo
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Figure 6.9: Frequency response of a second-order sysée23) (a) Eigenvalues as afunction
of ¢. (b) Frequency response as a functiog of he upper curve shows the gain ralilg and
the lower curve shows the phase shiffor small there is a large peak in the magnitude of
the frequency response and a rapid change in phase centesed ak. As ¢ is increased,
the magnitude of the peak drops and the phase changes more smotilggii® and -180.

plicitly and is given by

Mel? — ka3 _ ka3 '
(iw)2+2¢wp(iw) + ©5 @5 — o?+ 2ifoow

A graphical illustration of the frequency response is giveRigure6.9. Notice the

resonant peak that increases with decreagirighe peak is often characterized by

its Q-value defined af) = 1/2¢. The properties of the frequency response for a

second-order system are summarized in Télie

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the twogartment model for
drug administration, described in Secti®®. The dynamics of the system are

de  [-ko—ki ki bo _
a_[ K —kZ]C+[O u, y_[O 1]c,

wherec; andc, are the concentrations of the drug in each compartnkgrit,=

Table 6.2: Properties of the frequency response for a second-order systard w ¢ < 1.

Property Value ¢ =01 ¢=05 ¢=1/42
Zero frequency gain Mg k k k
Bandwidth wp 154wy 127wy o
Resonant peak gain M, 154k 1.27k k

Resonant frequency wm, wo 0.707wy O
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwagn d
administration using a sequence of doses versus continuously monttegingncentrations
and adjusting the dosage continuously. In each case, the concentratampieximately)
maintained at the desired level, but the closed loop system has substansaiat@bility

in drug concentration.

0,...,2 andbgy are parameters of the systemis the flow rate of the drug into
compartment 1 angis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartment, and we
would like to design a feedback law to maintain the output givan reference
valuer.

We chooseg = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Tabl&1, this gives a value fowg = 0.22.
We can now compute the gain to place the eigenvalues at ttagidm. Setting
u= —Kx + kr, the closed loop eigenvalues for the system satisfy

A(s) = —0.198+ 0.0959.

Choosingk; = —0.2027 andk, = 0.2005 gives the desired closed loop behavior.
Equation 6.13 gives the reference galkh = 0.0645. The response of the con-

troller is shown in Figuré&.10and compared with an open loop strategy involving
administering periodic doses of the drug. \%

Higher-Order Systems

Our emphasis so far has considered only second-order syskemhigher-order
systems, eigenvalue assignment is considerably more diiffespecially when
trying to account for the many trade-offs that are preseatfeedback design.
One of the other reasons why second-order systems play suchpmrtant
role in feedback systems is that even for more complicatstigys the response is
often characterized by thdominant eigenvaluego define these more precisely,
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consider a system with eigenvalugs j = 1, ..., n. We define thelamping ratio
for a complex eigenvalug to be
_ —Rex
|41

We say that a complex conjugate pair of eigenvalues is adominant pairif it
has the lowest damping ratio compared with all other eigeregof the system.

Assuming that a system is stable, the dominant pair of emjaeg tends to be
the most important element of the response. To see thisimasthat we have a

system in Jordan form with a simple Jordan block correspanth the dominant
pair of eigenvalues:

A
l*
dz 5

= z+ Bu, =Cz
dt + y

J

(Note that the state may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of thparses from each
of the individual Jordan subsystems. As we see from Figu8efor ¢ < 1 the
subsystem with the slowest response is precisely the ohdhétsmallest damping
ratio. Hence, when we add the responses from each of thadndivsubsystems,
it is the dominant pair of eigenvalues that will be the priynfaictor after the initial
transients due to the other terms in the solution die outl&\this simple analysis
does not always hold (e.g., if some nondominant terms hagerdaoefficients
because of the particular form of the system), it is oftercédme that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment it tthesystem be
reachable. In practice there are many other constraintaulsecthe selection of
eigenvalues has a strong effect on the magnitude and rateafe of the control
signal. Large eigenvalues will in general require large imrgignals as well as
fast changes of the signals. The capability of the actuatdrsherefore impose
constraints on the possible location of closed loop eigeega These issues will
be discussed in depth in Chaptédsand12.

We illustrate some of the main ideas using the balance syssean example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whgaamics were given
in Example6.2 The dynamics are given by

0 0 1 0 0
A 0 0 0 1 B 0
— |0 m%g/u —ck/u —yXim/u]|’ Y
0 Mimgl/u —clm/u  —yMi/p Im/u
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whereM; = M +m, J = J + ml%, 1 = M{J, — m?? and we have left andy
nonzero. We use the following parameters for the systemidsponding roughly
to a human being balanced on a stabilizing cart):

M = 10 kg m=80kg c=0.1Ns/m
J =100 kg nf/s?, l=1m, y =0.0LNms

The eigenvalues of the open loop dynamics are given4y0, 4.7, —1.94+2.7i.

We have verified already in Exampée2 that the system is reachable, and hence
we can use state feedback to stabilize the system and pravigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethaté¢he closed
loop dynamics will roughly consist of two components: a sefast dynamics
that stabilize the pendulum in the inverted position andtatslower dynamics
that control the position of the cart. For the fast dynamies look to the natural
period of the pendulum (in the hanging-down position), Whi given bywg =
v/mgl/(J + ml2) ~ 2.1 rad/s. To provide a fastresponse we choose a dampiag rati
of ¢ = 0.5 and try to place the first pair of eigenvaluestat ~ —fwo £ iwp ~
—1+ 2i, where we have used the approximation t{idt— ¢2 ~ 1. For the slow
dynamics, we choose the damping ratio to b&td provide a small overshoot and
choose the natural frequency to h& @ give a rise time of approximately 5 s. This
gives eigenvaluesz 4 = —0.35+ 0.35..

The controller consists of a feedback on the state and a fieealfd gain for the
reference input. The feedback gain is given by

g=9.8m/s.

K = [—15.6 1730 —50.1 443] ,

which can be computed using Theorénm3 or using the MATLABpI| ace com-

mand. The feedforward gain ks = —1/(C(A — BK)™'B) = —15.5. The step
response for the resulting controller (applied to the liizeal system) is given in
Figure6.11a While the step response gives the desired characteriftiesnput

required (bottom left) is excessively large, almost thieees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiadlen to have
slower dynamics. We see that the peak of the input force saruthe fast time scale,
and hence we choose to slow this down by a factor of 3, leaieaglamping ratio
unchanged. We also slow down the second set of eigenvalitbsheintuition that
we should move the position of the cart more slowly than weikta the pendulum
dynamics. Leaving the damping ratio for the slow dynamicsanged at O and
changing the frequency to 1 (corresponding to a rise timgpfaimately 10 s),
the desired eigenvalues become

) ={—0.33+0.66i, —0.18+0.18}.

The performance of the resulting controller is shown in Figufe h \Y%

As we see from this example, it can be difficult to determine nette place
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Figure 6.11: State feedback control of a balance system. The step response rfalleo
designed to give fast performance is shown in (a). Although the nsgpoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. s laggressive
controller is shown in (b). Here the response time is slowed down, but plug magnitude
is much more reasonable. Both step responses are applied to the lidenizenics.

the eigenvalues using state feedback. This is one of theipaidonitations of this
approach, especially for systems of higher dimension.magdtcontrol techniques,
such as the linear quadratic regulator problem discussel e one approach
that is available. One can also focus on the frequency regpin performing the
design, which is the subject of Chapt&rl.2.

Linear Quadratic Regulators @

As an alternative to selecting the closed loop eigenvaloations to accomplish a
certain objective, the gains for a state feedback controla instead be chosen is
by attempting to optimize a cost function. This can be palaityiuseful in helping
balance the performance of the system with the magnitudieeoiinputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problenone of the

most common optimal control problems. Given a multi-infpogar system
dx
E:Ax+Bu, x eR", ueRP,

we attempt to minimize the quadratic cost function

J= /OO (x" Qxx +u' Quu) dt, (6.26)
0

whereQy > 0 andQ, > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represetreda-off between the



6.3. STATE FEEDBACK DESIGN 193

distance of the state from the origin and the cost of the obmmtput. By choosing
the matriceQy and Q,, we can balance the rate of convergence of the solutions
with the cost of the control.

The solution to the LQR problem is given by a linear control |dwhe form

u=-Q;'BTPx,
whereP € R™" is a positive definite, symmetric matrix that satisfies the &égoa
PA+ATP - PBQ,!B"P+ Q,=0. (6.27)

Equation 6.27) is called thealgebraic Riccati equatioand can be solved numer-
ically (e.g., using thé gr command in MATLAB).

One of the key questions in LQR design is how to choose the we@hand
Qu. To guarantee that a solution exists, we must h@ye> 0 andQ, > 0. In
addition, there are certain “observability” conditions Qg that limit its choice.
Here we assum®y > 0 to ensure that solutions to the algebraic Riccati equation
always exist.

To choose specific values for the cost function weightsandQ,,, we must use
our knowledge of the system we are trying to control. A patéidy simple choice
is to use diagonal weights

o] 0 p1 0
Qx = , Qu=
0 On 0 Pn
For this choice o), andQ,, the individual diagonal elements describe how much
each state and input (squared) should contribute to thealbvarst. Hence, we
can take states that should remain small and attach highghtwalues to them.

Similarly, we can penalize an input versus the states and ioijgts through choice
of the corresponding input weigjt

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the syste2r?@), written in state space form as

o 0
0
Zs5
dz 43 1 0 1o
at —L7, + | 5 cosd F— - sind F;
—g-2Lz5 Lsind F1 + & cost F»
0 r
ih

(see also Examplg.4). The system parameters are= 4 kg, J = 0.0475 kg m,
r =0.25m,g = 9.8 m/¢, ¢ = 0.05 N s/m, which corresponds to a scaled model
of the system. The equilibrium point for the system is giverFpy= 0, F, = mg
andze = (Xe, Ye, 0,0, 0, 0). To derive the linearized model near an equilibrium
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point, we compute the linearization according to equat®i4:

(0 0 O 1 0 0 [ O 0 ]
00 O 0 1 0 0 0
A— 00 O 0 0 1 B 0 0
~ 10 0 —g —-c¢/m 0 (0] I “11/m 0 |’
00 O 0 —c/m O 0 1I/m
(0 0 O 0 0 0 (r/J 0
(1 0 00 0O (0 0
C=lo 1000 d" D=0 of"
Letting¢ = z— z, ando = F — F, the linearized system is given by
d¢

at Al + Bo, y=C¢

It can be verified that the system is reachable.
To compute alinear quadratic regulator for the system, vite tire cost function
as

3= / €T Qu¢ + 0T Q0 )L,
0

wheref = z— z. andv = F — F¢ again represent the local coordinates around the
desired equilibrium pointze, F¢). We begin with diagonal matrices for the state
and input costs:

(1 0 0 0 0O
01 00O0O
1001000 _|rp O
%=1oo0o0 10 0" Q"—[o p]'
0O 000 1O
0O 00 0O 1
This gives a control law of the form = —K¢&, which can then be used to derive

the control law in terms of the original variables:
F=v0v+F.=—-K(z—-2)+ Fe.

As computed in Examplb.4, the equilibrium points havé, = (0, mg) andz, =

(Xe, Ye, 0,0, 0, 0). The response of the controller to a step change in the desired
position is shown in Figuré.12afor p = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figuéel2bshows the response in thalirection for
different choices of the weight. \%

Linear quadratic regulators can also be designed for destirae systems, as
illustrated by the following example.

Example 6.9 Web server control
Consider the web server example given in SecBidnwhere a discrete-time model
for the system was given. We wish to design a control law tk& the server
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) shows &inely
positions of the aircraft when it is commanded to move 1 m in each diredtidiv) the x
motion is shown for control weights = 1, 1&, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

parameters so that the average server processor load isamaih at a desired
level. Since other processes may be running on the servewdheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figér&3 We focus on
the special case where we wish to control only the processat lising both the
KeepAl i ve andMaxC i ent s parameters. We also include a “disturbance” on
the measured load that represents the use of the procegslag by other processes
running on the server. The system has the same basic strastilmegeneric control
system in Figuré.5, with the variation that the disturbance enters after toe@ss
dynamics.

The dynamics of the system are given by a set of differencetiemqsaof the
form

X[k + 1] = Ax[k] + Bu[K], YepulK] = CepuX[K] + depulKI,

wherex = (Xcpu, Xmem) iS the statey = (Uka, Umc) is the inputdc,, is the processing
load from other processes on the computer wgglis the total processor load.

Feedback d
Precompensation Controller Server
Icpu € u n y
— ke C - P —
—1 |-

Figure 6.13: Feedback control of a web server. The controller sets the values efighe
server parameters based on the difference between the nominalgters. (determined by
k.r) and the current loag,,. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdisterso that we
measure the total load on the server.
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We choose our controller to be a state feedback controlldreoform

u=—K [ yCPu] + krrcpu,

Xmem

wherercp, is the desired processor load. Note that we have used theuradas
processor loag,, instead of the state to ensure that we adjust the systemtmpera
based on the actual load. (This modification is necessary becdithe nonstandard
way in which the disturbance enters the process dynamics.)

The feedback gain matrik can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, tivéttcost function given

b
g (5 0 C[15¢ O
Q=1o 1> Q=|"0 1100¢|"

The cost function for the stat®, is chosen so that we place more emphasis on
the processor load versus the memory use. The cost functiaidanputsQ,

is chosen so as to normalize the two inputs, witkepAl i ve timeout of 50 s
having the same weightadaxCl i ent s value of 1000. These values are squared
since the cost associated with the inputs is giverub@,u. Using the dynamics

in Section3.4and thedl gr command in MATLAB, the resulting gains become

« _ [-223 101
= | 3827 777]"

As in the case of a continuous-time control system, the eefsx gaink; is
chosen to yield the desired equilibrium point for the syst&ettingx[k + 1] =
X[K] = Xe, the steady-state equilibrium point and output for a givfanence input

r are given by
Xe = (A— BK)Xe + Bk, Ye = CXe.

This is a matrix differential equation in whidt is a column vector that sets the
two inputs values based on the desired reference. If we tekddsired output to
be of the formy, = (r, 0), then we must solve

[é] =C(A—BK —1)"1Bk.

Solving this equation fok., we obtain

= (m-or-e)” (3] - (222

The dynamics of the closed loop system are illustrated in Eig4 We apply
a change in load ofl.,, = 0.3 at timet = 10 s, forcing the controller to adjust
the operation of the server to attempt to maintain the dédoad at 057. Note
that both theKeepAl i ve andVaxCl i ent s parameters are adjusted. Although
the load is decreased, it remains approximately 0.2 ab@vddhired steady state.
(Better results can be obtained using the techniques ofakiesection.) \%
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Figure 6.14:Web server with LQR control. The plotin (a) shows the state of the systelerun

a change in external load appliedkat= 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce thet effthe disturbance

by approximately 40%.

6.4 Integral Action

Controllers based on state feedback achieve the corredysttate response to
command signals by careful calibration of the gainrHowever, one of the primary
uses of feedback is to allow good performance in the presehcmcertainty,
and hence requiring that we haveetactmodel of the process is undesirable. An
alternative to calibration is to make use of integral featthan which the controller
uses an integrator to provide zero steady-state error. T$ie bancept of integral
feedback was given in Sectidnh5 and in Sectior8.1; here we provide a more
complete description and analysis.

The basic approach in integral feedback is to create a stétawhe controller
that computes the integral of the error signal, which is tead as a feedback term.
We do this by augmenting the description of the system withva statez:

d [x Ax+ Bu Ax + Bu

s[5 (5] ew
The statez is seen to be the integral of the difference between the tlakautput
y and desired output Note that if we find a compensator that stabilizes the system,
then we will necessarily have= 0 in steady state and henge=r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

u=-—-Kx—-kiz+kr, (6.29)

whereK is the usual state feedback terknjs the integral term anld, is used to
set the nominal input for the desired steady state. The mnegudquilibrium point
for the system is given as

Xe = —(A—=BK) ' B(kr — kiZe).

Note that the value df, is not specified but rather will automatically settle to the
value that makegz = y —r = 0, which implies that at equilibrium the output will
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equal the reference value. This holds independently of tleeip values ofA,
B andK as long as the system is stable (which can be done througb@iate
choice ofK andk;).

The final compensator is given by

dz
u X—kz+kr, gt =Y

where we have now included the dynamics of the integratoagpthe specifica-

tion of the controller. This type of compensator is known dgr@amic compensator
since it has its own internal dynamics. The following exanililistrates the basic
approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in Se@idémand considered fur-
therin Examplé&.11 The linearized dynamics of the process around an equitibriu
pointoe, Ue are given by

dx

a:ax—bge—i-bw, Y =0 = X+ ve,
wherex = v —ve, w = U—Ug, Mis the mass of the car adds the angle of the road.
The constan& depends on the throttle characteristic and is given in Exapll

If we augment the system with an integrator, the processrdigsabecome

dx dz
a:ax_bQG‘i‘bU), a=y_l)r:1)e+x_vr,

or, in state space form,

1 Y e e

Note that when the system is at equilibrium, we have that 0, which implies
that the vehicle speed = v + x should be equal to the desired reference speed
vy . Our controller will be of the form

dz
a:y_vra u:_kpx_kiz+kr0rs

and the gaing,, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to havehtiracteristic

polynomial
A(s) = $? + ayS + ay.

Setting the disturbancg = 0, the characteristic polynomial of the closed loop
system is given by

det(s| — (A — BK)) = s* + (bk, — a)s + bk,
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Figure 6.15:Velocity and throttle for a car with cruise control based on proportiorelied)
and PI control (solid). The PI controller is able to adjust the throttle to cosate for the
effect of the hill and maintain the speed at the reference valug €f20 m/s.

and hence we set
a+a =5 a

kp = b k._b, =5
The resulting controller stabilizes the system and henegbri = y — o, to zero,
resulting in perfect tracking. Notice that even if we haverahl error in the values
of the parameters defining the system, as long as the clospaigenvalues are
still stable, then the tracking error will approach zero. Fiiue exact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choos&, = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for coritanrbances.
Figure 6.15 shows the results of a simulation in which the car encourdadrl
with angled = 4° att = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that thevetotsty converges
to the reference speed. This ability to handle constant ithahces is a general
property of controllers with integral feedback (see Exex6ig). \Y%

k- =—-1/(C(A— BK)™'B)

6.5 Further Reading

The importance of state models and state feedback was déstusthe seminal
paper by KalmanKal6(], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (Chapt@y are also due to KalmarkKpl61h
(see alsoGil63, KHN63]). Kalman defines controllability and reachability as the
ability to reach the origin and an arbitrary state, respebtiiKFA69]. We note that

in most textbooks the term “controllability” is used ingdeaf “reachability,” but
we prefer the latter term because it is more descriptivesfuhdamental property
of being able to reach arbitrary states. Most undergradigatbooks on control
contain material on state space systems, including, fanple Franklin, Powell
and Emami-NaeiniFPENQ0g and Ogata ©ga0]. Friedland’s textbook Fri04]
covers the material in the previous, current and next chaptonsiderable detail,
including the topic of optimal control.
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Exercises

6.1 (Double integrator) Consider the double integrator. Findeagwise constant
control strategy that drives the system from the origin togtatex = (1, 1).

6.2 (Reachability from nonzero initial state) Extend the argobhie Section6.1to
show that if a system is reachable from an initial state ab zieis reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in F@g@réVrite the
dynamics of the two systems as

dx dz
— = AXx+ Bu — = Az+ Bu.
at TR 0t +

If x andz have the same initial condition, they will always have thmeastate
regardless of the input that is applied. Show that this veslahe definition of
reachability and further show that the reachability ma¥kixis not full rank.

6.4 (Integral feedback for rejecting constant disturbances)sitler a linear system
of the form

dx
a:Ax+Bu+Fd, y =CX

whereuis ascalar and is a disturbance that enters the system through a distuebanc
vectorF € R". Assume that the matriA is invertible and the zero frequency gain
C A~1B is nonzero. Show that integral feedback can be used to cormiecius a
constant disturbance by giving zero steady-state outpot even wherd # O.

6.5(Rear-steered bicycle) A simple model for a bicycle wasminweequation3.5)
in Section3.2 A model for a bicycle with rear-wheel steering is obtaingdré-
versing the sign of the velocity in the model. Determine thieditions under which
this systems is reachable and explain any situations inwthie system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical fo8hpw that the char-
acteristic polynomial for a system in reachable canonigahfis given by equa-
tion (6.7) and that

d"z, ta d"1z - dz Caz d"ku

dtn et A TER R TI

wherez, is thekth state.

6.7 (Reachability matrix for reachable canonical form) Comsi@system in reach-
able canonical form. Show that the inverse of the reachgqlilétrix is given by

1 a a --- an

0 1 ap -+ An_1
Wit=1|0 0 1 :

a
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6.8 (Non-maintainable equilibria) Consider the normalizeddeimf a pendulum
on a cart

d =u d%0 =—-0+u

dz 7 dt2 ’
wherex is cart position and is pendulum angle. Can the angle= ¢, for 6y # 0
be maintained?

6.9 (Eigenvalue assignment for unreachable system) Considesyiem

dx 0 1 1
a:[o 0]x+[0]u, y:[l O]x,
with the control law
U= —kix; — koo + Kk,r.

Show that eigenvalues of the system cannot be assigned taayhialues.

6.10 (Cayley—Hamilton theorem) LeA € R"*" be a matrix with characteristic
polynomial1(s) = det(s| — A) = s" + a;s" 1t + ... + a,_1S + a,. Assume that
the matrixA can be diagonalized and show that it satisfies

AMA) = A"+ a A" pan At anl =0,

Use the result to show th#, k > n, can be rewritten in terms of powers Afof
order less than.

6.11 (Motor drive) Consider the normalized model of the motowverin Exer-
cise2.10 Using the following normalized parameters,

J; =10/9, J, =10, c=0.1, k=1, kf =1,

verify that the eigenvalues of the open loop system afie 80.05+i. Design a
state feedback that gives a closed loop system with eigeesal, —1 and—1+1.
This choice implies that the oscillatory eigenvalues wilvibell damped and that
the eigenvalues at the origin are replaced by eigenvaluéiseomegative real axis.
Simulate the responses of the closed loop system to stepehanthe command
signal foré, and a step change in a disturbance torque on the second rotor.

6.12(Whipple bicycle model) Consider the Whipple bicycle mogigkn by equa-
tion (3.7) in Section3.2 Using the parameters from the companion web site, the
modelis unstable at the velocity= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 130 + 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 addt i. Simulate the response of
the system to a step change in the steering reference of €ad02
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6.13 (Atomic force microscope) Consider the model of an AFM in eahimode
given in Example.9:

0 1 0 0 0
ax | —ke/(Mi+my) —Cp/(Mi+my) 1/my 0 X+ 0 u
dt 0 0 0 w3 ol ™
0 0 —w3 —2(30)3 w3
y= ma msko m;Cy 1 O] .
mi+m Lmp+me; mg+m;

Use the MATLAB scriptaf m dat a. mfrom the companion web site to generate the
system matrices.

(&) Compute the reachability matrix of the system and nura#lyi determine its
rank. Scale the model by using milliseconds instead of secasiime units. Repeat
the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed lgstem with complex
poles having damping ratio 0.707. Use the scaled model éocdmputations.

(c) Compute state feedback gains using linear quadratitt@oixperiment by
using different weights. Compute the gains tgr= g, = 0,93 = g4 = 1 and
p1 = 0.1 and explain the result. Chooge= g, = gz = g4 = 1 and explore what
happens to the feedback gains and closed loop eigenvalies yau change:.
Use the scaled system for this computation.

6.14 Consider the second-order system

d?y dy du
— 4+ 05—= =a— .
a2 T Pqr YT g

Let the initial conditions be zero.

(&) Show that the initial slope of the unit step response Biscuss what it means
whena < 0.

(b) Show that there are points on the unit step response thatariant witha.
Discuss qualitatively the effect of the parametam the solution.

(c) Simulate the system and explore the effea of the rise time and overshoot.

6.15(Bryson’s rule) Bryson and HABH75] have suggested the following method
for choosing the matrice®y and Q, in equation 6.26). Start by choosindQy
and Q, as diagonal matrices whose elements are the inverses ofjtizees of
the maxima of the corresponding variables. Then modify temehts to obtain a
compromise among response time, damping and control efpgly this method
to the motor drive in Exercisé.11 Assume that the largest values of ¢heand

@2 are 1, the largest values of andg, are 2 and the largest control signal is 10.
Simulate the closed loop system far(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonatedats forQy and Q.



Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages:utatign of the
“best approximation”x(t;) of the state from knowledge ofty fort < t; and computation of
u(ty) givenx(ty).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 198@&I[60].

In this chapter we show how to use output feedback to modiydynamics
of the system through the use of observers. We introducedheept of observ-
ability and show that if a system is observable, it is possiblrecover the state
from measurements of the inputs and outputs to the systenth&keshow how to
design a controller with feedback from the observer stateindportant concept is
the separation principle quoted above, which is also proveé structure of the
controllers derived in this chapter is quite general andbisioed by many other
design methods.

7.1 Observability

In Section6.2 of the previous chapter it was shown that it is possible to find a
state feedback law that gives desired closed loop eigeesglmovided that the
system is reachable and that all the states are measurecthdryr situations, it

is highly unrealistic to assume that all the states are mmedsin this section we
investigate how the state can be estimated by using a maticainaodel and a
few measurements. It will be shown that computation of théestcan be carried
out by a dynamical system called abserver

Definition of Observability

Consider a system described by a set of differential equsitio

d
d—: = AXx+ Bu, y =Cx+ Du, (7.1)

wherex € R" is the statey € RP the input andy € RY the measured output. We
wish to estimate the state of the system from its inputs ampluds, as illustrated

in Figure7.1 In some situations we will assume that there is only one nreds
signal, i.e., that the signaglis a scalar and tha&t is a (row) vector. This signal may
be corrupted by noise, although we shall start by considering the noise-free.case
We write X for the state estimate given by the observer.
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n

Process
u Xx=Ax+Bu| Y X
> Observer —

y=Cx+ Du

A

Figure 7.1: Block diagram for an observer. The observer uses the processursezenty
(possibly corrupted by nois@) and the inputl to estimate the current state of the process,
denotedk.

Definition 7.1 (Observability) A linear system i®bservablef forany T > 0itis
possible to determine the state of the systdifl) through measurements ptt)
andu(t) on the interval [0 T].

The definition above holds for nonlinear systems as well, anddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptiegtions, even
outside feedback systems. If a system is observable, tiees dine no “hidden” dy-
namics inside it; we can understand everything that is goimiprough observation
(over time) of the inputs and outputs. As we shall see, thblpro of observability
is of significant practical interest because it will detereniha set of sensors is
sufficient for controlling a system. Sensors combined with &heraatical model
can also be viewed as a “virtual sensor” that gives inforameéibout variables that
are not measured directly. The process of reconciling ssginain many sensors
with mathematical models is also callsensor fusion

Testing for Observability

When discussing reachability in the last chapter, we négtethe output and fo-
cused on the state. Similarly, it is convenient here to iytiaeglect the input and
focus on the autonomous system

dx
— = A =Cx. 7.2
T: X, y X (7.2)

We wish to understand when it is possible to determine ttie Btam observations
of the output.

The output itself gives the projection of the state on vediwaisare rows of the
matrix C. The observability problem can immediately be solved if tregrir C is
invertible. If the matrix is not invertible, we can take detives of the output to
obtain

dy dx

B _ X _cax
dt -~ dt X

From the derivative of the output we thus get the projectiothefstate on vectors
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that are rows of the matri€ A. Proceeding in this way, we get

y | C
y CA
y | =] C~ |«x (7.3)
| yo-D CA-1
We thus find that the state can be determined ifabgervability matrix
C
CA

W,= | CA (7.4)

C -t

hasnindependentrows. Itturns out that we need not consideraryadives higher
thann — 1 (this is an application of the Cayley—Hamilton theorem [€is=6.10).

The calculation can easily be extended to systems with inphtsstate is then
given by a linear combination of inputs and outputs and thigiher derivatives.
The observability criterion is unchanged. We leave this essan exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise, and therefore the method sketched eboge particularly
practical. We will address this issue in more detail in thetsection, but for now
we have the following basic result.

Theorem 7.1(Observability rank condition)A linear system of the forif¥.1) is
observable if and only if the observability matrix, V8 full rank.

Proof. The sufficiency of the observability rank condition followsrin the analysis@
above. To prove necessity, suppose that the system is aleihut\V, is not full
rank. Letv € R", v # 0, be a vector in the null space W, so thatWyo = 0. If
we letx(0) = » be the initial condition for the system and choase: 0, then the
output is given byy(t) = Ce*'v. Sincee”! can be written as a power seriesAn
and sinceA" and higher powers can be rewritten in terms of lower powews (@fy
the Cayley—Hamilton theorem), it follows that the outputi e identically zero
(the reader should fill in the missing steps if this is not glddowever, if both the
input and output of the system are 0, then a valid estimatieeo$tate iX = O for
all time, which is clearly incorrect sinog0) = v # 0. Hence by contradiction we
must have that\, is full rank if the system is observable. O

Example 7.1 Compartment model
Consider the two-compartment model in FigBr&8a but assume that the concen-
tration in the first compartment can be measured. The systeps@ided by the
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V2

>

Figure 7.2: An unobservable system. Two identical subsystems have outputs thagather
to form the overall system output. The individual states of the subsystenotbe determined
since the contributions of each to the output are not distinguishable. Tt dragram on
the right is an example of such a system.

linear system

dc —ko—ki ki bo

— = C u, =11 0] C.

dt [ k2 —k2 + 0 y [
The first compartment represents the drug concentration ibltfoel plasma, and
the second compartment the drug concentration in the tigheee it is active. To
determine if it is possible to find the concentration in theuscompartment from

a measurement of blood plasma, we investigate the obsétyalbithe system by
forming the observability matrix

C 10
o= [ca) = [ )

The rows are linearly independentkif # 0, and under this condition it is thus
possible to determine the concentration of the drug in thieeacompartment from
measurements of the drug concentration in the blood. \%

It is useful to have an understanding of the mechanisms tlh&ker system
unobservable. Such a system is shown in Figu2 The system is composed of
two identical systems whose outputs are added. It seenivatyclear that it is not
possible to deduce the states from the output since we cdedate the individual
output contributions from the sum. This can also be seen fiyiftexercise7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms kélluseful in studying ob-
servability. A linear single-input, single-output stapmese system is inbservable
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Figure 7.3: Block diagram of a system in observable canonical form. The states sy#tem
are represented by individual integrators whose inputs are a weight@uation of the next
integrator in the chain, the first state (rightmost integrator) and the systam ifhe output
is a combination of the first state and the input.

canonical formif its dynamics are given by

[ —ay 10 0 by

—ap 0 1 0 by
dz_| . 2+ | ¢ |
dt_ . . s

—a,—.1 0 O 1 Pn-1

| —a, 0 0 0 br
y=[10 0 .. O]z+Du.

The definition can be extended to systems with many inputs;nhyedifference is
that the vector multiplying! is replaced by a matrix.

Figure7.3is a block diagram for a system in observable canonical féxs.
in the case of reachable canonical form, we see that the deefdn the system
description appear directly in the block diagram. The charé&stic polynomial for
a system in observable canonical form is

Is)=s"+as" 1+ +a_15+ an. (7.5)

It is possible to reason about the observability of a systeabservable canonical
form by studying the block diagram. If the inputand the outpuy are available,
the statez; can clearly be computed. Differentiatizg, we obtain the input to the
integrator that generateg and we can now obtaily = z;+a;z; —b,u. Proceeding
in this way, we can compute all states. The computation willyéver, require that
the signals be differentiated.

To check observability more formally, we compute the obability matrix for
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a system in observable canonical form, which is given by

1 O O0... 0
—az 1 0o ... 0

W, = —a?—a —-a 1 of
* * o1

where * represents an entry whose exact value is not imptorfée rows of this
matrix are linearly independent (since it is lower triaragll and henceé\, is
full rank. A straightforward but tedious calculation shotlat the inverse of the
observability matrix has a simple form given by

1 0 0 0

a1 1 0 0

Wo_l — a a1 1 0
-1 a@-2 -3 --- 1

As in the case of reachability, it turns out that if a systewhiservable then there
always exists a transformatidnthat converts the system into observable canonical
form. This is useful for proofs since it lets us assume thastesy is in observable
canonical form without any loss of generality. The obsergaalnonical form may
be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now returnh® question of
how to construct an observer for a system. We will look foreslers that can be
represented as a linear dynamical system that takes thesiapd outputs of the
system we are observing and produces an estimate of thersystte. That is,
we wish to construct a dynamical system of the form

A

ax
— =F%+Gu+H
at + + Ry,

whereu andy are the input and output of the original system &nd R" is an
estimate of the state with the property tidt) — x(t) ast — oo.

The Observer

We consider the system in equatiah) with D set to zero to simplify the expo-
sition:

d
d—)t(zAx+ Bu, y=Cx (7.6)
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We can attempt to determine the state simply by simulatiegetiuations with the
correct input. An estimate of the state is then given by

A

dx
— = AX + Bu. 7.7
ai X+ Bu (7.7)

To find the properties of this estimate, introduce the estonarrork = x — X. It
follows from equations4.6) and (7.7) that

dx .

T AX.
If matrix A has all its eigenvalues in the left half-plane, the eravill go to zero,
and hence equatio (/) is a dynamical system whose output converges to the state
of the system7.6).

The observer given by equation ) uses only the process inputthe measured
signal does not appear in the equation. We must also reairtie system be stable,
and essentially our estimator converges because the $tad¢hahe observer and
estimator are going to zero. This is not very useful in a comigsign context since
we want to have our estimate converge quickly to a nonzete stathat we can
make use of it in our controller. We will therefore attempntodify the observer
so that the output is used and its convergence propertiesecdasigned to be fast
relative to the system'’s dynamics. This version will alsokvor unstable systems.

Consider the observer

% = AX+ Bu+ L(y — CX). (7.8)

This can be considered as a generalization of equafiaf. (Feedback from the
measured outputis provided by adding the térfy— CX), which is proportional to
the difference between the observed output and the outpdigted by the observer.
It follows from equations{.6) and (7.8) that

dx .

T (A= LO)X.
If the matrix L can be chosen in such a way that the mafix LC has eigen-
values with negative real parts, the erkowill go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a statedback and
finding the observer. State feedback design by eigenvalugrassnt is equivalent
to finding a matrixk so thatA— BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a maitrso thatA — LC has
given eigenvalues. Since the eigenvalues of a matrix andhitspose are the same
we can establish the following equivalences:

Ao AT, BoCl, Koll, Wow.

The observer design problem is thealof the state feedback design problem. Using
the results of Theorer®.3, we get the following theorem on observer design.
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Theorem 7.2(Observer design by eigenvalue assignme@dnsider the system
given by

dx

i Ax+ Bu, y=Ckx, (7.9)
with one input and one output. Légs) = s" + a;s" ' + - - - + an_1S + a, be the
characteristic polynomial for A. If the system is obserealhen the dynamical
system

dx
a:A>A<+Bu+ L(y — CX) (7.10)
is an observer for the system, with L chosen as
Pr—a
~ |p—a
L=wW W, | (7.11)
Pn —an
and the matrices \Wand W, given by
1 0 0 o oyt
C a 1 0 0 O
CA - do ap 1 0 O
Wo = . ) W0 = .
cCA-! -2 -3 an_4 1 0
(@1 @2 A3 ... a 1]

The resulting observer errox = x — X is governed by a differential equation
having the characteristic polynomial

p(s) =s"+ ps" -+ pn.

The dynamical systen7(10 is called anobserverfor (the states of) the sys-
tem (7.9) because it will generate an approximation of the stateseo$ystem from
its inputs and outputs. This form of an observer is a much meeéuliform than
the one given by pure differentiation in equatiah3).

Example 7.2 Compartment model
Consider the compartment model in Exampl&, which is characterized by the
matrices
_[-ko—k ki _ |bo _
A_[ o el =gl =2 o).
The observability matrix was computed in Exampl&, where we concluded that

the system was observablekif £ 0. The dynamics matrix has the characteristic
polynomial

S+ko+ki —ki

A(S) = det[ —k S+ ky

]=32+(ko+k1+k2)5+kok2-
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0.1

Concentratiorey, ¢, [g/L]

Timet [min]

Figure 7.4: Observer for a two compartment system. A two compartment modebigrsbn
the left. The observer measures the input concentratenmd output concentration= c; to
determine the compartment concentrations, shown on the right. Theotngergrations are
shown by solid lines and the estimates generated by the observer byl diasise

Let the desired characteristic polynomial of the observes®e p;s + p,, and
equation 7.11) gives the observer gain

L= O]_l[pl—ko—kl—kz

1 0] 1
—ko—ki kq ko+ki+k 1 P2 — koka
_ p1 — ko — ki — ko

(P2 — pika + kako + k3)/ ke | -

Notice that the observability conditidn # 0 is essential. The behavior of the
observer is illustrated by the simulation in Figut&h Notice how the observed
concentrations approach the true concentrations. \%

The observer is a dynamical system whose inputs are the griogegu and the
process outpuwy. The rate of change of the estimate is composed of two ternes. On
term, AX + Bu, is the rate of change computed from the model Witubstituted
for x. The other terml.(y — ¥), is proportional to the differena= y — ¥ between
measured output and its estimatg = CX. The observer gaih is a matrix that
tells how the erroeis weighted and distributed among the states. The obsem&r th
combines measurements with a dynamical model of the sy#dack diagram
of the observer is shown in Figuieb.

Computing the Observer Gain

For simple low-order problems it is convenient to introdtice elements of the
observer gairlL. as unknown parameters and solve for the values required¢o gi
the desired characteristic polynomial, as illustratedhafbllowing example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived iafgless.12and6.4
gives the following state space model dynamics relatirgyéipath deviatiory to
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Figure 7.5: Block diagram of the observer. The observer takes the signat&lu as inputs
and produces an estimate Notice that the observer contains a copy of the process model
that is driven byy — § through the observer gain.

steering angle:
dx _fo 1 y _
a_[O 0]x+[1] u, y = [1 O] X. (7.12)

Recall that the state, represents the lateral path deviation and thakepresents
the turning rate. We will now derive an observer that usessistem model to
determine the turning rate from the measured path deviation
The observability matrix is
10
WO = [o 1] s

i.e., the identity matrix. The system is thus observable,thadigenvalue assign-
ment problem can be solved. We have

(-1
a-to= [ ]

which has the characteristic polynomial

S+|1 -1

det(sl — A+ LC) :det[ |
2 S

] :Sz—l-lls—l-lz.

Assuming that we want to have an observer with the charatitepiolynomial
S+ P1s+ P2 = S° + 2owoS + 03,

the observer gains should be chosen as
l1=p1= 20w, l2=po =0}

The observer is then

ax - [0 1], y l1 .
a_Ax+Bu+L(y—Cx)_[0 0]x+[1]u+[|2] (Y — X1).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road (lefie ®bserver
has an initial velocity error. The plots on the middle show the lateral deviatiche lateral
velocity x, by solid lines and their estimatég andx, by dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curggd is simulated in
Figure7.6. The vehicle length is the time unit in the normalized modek Tigure
shows that the observer error settles in about 3 vehiclgheng \Y%

For systems of high order we have to use numerical calculatidhe duality
between the design of a state feedback and the design of arvebmeans that the
computer algorithms for state feedback can also be useddonliserver design;
we simply use the transpose of the dynamics matrix and theubutatrix. The
MATLAB commandacker , which essentially is a direct implementation of the
calculations given in Theorem2, can be used for systems with one output. The
MATLAB commandpl ace can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State

In this section we will consider a state space system of tira fo

dx—Ax+ Bu
dt ’

Notice that we have assumed that there is no direct term isytbiem D = 0).
This is often a realistic assumption. The presence of a dieegt in combination
with a controller having proportional action creates arehfgic loop, which will
be discussed in Sectidh3. The problem can be solved even if there is a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system whalhg the output
is measured. As before, we will assume thatndy are scalars. We also assume
that the system is reachable and observable. In Chépterfound a feedback of
the form

U= —Kx+kr
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for the case that all states could be measured, and in Sét#ove developed an
observer that can generate estimates of the &thtsed on inputs and outputs. In
this section we will combine the ideas of these sections todiiegdback that gives
desired closed loop eigenvalues for systems where onlyutsigye available for
feedback.

If all states are not measurable, it seems reasonable togrfgedback

u=—KR&+kr, (7.14)

whereX is the output of an observer of the state, i.e.,

A

% = AX+ Bu+ L(y — CX). (7.15)

Since the systeni7(13 and the observef7(15 are both of state dimension the
closed loop system has state dimensionaZth state &, X). The evolution of the
states is described by equatiofisl®—(7.15. To analyze the closed loop system,
the state variabl& is replaced by

X =X-—X. (7.16)
Subtraction of equatior?(15 from equation 7.13 gives
% = AX— AX—L(Cx—CX) = AX—LCx=(A—-LO)X.

Returning to the process dynamics, introducinfrom equation 7.14) into
equation 7.13 and using equatior(16) to eliminatex gives

d
d—)t(zAx—i- Bu= Ax — BKR + Bkr = Ax— BK(x — %) + Bkr

= (A—-BK)x+ BKX + Bkr.
The closed loop system is thus governed by

d [x A—-BK BK X Bk

i[5 = [0 W2 )+ (%] o
Notice that the stat®, representing the observer error, is not affected by therref
ence signal. This is desirable since we do not want the reference sigiugrierate
observer errors.

Since the dynamics matrix is block diagonal, we find that theattaristic
polynomial of the closed loop system is

A(s) = det(sl — A+ BK)det(sl — A+ LC).

This polynomial is a product of two terms: the characteripttynomial of the
closed loop system obtained with state feedback and theactesistic polyno-
mial of the observer error. The feedback14) that was motivated heuristically
thus provides a neat solution to the eigenvalue assignmebtgm. The result is
summarized as follows.
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Figure 7.7: Block diagram of an observer-based control system. The obsesesrthe mea-
sured outputy and the inputu to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. Thettentonsists of the
observer and the state feedback; the observer is identical to that ireFigur

Theorem 7.3(Eigenvalue assignment by output feedbadRpnsider the system

dx
— = AX+ Bu =CX.
T + bu, y

The controller described by

A

d
d_)::Af(-i- Bu+ L(y—CX) = (A— BK — LC)X 4+ Bkr + Ly,

U= —-KX+kr
gives a closed loop system with the characteristic polyabmi
A(s) = det(sl — A+ BK)det(sl — A+ LC).

This polynomial can be assigned arbitrary roots if the sysiemeachable and
observable.

The controller has a strong intuitive appeal: it can be thoofhs being com-
posed of two parts, one state feedback and one observer. Taeniys of the
controller are generated by the observer. The feedbackkgaen be computed as
if all state variables can be measured, and it depends onfoaity B. The observer
gainL depends on only andC. The property that the eigenvalue assignment for
output feedback can be separated into an eigenvalue assigfona state feedback
and an observer is called tseparation principle

A block diagram of the controller is shown in Figure7. Notice that the con-
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane b@m(tiotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows lib&tygsolid) and

its estimate (dashed), and the lower right plot shows the control sigimgj siate feedback
(solid) and the control signal using the estimated state (dashed).

troller contains a dynamical model of the plant. This is chlleeinternal model
principle: the controller contains a model of the process being ctatro

Example 7.4 Vehicle steering
Consider again the normalized linear model for vehiclersigen Example6.4.
The dynamics relating the steering angk®e the lateral path deviatiopis given by
the state space modél.02. Combining the state feedback derived in Exange
with the observer determined in Example3, we find that the controller is given
by

dx e o |0 1], y I W

Frie AX+ Bu+ L(y—CX) = [O O] X + [1] u+ [|2 (y — X1),

U= —-KX+kr =ki(r — )21) — koXo.
Elimination of the variablel gives
dx

5 = (A=BK —LO)X + Ly + Bkr

—l1—yki 1—9yko]| l1
= —kl—ylz _&}2 ]x+ [|2] y+ [i] Kir.
The controller is a dynamical system of second order, withityoitsy andr and

one output. Figure7.8shows a simulation of the system when the vehicle is driven
along a curvy road. Since we are using a normalized modeletigth unit is the
vehicle length and the time unitis the time it takes to trared vehicle length. The
estimator is initialized with all states equal to zero bettbal system has an initial
velocity of 0.5. The figures show that the estimates convergekiyuo their true
values. The vehicle tracks the desired path, which is in tltellaiof the road, but
there are errors because the road is irregular. The tracking @n be improved
by introducing feedforward (Sectioh5). \Y%
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7.4 Kalman Filtering %

One of the principal uses of observers in practice is to egénthe state of a
system in the presencembisymeasurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamicalesystis beyond the scope
of this text. In this section, we present a brief introductio the use of stochastic
systems analysis for constructing observers. We work piiyria discrete time to
avoid some of the complications associated with continttimne random processes
and to keep the mathematical prerequisites to a minimum. §é¢don assumes
basic knowledge of random variables and stochastic presgesgee Kumar and
Varaiya KV86] or Astrom [Ast0g for the required material.

Consider a discrete-time linear system with dynamics

X[k + 1] = AX[K] + Bu[K] + Fo[K], y[k] = CX[K] + w[K], (7.18)
whereo[K] and w[k] are Gaussian white noise processes satisfying
E{v[k]} =0, E{w[k]} =0,
0 k#]j 0 k#]j

E{o[kloT[i]} = E{w[Klw'[j]} =

Rv k:J, Rw k:J,
Efw[Klw[j]} =0.
E{v[K]} represents the expected valueofk] and E{v[k]o"[j]} the correlation
matrix. The matriceR}, and R,, are the covariance matrices for the process dis-

turbancer and measurement noise We assume that the initial condition is also
modeled as a Gaussian random variable with

E{x[0]} = xo,  E{x[0]x"[0]} = P. (7.20)

We would like to find an estimatg[k] that minimizes the mean square error
E{(X[K] — X[K])(X[K] — X[K])T} given the measurementg(z) : 0 < z < t}. We
consider an observer in the same basic form as derived pigyio

K[k + 1] = AR[K] + Bu[k] + L[K](y[K] — CRIK]). (7.21)

The following theorem summarizes the main result.

(7.19)

Theorem 7.4 (Kalman, 1961) Consider a random procesgk{ with dynamics
given by equatior7.18 and noise processes and initial conditions described by
equationg7.19 and (7.20. The observer gain L that minimizes the mean square
error is given by
L[K] = AP[KICT(R, + CP[KIC")™™,

where

Plk+1] = (A— LC)PIK(A—LC)" + FR,FT + LR,L"

Py = E{x[0]x"[0]}.
Before we prove this result, we reflect on its form and functieinst, note

that the Kalman filter has the form ofracursivefilter: given mean square error

(7.22)
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P[k] = E{(x[K] —X[K])(X[K] —X[K]) "} at timek, we can compute how the estimate
and errorchange Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estim#&f&] and the error covariance
P[k], so we can see how reliable the estimate is. It can also berskimat the
Kalman filter extracts the maximum possible information almuput data. If we
form the residual between the measured output and the éstroatput,

e[k] = y[k] — CX[k],
we can show that for the Kalman filter the correlation matrix is
1 j=k
0 j#k

In other words, the error is a white noise process, so thereismaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used evdreiptocess,
noise or disturbances are nonstationary. When the syststatisnary andf P[K]
converges, then the observer gain is constant:

L = APC'(R, + CPC"),

Re(i, k) = E{e[j]e"[K]} = W[K]oj,  djk = i

whereP satisfies
P=APA +FR,FT — APC'(R,+CPCT) 'CPA.

We see that the optimal gain depends on both the processamuisiee measurement
noise, but in a nontrivial way. Like the use of LQR to choosessta¢dback gains,
the Kalman filter permits a systematic derivation of the obsegains given a
description of the noise processes. The solution for thetanhgain case is solved
by thedl ge command in MATLAB.

Proof of theorem.We wish to minimize the mean square of the ered(x[k] —
R[KD(X[K] = X[KDT}. We will define this quantity a®[k] and then show that it
satisfies the recursion given in equatidn2@. By definition,

Plk+ 1] = E{(X[k + 1] — R[k + 1) (X[k + 1] — K[k + 1])"}
= (A—LC)PIKJ(A—LC)T + FR,FT + LR, LT
= AP[K]AT + FR,FT — AP[K]ICTLT — LCP[K]AT
+L(R, + CP[KICT)L.
Letting R. = (R, + CP[K]CT), we have
Plk+ 1] = AP[K]IAT + FR,FT — AP[K]CTLT — LCP[K]AT + LR.LT
= AP[K]AT + FR,FT + (L—AP[KICTR™D)R (L—APKICTR ™)’
— APIKICTR!CPT[K]AT.

To minimize this expression, we chooke= AP[K]CTR-!, and the theorem is
proved. O
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The Kalman filter can also be applied to continuous-time stetidhprocesses.
The mathematical derivation of this result requires morehstigated tools, but
the final form of the estimator is relatively straightforward

Consider a continuous stochastic system

%‘ = Ax+ Bu+ Fo, E{o(s)o" (1)} = R, (t)d(t —s),
y=Cx+uw, E{w)w' (1)} = R, 1)t —9),

whered(z) is the unit impulse function. Assume that the disturbanead noise
w are zero mean and Gaussian (but not necessarily stationary)
1 1, Tpr-1 1 1 TR—lw

df(v) = ————e72" " pdf =— @2
pdlf(v) V2 /detR, pdf(w) 2 /detR,

We wish to find the estimatg(t) that minimizes the mean square erk(x(t) —
R(O)(x(t) — X)) given{y(z) : 0 < 7 < t}.

Theorem 7.5(Kalman—Bucy, 1961)The optimal estimator has the form of alinear
observer 4%

Gi = AX+BUH LY -CR).

where L(t) = P(1)CT R and P(t) = E{(x(t)—X(t))(x(t)—X(t)) "} and satisfies

dpP
i AP+ PAT — PCTRY(t)CP+ FR,(1)F', P[0] = E{x[0]x"[0]}.
As in the discrete case, when the system is stationary dd )fconverges, the

observer gain is constant:
L=PC'R;> where AP+ PA" - PC'R;!CP+FR,F' =0.
The second equation is tladgebraic Riccati equation

Example 7.5 Vectored thrust aircraft

We consider the lateral dynamics of the system, consisfitigesubsystems whose
states are given by = (x, 6, X, 8). To design a Kalman filter for the system, we
must include a description of the process disturbances f@ddnsor noise. We

thus augment the system to have the form

d
d_tZ=Az+ Bu+Fu, y=Cz+uw,

whereF represents the structure of the disturbances (includie@ftiects of non-
linearities that we have ignored in the linearizatianyepresents the disturbance
source (modeled as zero mean, Gaussian white noisep aagdresents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we choos$eas the identity matrix and choose disturbanges
i =1,...,n,to be independent disturbances with covariance giveRjpy= 0.1,
Rj = 0,i # j. The sensor noise is a single random variable which we model as
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first desigrocdy
the lateral position of the aircraft is measured. Adding a direct meamuneof the roll
angle produces a much better observer (b). The initial condition for siathlations is
(0.1,0.0175 0.01, 0).

having covariancd®,, = 10~*. Using the same parameters as before, the resulting
Kalman gain is given by
37.0
—46.9
185
—316

The performance of the estimator is shown in Figai@a We see that while the
estimator converges to the system state, it contains signtfaershoot in the state
estimate, which can lead to poor performance in a closeddetmg.

To improve the performance of the estimator, we explorertigaict of adding a
new output measurement. Suppose thatinstead of measustrigguwutput position
X, we also measure the orientation of the aircfaffhe output becomes

1 000 w1
y= [o 10 o]ZJr [wg]
and if we assume that; andw, are independent noise sources each with covariance
R, = 1074, then the optimal estimator gain matrix becomes

L =

326  —0.150
__|-0150 326
= | 327 -979

—0.0033 316

These gains provide good immunity to noise and high perfoomaas illustrated
in Figure7.9h \Y%
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Ust d n
I | Trajectory
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Generation *d € State | Yb u v n y
Process =
Feedback
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Figure 7.10:Block diagram of a controller based on a structure with two degreesexfdra
which combines feedback and feedforward. The controller condiattrajectory generator,
state feedback and an observer. The trajectory generation subsysterates a feedforward
commandiy along with the desired statg. The state feedback controller uses the estimated
state and desired state to compute a corrective ingut

7.5 A General Controller Structure

State estimators and state feedback are important compookatcontroller. In
this section, we will add feedforward to arrive at a geneositwller structure that
appears in many places in control theory and is the heart st modern control
systems. We will also briefly sketch how computers can be usétplement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasizeddekdls a mechanism
for minimizing tracking error; reference values were idoed simply by adding
them to the state feedback through a dainA more sophisticated way of doing
this is shown by the block diagram in FigufelQ where the controller consists of
three parts: an observer that computes estimates of tles $tased on a model and
measured process inputs and outputs, a state feedback tiajelctory generator
that generates the desired behavior of all stateand a feedforward signai.
Under the ideal conditions of no disturbances and no moglelirors the signals
generates the desired behavigmvhen applied to the process. The sigratan be
generated by a system that gives the desired response aatbe™ generate the
the signalug, we must also have a model of the inverse of the process dgsami

To get some insight into the behavior of the system, we asshatghere are
no disturbances and that the system is in equilibrium witlostant reference
signal and with the observer statequal to the process stateWhen the reference
signal is changed, the signalg andxy will change. The observer tracks the state
perfectly because the initial state was correct. The estidstate is thus equal to
the desired statey, and the feedback signag, = K (xq — X) will also be zero. All
action is thus created by the signals from the trajectorggaor. If there are some
disturbances or some modeling errors, the feedback sighalttempt to correct
the situation.

This controller is said to havevo degrees of freedolmecause the responses
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to command signals and disturbances are decoupled. Dastcebresponses are
governed by the observer and the state feedback, while spemse to command
signals is governed by the trajectory generator (feedfaijva

For an analytic description we start with the full nonlinemamics of the
process dx

gr=fxw.  y=hx.u). (7.23)

Assume that the trajectory generator is able to computeigeddsajectory(Xq, Us)
that satisfies the dynamicg.23 and satisfies = h(xq, us). To design the con-
troller, we construct the error system. lze& X — X4 andv = u — ug and compute
the dynamics for the error:

z=X—X3 = f(x,u) — f(xq, Us)
= f(z+ X4, 0 + Ug) — T (Xq, Ux) =: F(Z, 0, Xq(1), Ut (1)).

In general, this system is time-varying. Note that —e in Figure7.10due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume tha small (if our controller is doing
a good job), and so we can linearize around 0:

dz ~ At)z+ B(t)o, A(t) = ok , B@) = ok )

dt OZ | (xa(t).un () OV | (et )
It is often the case thaf(t) and B(t) depend only orxg, in which case it is
convenient to writeA(t) = A(Xq) andB(t) = B(Xg).

Assume now thaxy andug are either constant or slowly varying (with respect
to the performance criterion). This allows us to considet flas (constant) linear
system given byA(Xq), B(Xq)). If we design a state feedback controlke(xy) for
eachxq, then we can regulate the system using the feedback

v = —K(Xq)z.
Substituting back the definitions afandv, our controller becomes
U= —K(Xq)(X — Xq) + Us.

This form of controller is called gain scheduletinear controller witifeedforward
Ut .

Finally, we consider the observer. The full nonlinear dynanai@n be used for
the prediction portion of the observer and the linearizexiesy for the correction
term: %

gt = R W+ LAY —hz,w),

where L(X) is the observer gain obtained by linearizing the systemratdbe
currently estimated state. This form of the observer is knaswrextended Kalman
filter and has proved to be a very effective means of estimatingdteeaf a nonlinear
system.
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(a) Overhead view (b) Position and steering

Figure 7.11: Trajectory generation for changing lanes. We wish to change from thieuhef
to the right lane over a distance of 30 min 4 s. The planned trajectory iythkne is shown
in (@) and the lateral positiop and the steering angteover the maneuver time interval are
shown in (b).

There are many ways to generate the feedforward signal, ereldhe also many
different ways to compute the feedback g&irand the observer gain. Note that
once again the internal model principle applies: the cdletroontains a model of
the system to be controlled through the observer.

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom desigmprove the per-
formance of the system, consider the problem of steering toa@nange lanes on
aroad, as illustrated in Figuiella

We use the non-normalized form of the dynamics, which werneeléin Exam-
ple 2.8. Using the center of the rear wheels as the referemee Q), the dynamics
can be written as

dx dy . do o

— = cost — =sinfv, — = — tang,

dt ot ! dt _ b
wherev is the forward velocity of the vehicle aidds the steering angle. To generate
a trajectory for the system, we note that we can solve for tdies and inputs of

the system giver, y by solving the following sets of equations:
X = v COSH, X = v cost — vf sind,
y =wvsind, Y = v sind + v6 cosd, (7.24)
6 = (v/b) tand.
This set of five equations has five unknowfisd, v, » andd) that can be solved
using trigonometry and linear algebra. It follows that wa campute a feasible

trajectory for the system given any paitt), y(t). (This special property of a system
is known adifferential flatnes$FLMR92, FLMR95].)
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To find a trajectory from an initial stateo, Yo, 6p) to a final statgx;, y¢, 0¢)
at a timeT, we look for a pathx(t), y(t) that satisfies

X(0) = Xo, X(T) = Xt,

y(0) = Yo, y(T) =i, (7.25)

X(0) sindp — y(0) costy = 0O, X(T)sinds — y(T)cosds =0, '

y(0) sinép + %(0) cosby = v, y(T)sinfs + x(T)coshs = v;.
One such trajectory can be found by choosiig andy(t) to have the form

Xg(t) = g + ot + azt® + aat?, Ya(t) = o+ it + Bot® + pat®.
Substituting these equations into equati@2p), we are left with a set of linear
equations that can be solved gt i, i = 0, 1, 2, 3. This gives a feasible trajectory

for the system by using equation.24) to solve for6y, vy anddy.
Figure7.11bshows a sample trajectory generated by a set of higher-ecaer-
tions that also set the initial and final steering angle to.2¢atice that the feedfor-
ward input is quite different from 0, allowing the contralte command a steering
angle that executes the turn in the absence of errors. \%

Kalman’s Decomposition of a Linear System @

In this chapter and the previous one we have seen that twafental properties
of a linear input/output system are reachability and oledahty. It turns out that
these two properties can be used to classify the dynamicssgétem. The key
result is Kalman’s decomposition theorem, which says thiatesr system can be
divided into four subsystem&,, which is reachable and observahig which is
reachable but not observabl,, which is not reachable but is observable aiyg
which is neither reachable nor observable.

We will first consider this in the special case of systems whtezenatrixA has
distinct eigenvalues. In this case we can find a set of coarlnsuch that thé\
matrix is diagonal and, with some additional reorderinghaf states, the system
can be written as

(A O O O Bro
dx | 0 As 0 O Brs
at-[o 0o A, o [o|" (7.26)
(0 0 0 As 0 '
y= 'Cro 0 Gy O] X + Du.

All statesx such thatByx # 0 are reachable, and all states such at~t 0 are
observable. If we set the initial state to zero (or equivilydnok at the steady-state
response ifA is stable), the states given by, andxys will be zero andx; s does
not affect the output. Hence the outputan be determined from the system

dX%o
dt

= AroXro + BroU, Yy = CioXo + Du.
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(a) Distinct eigenvalues (b) General case

Figure 7.12: Kalman’s decomposition of a linear system. The decomposition in (a) is for
a system with distinct eigenvalues and the one in (b) is the general casesy$tem is
broken into four subsystems, representing the various combinatioeadfable and observ-
able states. The input/output relationship only depends on the subsetesftsiat are both
reachable and observable.

Thus from the input/output point of view, it is only the reableaand observable
dynamics that matter. A block diagram of the system illustgathis property is
given in Figure7.12a

The general case of the Kalman decomposition is more congdicand re-
quires some additional linear algebra; see the originatphp Kalman, Ho and
Narendra KHNG3]. The key result is that the state space can still be decordpose
into four parts, but there will be additional coupling sotttiee equations have the

form )
Ao O * 0 Bro
dx * A x % Bro
—~ = X u,
dt |0 0 A 0| o 7.27)
0 0 A 0 '
y=[Co 0 Ciw o] X,

wherex denotes block matrices of appropriate dimensions. The fopigut re-
sponse of the system is given by

%
dt
which are the dynamics of the reachable and observable si@ns¥,,. A block
diagram of the system is shown in Figutd2h
The following example illustrates Kalman’s decomposition.

= AroXro + Brol, y = CioXro + Du, (7.28)

Example 7.7 System and controller with feedback from observer state
Consider the system

X
— = Ax + Bu, =Cx.
dt + y

The following controller, based on feedback from the obsestate, was given in
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Theorem?.3:

A

dx
a:A)?+Bu+L(y—C>A<), u=—KX+ktr.

Introducing the states andX = x — X, the closed loop system can be written as

d [x A— BK BK X Bk X

o H e et R e B U H
which is a Kalman decomposition like the one shown in Figud2bwith only
two subsystem&;, and Xr,. The subsystenx,,, with statex, is reachable and
observable, and the subsystein,, with stateX, is not reachable but observable.
It is natural that the state is not reachable from the reference signalecause it
would not make sense to design a system where changes inrimarad signal

could generate observer errors. The relationship betweereference and the
outputy is given by

%:(A—BK)X—FBKI’, y = CX,
which is the same relationship as for a system with full skegelback. \%

Computer Implementation

The controllers obtained so far have been described by aydditierential equa-

tions. They can be implemented directly using analog commisnghether elec-
tronic circuits, hydraulic valves or other physical dewc8ince in modern engi-
neering applications most controllers are implementedgusbmputers, we will

briefly discuss how this can be done.

A computer-controlled system typically operates perialijc every cycle, sig-
nals fromthe sensors are sampled and converted to digitaldpthe A/D converter,
the control signal is computed and the resulting output iwveded to analog form
for the actuators, as shown in Figutd3 To illustrate the main principles of how
to implement feedback in this environment, we consider tharoller described
by equations{.14) and (7.19), i.e.,

d
d—)t(:A>?+Bu+L(y—C>2), u=—-Kx+Kkr.

The second equation consists only of additions and muléptos and can thus
be implemented directly on a computer. The first equation campkmented by
approximating the derivative by a difference

% - w = AR(t) + Bu(ty) + L (¥(t) — CX(%),

wherety are the sampling instants ahd-= ty,.;—tx is the sampling period. Rewriting
the equation to isolate(tx, 1), we get the difference equation

K(ter1) = X(t) + h(AR(t) + Bu(te) + L (y(t) — CX(t))). (7.29)
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external disturbances

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| Clock :
! Y y v |
| D/IA |« Computer AD | Filter |« :
e IContro"er

operator input

Figure 7.13:Components of a computer-controlled system. The controller consetstufg-

to-digital (A/D) and digital-to-analog (D/A) converters, as well as a corapthat implements
the control algorithm. A system clock controls the operation of the contrsij@chronizing

the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

The calculation of the estimated state at titng requires only addition and mul-
tiplication and can easily be done by a computer. A sectigusefidocode for the
program that performs this calculation is

% Control algorithm- nmain |oop

r = adin(chl) % read reference

y = adin(ch2) % get process out put

u = K*(xd - xhat) + uff % conput e control variable
daout (chl, u) % set anal og out put

xhat = xhat + h*( A*x+B*u+L*(y-C*x)) % update state estinate

The program runs periodically at a fixed rdte Notice that the number of
computations between reading the analog input and settegrialog output has
been minimized by updating the state after the analog outpsitbeen set. The
program has an array of statesat that represents the state estimate. The choice
of sampling period requires some care.

There are more sophisticated ways of approximating a diffexkequation by a
difference equation. If the control signal is constant leswthe sampling instants,
it is possible to obtain exact equations; SA&VD7).

There are several practical issues that also must be dehltiat example, it
is necessary to filter measured signals before they are sdraplihat the filtered
signal has little frequency content abofig 2, wherefs is the sampling frequency.
This avoids a phenomena knownal®sing If controllers with integral action are
used, it is also necessary to provide protection so thahtegial does not become
too large when the actuator saturates. This issue, daliegrator windupis studied
in more detail in Chaptet0. Care must also be taken so that parameter changes do
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not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalmakidl61b and, combined with the dual
notion of reachability, it was a major stepping stone tovest@blishing state space
control theory beginning in the 1960s. The observer first apguokas the Kalman
filter, in the paper by KalmarKal614 on the discrete-time case and Kalman and
Bucy [KB61] on the continuous-time case. Kalman also conjecturedtiigaton-
troller for output feedback could be obtained by combinirgiae feedback with
an observer; see the quote in the beginning of this chaptisrésult was formally
proved by Josep and TodT61 and Gunckel and FranklirGF71. The combined
result is known as the linear quadratic Gaussian contrarthex compact treat-
ment is given in the books by Anderson and Mook&1P0] and Astrom Rst06].
Much later it was shown that solutions to robust control peois also had a sim-
ilar structure but with different ways of computing obseread state feedback
gains PGKF89. The general controller structure discussed in Seciénwhich
combines feedback and feedforward, was described by Hmawi963 Hor63.
The particular form in Figur@.10appeared inAW97], which also treats digital
implementation of the controller. The hypothesis that motontrol in humans
is based on a combination of feedback and feedforward wasopeal by Ito in
1970 [to70Q].

Exercises

7.1(Coordinate transformations) Consider a system underauwde transforma-
tion z = T x, whereT € R"™*" is an invertible matrix. Show that the observability
matrix for the transformed system is given\bl = W, T~ and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figt@is not observable.

7.3 (Observable canonical form) Show that if a system is obségydien there
exists a change of coordinates= T x that puts the transformed system into ob-
servable canonical form.

7.4(Bicycle dynamics) The linearized model for a bicycle is giieequation 3.5),
which has the form
d?p  Duogdo mo3h
e bodt "It
whereg is the tilt of the bicycle and is the steering angle. Give conditions under

which the system is observable and explain any specialtgihsgawhere it loses
observability.

J,
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7.5 (Integral action) The model(1) assumes that the input= 0 corresponds to
x = 0. In practice, it is very difficult to know the value of the caopitsignal that
gives a precise value of the state or the output becausedhisinequire a perfectly
calibrated system. One way to avoid this assumption is tenrasghat the model is
given by dx

a:Ax+B(u+uo), y =Cx+ Du,

whereug is an unknown constant that can be modeledas/dt = 0. Consider

Up as an additional state variable and derive a controllerdbasdfeedback from
the observed state. Show that the controller has integrialneahd that it does not
require a perfectly calibrated system.

7.6 (Vectored thrust aircraft) The lateral dynamics of the vesdathrust aircraft
example described in Examp&8 can be obtained by considering the moti
described by the states= (x, 0, X, 0). Construct an estimator for these dynamics
by setting the eigenvalues of the observer inBudterworth patterrwith Ay, =
—3.83+9.24i, —9.24+ 3.83 . Using this estimator combined with the state space
controller computed in Exampl&.8, plot the step response of the closed loop
system.

7.7 (Uniqueness of observers) Show that the design of an obdeyweigenvalue
assignment is unique for single-output systems. Constsanples that show that
the problem is not necessarily unique for systems with manguds.

7.8 (Observers using differentiation) Consider the lineateys(7.2), and assume
that the observability matriXV, is invertible. Show that

x=Wi[y vy - yo?]

is an observer. Show that it has the advantage of giving the ststantaneously
but that it also has some severe practical drawbacks.

7.9 (Observer for Teorell's compartment model) Teorell's camment model,
shown in Figure3.17, has the following state space representation:

kK, O 0 0 0 1
ix |k -k 0 k 0 0
—=10 Ka 0 0 O x4+ {0} u,
dt 0 k, 0 —ks—ks O 0

0 0 0 k& 0 0

where representative parametersilare= 0.02,k, = 0.1, k3 = 0.05,k; = ks =
0.005. The concentration of a drug that is active in compartriesimeasured in
the bloodstream (compartment 2). Determine the compattnieat are observable
from measurement of concentration in the bloodstream asijl@n estimator
for these concentrations base on eigenvalue assignments€lthe closed loop
eigenvalues-0.03,—0.05 and—0.1. Simulate the system when the input is a pulse
injection.
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7.10(Observer design for motor drive) Consider the normalizedehof the motor
drive in Exercis€.10where the open loop system has the eigenvalu@s-00.05+

i. A state feedback that gave a closed loop system with eiggwan—2, —1 and
—1+i was designed in Exerci€e11 Design an observer for the system that has
eigenvalues-4, —2 and—2 £ 2i. Combine the observer with the state feedback
from Exerciseb.11to obtain an output feedback and simulate the completersyste

7.11(Feedforward design for motor drive) Consider the normdlimmdel of the
motor drive in Exercis@.1Q Design the dynamics of the block labeled “trajectory
generation” in Figur&.10so that the dynamics relating the outpub the reference
signalr has the dynamics

d3Ym dZYm dym

gz T ami gz +ame g + amaYm = amsf, (7.30)

with parameteray; = 2.5wm, 8mp = 2.502 andamz = 3. Discuss how the largest
value of the feedforward signal for a unit step in the commsigdal depends on
Wm-

7.12(Whipple bicycle model) Consider the Whipple bicycle mogiekn by equa-
tion (3.7) in Section3.2 A state feedback for the system was designed in Exer-
cise6.12 Design an observer and an output feedback for the system.

7.13(Discrete-time random walk) Suppose that we wish to estirtegosition @
of a particle that is undergoing a random walk in one diman§ie., along a line).
We model the position of the particle as

X[k + 1] = x[K] + u[K],

wherex is the position of the particle ands a white noise processes wE{u[i]} =
O andE{u[i]u[j]} = Ry(i — j). We assume that we can measursubject to
additive, zero-mean, Gaussian white noise with covaridnce

(&) Compute the expected value and covariance of the paasch function ok.

(b) Construct a Kalman filter to estimate the position of theipla given the
noisy measurements of its position. Compute the steady-sigected value and
covariance of the error of your estimate.

(c) Suppose thaE{u[0]} = u # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

7.14(Kalman decomposition) Consider a linear system charizeby the matri-
ces

2 1 -1 2 2
1 -3 0 2 2

A=11 1 —a 2| B=|2| C=[O L -1 0]’ D=0.
0 1 -1 -1 1

Construct a Kalman decomposition for the system. (Hint:tdrgiagonalize.)



Chapter Eight

Transfer Functions

Thetypical regulator system can frequently be described, in essenyidigfdyential equations
of no more than perhaps the second, third or fourth order. ...In copttas order of the set
of differential equations describing the typical negative feedback amplgied in telephony
is likely to be very much greater. As a matter of idle curiosity, | once countédd out what
the order of the set of equations in an amplifier | had just designed wawld been, if | had
worked with the differential equations directly. It turned out to be 55.

Henrik Bode, 1960B0d6(.

This chapter introduces the concept of ttamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstéom other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure8.1lis a block diagram for a typical control system, consistifig process to
be controlled and a controller that combines feedback aedféeward. We saw in
the previous two chapters how to analyze and design suatrsgstsing state space
descriptions of the blocks. As mentioned in Chaj@ean alternative approach is
to focus on the input/output characteristics of the syst&imce it is the inputs and
outputs that are used to connect the systems, one couldtekpédthis point of

| Reference Feedback d Process n
! shaping controller, dynamics
ro, e i u v n y
— F C P ——
| ~1 |«
' Controller |

Figure 8.1: A block diagram for a feedback control system. The reference kigisafed
through a reference shaping block, which produces the signal thdievithcked. The error
between this signal and the output is fed to a controller, which producdsgheto the
process. Disturbances and noise are included as external signadsimpulb and output of
the process dynamics.
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view would allow an understanding of the overall behaviothef system. Transfer
functions are the main tool in implementing this point ofwifor linear systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input sign#é thextodic. Then
we can decompose this signal into the sum of a set of sinesciltes,

u(t) = > acsin(ket) + by cogket),
k=0
wherew is the fundamental frequency of the periodic input. Each@ténms in this
input generates a corresponding sinusoidal output (irdgtetate), with possibly
shifted magnitude and phase. The gain and phase at eachriogcare determined
by the frequency response given in equatidr24):

G(s)=C(sl — A'B+ D, (8.1)

where we ses = i (ko) for eachk = 1, ..., 00 andi = +/—1. If we know the
steady-state frequency resporises), we can thus compute the response to any
(periodic) signal using superposition.

The transfer function generalizes this notion to allow a devaclass of input
signals besides periodic ones. As we shall see in the nekbsgthe transfer
function represents the response of the system texaonential inpytu = €st.

It turns out that the form of the transfer function is preljigbe same as that of
equation 8.1). This should not be surprising since we derived equat®t) by
writing sinusoids as sums of complex exponentials. Foyydile transfer function
is the ratio of the Laplace transforms of output and inpuhalgh one does not
have to understand the details of Laplace transforms in tmaeake use of transfer
functions.

Modeling a system through its response to sinusoidal andrexgtial signals is
known asfrequency domain modelind his terminology stems from the fact that
we represent the dynamics of the system in terms of the derestdrequencys
rather than the time domain varialileThe transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a palaidy convenient
representation in manipulating and analyzing complexlifieedback systems. As
we shall see, there are many graphical representationsrgfar functions that
capture interesting properties of the underlying dynamicansfer functions also
make it possible to express the changesin a system becausdeling error, which
is essential when considering sensitivity to process tiaria of the sort discussed
in Chapterl2. More specifically, using transfer functions, it is possitol@nalyze
what happens when dynamic models are approximated by statiels or when
high-order models are approximated by low-order modele €amsequence is that
we can introduce concepts that express the degree of staifii system.

While many of the concepts for state space modeling and sisadypply di-
rectly to nonlinear systems, frequency domain analysisiegpprimarily to linear
systems. The notions of gain and phase can be generalizedhliogar systems
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and, in particular, propagation of sinusoidal signals digio a nonlinear system
can approximately be captured by an analog of the frequessponse called the
describing function. These extensions of frequency respuiils be discussed in
Section9.5.

8.2 Derivation of the Transfer Function

As we have seen in previous chapters, the input/output dipgsaof a linear sys-
tem have two components: the initial condition responsethadorced response.
In addition, we can speak of the transient properties of yiséesn and its steady-
state response to an input. The transfer function focuseseost¢ady-state forced
response to a given input and provides a mapping betweetsiapd their corre-
sponding outputs. In this section, we will derive the trangtinction in terms of
the exponential response of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, wénvdke use of a special
type of signal, called aexponential signalpf the forme®, wheres = ¢ +iw is

a complex number. Exponential signals play an importantirolaear systems.
They appear in the solution of differential equations anchmimpulse response
of linear systems, and many signals can be represented asexjals or sums of
exponentials. For example, a constant signal is singpflywith & = 0. Damped
sine and cosine signals can be represented by

gl tiolt — ertdet — et (coswt + i sinmt),

wheres < 0 determines the decay rate. Fig&.€ gives examples of signals that
can be represented by complex exponentials; many othealsigan be represented
by linear combinations of these signals. As in the case ofsiidal signals, we will
allow complex-valued signals in the derivation that folivalthough in practice
we always add together combinations of signals that rastdidl-valued functions.

To investigate how a linear system responds to an expohantiz u(t) = e
we consider the state space system

% = AX + Bu, y =Cx+ Du. (8.2)

Let the input signal be(t) = €' and assume that# 4;(A), j = 1,...,n, where
4j(A) is the jth eigenvalue ofA. The state is then given by

t t
x(t) = e*x(0) +/ A= B dr = e*'x(0) + eAt/ es!=A7B dr.
0 0
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Figure 8.2: Examples of exponential signals. The top row corresponds to expalsgnals
with a real exponent, and the bottom row corresponds to those with coexgexents. The
dashed line in the last two cases denotes the bounding envelope foritleaycsignals. In
each case, if the real part of the exponent is negative then the segwls] while if the real
part is positive then it grows.

As we saw in SectioB.3, if s # 1(A), the integral can be evaluated and we get
x(t) = e*x(0) 4+ e (sl — A)‘l(e(s"A)t _ I)B
- eAt(x(O) — (sl — A)—lB) + (sl — AtBet.
The output of equatiorB(2) is thus
y(t) = Cx(t) + Du(t)

- CeA‘(x(O) — (sl — A)—ls) + (C(sl —AB+ D)eS‘, (8.3)
a linear combination of the exponential functiogf$ and et. The first term in
equation 8.3 is the transient response of the system. Recallefatan be written
in terms of the eigenvalues & (using the Jordan form in the case of repeated
eigenvalues), and hence the transient response is a liogdniation of terms of
the formetit, wherel; are eigenvalues oA. If the system is stable, the — 0
ast — oo and this term dies away.

The second term of the outp&.8) is proportional to the inpui(t) = €. This
term is called thg@ure exponential responsk the initial state is chosen as

x(0) = (sl — A)7!B,

then the output consists of only the pure exponential respamd both the state



8.2. DERIVATION OF THE TRANSFER FUNCTION 235

and the output are proportional to the input:
x(t) = (sl — A)7IBet = (s| — A 1Bu(t),
y(t) = (C(sl — A™'B+ D)e*' = (C(sl — A)'B + D)u(t).

This is also the output we see in steady state, when the trassigpresented by
the first term in equatior8(3) have died out. The map from the input to the output,

Gyu(s) = C(sl — A'B+ D, (8.4)

is thetransfer functiorfrom u to y for the system§g.2), and we can writg/(t) =
Gyu(s)u(t) for the case thati(t) = €. Compare with the definition of frequency
response given by equatioB.24).

An important point in the derivation of the transfer functics the fact that
we have restricted so thats # 1;(A), the eigenvalues of. At those values of
S, we see that the response of the system is singular (sihee A will fail to
be invertible). Ifs = 4;(A), the response of the system to the exponential input
u=eilisy = p(t)et, wherep(t) is a polynomial of degree less than or equal
to the multiplicity of the eigenvalug; (see Exercis&.2).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whase space dynamics
were studied in Sectio8.3:

dX_ 0 wo 0 _
Fri [—a)o —2(@0] X + [kwo] u, y = [1 0] X. (8.5)

This system is stable f > 0, and so we can look at the steady-state response to
an inputu = e,

-1
Gyu(9) =C(s1 ~ A'B= [1 0] [50 sjgfwo] [kgO]

_ 1 S+ 2fwy —wo 0
- [1 0] (Sz—i-ZCwos—I-wS [ @0 S ]) [ka’o] 69

kwg
%+ 2(60034-0)8'

To compute the steady-state response to a step functiorgetwe=s0 and we see
that

If we wish to compute the steady-state response to a sinugeidrite
. 1. -
u = sinot = > (et —ie'h),

y = % (iGyu(—iw)e ™ —iGy(iw)e™).
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We can now writeG (i ) in terms of its magnitude and phase,
kw(% — Mé?

2 + 20 woS + w§ ’

where the magnitude (or gaily) and phasé are given by

Gliw) =

ka3 sind  —2¢wow
’ - 2 _ 2"
J @ — 0?2+ Qoo O @

We can also make use of the fact tiat—i ) is given by its complex conjugate
G*(iw), and it follows thatG (—iw) = Me™'?. Substituting these expressions into
our output equation, we obtain

M =

y = % (l (Me—ib')e—iwt _ i(MeiH)eia)t)

1. L .
- M > (I e i@t+0) _ jgi (wt+0)) = M sin(wt + 6).

The responses to other signals can be computed by writingnthe as an appro-
priate combination of exponential responses and usingiitye \%

Coordinate Changes

The matricesA, B andC in equation 8.2) depend on the choice of coordinate
system for the states. Since the transfer function relafes o outputs, it should
be invariant to coordinate changes in the state space. W ghs, consider the
model 8.2) and introduce new coordinate$y the transformatior = T x, where

T is a nonsingular matrix. The system is then described by

dz ~ =
g = T(Ax+Bu) = TAT'z4+ TBu=: Az+ Bu,

y=Cx+Du=CT*z+ Du=:Cz+ Du.

This system has the same form as equat&B)( but the matrice®\, B andC are

different: _ . _
A=TATY, B=TB, C=cCTL. (8.7)

Computing the transfer function of the transformed model get
Gi)=C(sl—AB+D=CT }sI-TATHTB+D
—C(TXsI —=TATHT) "B+ D =C(sl - A'B+ D = G(s),

which is identical to the transfer functioB.é) computed from the system descrip-
tion (8.2). The transfer function is thus invariant to changes of thedimates in
the state space.

Another property of the transfer function is that it corresgs to the portion of th
state space dynamics that is both reachable and observgbéeticular, if we make
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use of the Kalman decomposition (Sectitb), then the transfer function depends
only on the dynamics in the reachable and observable sub3pac¢Exercises.?).

Transfer Functions for Linear Systems

Consider a linear input/output system described by therotbed differential equa-
tion

d"y dn-ly d™u dm™1y

+---+any=bodtm +b1dtm_l

whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Secthg bicycle dynamics and AFM mod-
eling are two specific examples. Note that here we have gérextadur previous
system description to allow both the input and its derivegtito appear.

To determine the transfer function of the systén8), let the input bei(t) = e
Since the system is linear, there is an output of the systetistalso an exponential
functiony(t) = yoe®'. Inserting the signals into equatio.8), we find
n—1

44 bgu,  (8.8)

(" +as" ™t + - 4 an)yoe™ = (bos™ + bys™ - - + byy)e®,

and the response of the system can be completely describi@lpolynomials
as) =s"+as" M 4 +an, b(s) = bos™ + bys™ L + - - . + by
(8.9)

The polynomiak(s) is the characteristic polynomial of the ordinary diffeliaht
equation. Ifa(s) # 0, it follows that

b(s)
St st
y(t) = yoe a)° (8.10)
The transfer function of the syster@.8) is thus the rational function
b(s)
G(s) = — 8.11
® =3¢ (811)

where the polynomiala(s) andb(s) are given by equatiorB(9). Notice that the
transfer function for the systen8.g) can be obtained by inspection since the co-
efficients ofa(s) andb(s) are precisely the coefficients of the derivativesi@nd

y. Theorder of the transfer function is defined as the order of the dencimina
polynomial.

Equations 8.8—(8.11) can be used to compute the transfer functions of many
simple ordinary differential equations. TalBel gives some of the more com-
mon forms. The first five of these follow directly from the anatyabove. For the
proportional-integral-derivative (PID) controller, we keause of the fact that the
integral of an exponential input is given 10y/s)e.

The lastentry in Tabl8.1is for a pure time delay, in which the output s identical
tothe input atan earliertime. Time delays appear in mangsys. typical examples
are delays in nerve propagation, communication and massgoat. A system with
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Table 8.1: Transfer functions for some common ordinary differential equations

Type ODE Transfer Function
. 1
Integrator y=u 5
Differentiator y=u S
1
First-order system y+ay=u —
Y y+ay sta

. N 1

Double integrator ¥ =u ~
1

Damped oscillator y 2y=u ——
p Y+ 2L woy + w5y P+ 205 + 2

. ki
PID controller y=kpou+kgu+k [u Kky+ksS+ g'

Time delay y(t) =ut — 1) e s

a time delay has the input/output relation
y(t) = u(t — 7). (8.12)

As before, let the input be(t) = €. Assuming that there is an output of the form
y(t) = yoe® and inserting into equatior8(12, we get

y(t) — yoest — s(t—7) — e—STeSt — e—STu(t)'

The transfer function of a time delay is thGgs) = =57, which is not a rational
function but is analytic except atinfinity. (A complex furariisanalyticin a region
if it has no singularities in the region.)

Example 8.2 Electrical circuit elements
Modeling of electrical circuits is a common use of transtardtions. Consider, for
example, a resistor modeled by Ohm’s I&w= | R, whereV is the voltage across
the resister] is the current through the resistor aRds the resistance value. If
we consider current to be the input and voltage to be the guiipel resistor has
the transfer functiorZ(s) = R. Z(s) is also called thémpedanceof the circuit
element.

Next we consider an inductor whose input/output charastieris given by

L—=V.
dt
Letting the current bé (t) = €, we find that the voltage ¥ (t) = Lse* and the
transfer function of an inductor is thugs) = Ls. A capacitor is characterized by

dv
C—=1I
dt ’
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Figure 8.3: Stable amplifier based on negative feedback around an operatiopiifi@nirhe
block diagram on the left shows a typical amplifier with low-frequency d&ifR;. If we
model the dynamic response of the op amisds) = ak/(s + a), then the gain falls off at
frequencyw = aRk/R,, as shown in the gain curves on the right. The frequency response
is computed fok = 107, a = 10 rad/s,R, =10° Q, andR; = 1, 1%, 10* and 16 Q.

and a similar analysis gives a transfer function from curtermvoltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuita t& analyzed alge-
braically by using the complex impedan£és) just as one would use the resistance
value in a resistor network. \%

Example 8.3 Operational amplifier circuit
To further illustrate the use of exponential signals, wesider the operational
amplifier circuit introduced in SectioB.3 and reproduced in Figur®.3a The
model introduced in Sectidh3is a simplification because the linear behavior of the
amplifier was modeled as a constant gain. In reality thereignéfisant dynamics
in the amplifier, and the static modgl,; = —ko (equation 8.10) should therefore
be replaced by a dynamic model. In the linear range of theifigrplve can model
the operational amplifier as having a steady-state frequesponse
Dout ak .

s~ Tsyra— G(s). (8.13)
This response corresponds to a first-order system with timstaonla. The
parametek is called theopen loop gainand the producak is called thegain-
bandwidth producttypical values for these parameters lare 10’ andak = 10"
10° rad/s.

Since all of the elements of the circuit are modeled as beiaal if we drive
the inputo, with an exponential signa®!, then in steady state all signals will be
exponentials of the same form. This allows us to manipula&edtjuations describing
the system in an algebraic fashion. Hence we can write

1 — 0D L — U2
R - R and v, = —G(S)v, (8.14)
using the factthat the currentinto the ampilifier is very spaalive did in SectioB.3.
Eliminatingo between these equations gives the following transfer fondf the
system

v2 —RzG(S) . —Ryak
v1 R+ R+ RG(E) Rak+ (Ri+R)(s+a)
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The low-frequency gain is obtained by settig: 0, hence

—kR . R
(k+l)R1—|— R, Rl’
which is the result given by3(11) in Section3.3. The bandwidth of the amplifier

circuit is _aRl(k+1)+ R, %aR_lk
Ri+ Ry Ry’

where the approximation holds f&/R; > 1. The gain of the closed loop system
drops off at high frequencies &k/(w(R; + Ry)). The frequency response of the
transfer function is shown in Figu&3bfor k = 107, a = 10 rad/s,R, = 10° Q
andR; = 1, 1%, 10* and 16 Q.

Note that in solving this example, we bypassed explicitlitimg the signals as
v = voe® and instead worked directly with assuming it was an exponential. This
shortcut is handy in solving problems of this sort and whemimaating block
diagrams. A comparison with Secti&3, where we made the same calculation
whenG(s) was a constant, shows analysis of systems using transfetidoa is
as easy as using static systems. The calculations are thefdhmeesistancef;
and R, are replaced by impedances, as discussed in Exariple \%

Gl)zl)l (O) =

Although we have focused thus far on ordinary differentiplaions, transfer func@
tions can also be used for other types of linear systems. Mér#te this via an
example of a transfer function for a partial differentiabiation.

Example 8.4 Heat propagation

Consider the problem of one-dimensional heat propagatiarsemi-infinite metal
rod. Assume that the input is the temperature at one end anthi output is the
temperature at a point along the rod. B¢k, t) be the temperature at position
and timet. With a proper choice of length scales and units, heat praiayis

described by the partial differential equation

00 %0

ot a2’
and the point of interest can be assumed to have 1. The boundary condition
for the partial differential equation is

0(0,1) = u(t).

To determine the transfer function we choose the input(Bis= €%'. Assume that
there is a solution to the partial differential equationtaf formé (x, t) = w (x)e™
and insert this into equatio®(15 to obtain

d?y

dx2’
with boundary conditiony (0) = 1. This ordinary differential equation (with inde-

(8.15)

sy (X) =
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pendent variabl&) has the solution
w(X) = AdYS 4 Be™XV5,
Matching the boundary conditions givés= 0 andB = 1, so the solution is
y(t) =0(Lt) = y(1)est = e V3t = e VSu(t).

The system thus has the transfer funct®¢s) = e v5. As in the case of a time
delay, the transfer function is not a rational function Isuam analytic function. V

Gains, Poles and Zeros

The transfer function has many useful interpretations aadgatures of a transfer
function are often associated with important system ptigeerThree of the most
important features are the gain and the locations of thesaid zeros.

Thezero frequency gaionf a system is given by the magnitude of the transfer
function ats = 0. It represents the ratio of the steady-state value of thguowith
respect to a step input (which can be represented-a€® with s = 0). For a state
space system, we computed the zero frequency gain in equatzf):

G(0)=D-CA!B.
For a system written as a linear differential equation

d"y dn-ly dMu dm™1y
R AT —b b

g TGt T Y = dogm T g

if we assume that the input and output of the system are aussipandug, then

we find thata,yo = bmug. Hence the zero frequency gain is

Yo _ bn

Up @

Next consider a linear system with the rational transfectiam

b(s)
—ae)’
The roots of the polynomial(s) are called thgolesof the system, and the roots
of b(s) are called theerosof the system. Ifp is a pole, it follows that/(t) = e
is a solution of equation8(8) with u = 0 (the homogeneous solution). A pagte
corresponds to eodeof the system with corresponding modal solutaht. The
unforced motion of the system after an arbitrary excitat®a weighted sum of
modes.

Zeros have a different interpretation. Since the pure expga@ientput corre-
sponding to the inputi(t) = €' with a(s) # 0 is G(s)e®, it follows that the pure
exponential output is zero bi(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.

For a state space system with transfer func@gs) = C(s| — A)"'B+ D, the
poles of the transfer function are the eigenvalues of theixnatin the state space

+..'+bmu’

G(0) = (8.16)

G(s)
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Figure 8.4: A pole zero diagram for a transfer function with zeros-&tand—1 and poles at
—3and—2+2j. The circles represent the locations of the zeros, and the crossesdtiers
of the poles. A complete characterization requires we also specify thefjdia system.

model. One easy way to see this is to notice that the valie(sf is unbounded
whens is an eigenvalue of a system since this is precisely the geiafs where
the characteristic polynomial(s) = det(s| — A) = 0 (and hencesl — Ais
noninvertible). It follows that the poles of a state spacsesy depend only on the
matrix A, which represents the intrinsic dynamics of the system. ®yetlkat a
transfer function is stable if all of its poles have negateal part.

To find the zeros of a state space system, we observe that tieearercomplex
numberss such that the inputi(t) = uge’ gives zero output. Inserting the pure
exponential responset) = xge’' andy(t) = 0 in equation 8.2) gives

se€%y = Axoe® + Buge® 0 = Ce'%y + Destug,
which can be written as

A-sl B] [x] .t
"™ 8] [i]er=o

This equation has a solution with nonzeg) up only if the matrix on the left does
not have full rank. The zeros are thus the valsisgch that the matrix

A—-sl B
B -

loses rank.

Since the zeros depend @y B, C and D, they therefore depend on how the
inputs and outputs are coupled to the states. Notice incpdati that if the matrix
B has full row rank, then the matrix in equatid®.17) hasn linearly independent
rows for all values o&. Similarly there aren linearly independent columns if the
matrix C has full column rank. This implies that systems where theim&ror C
is square and full rank do not have zeros. In particular itmsdghat a system has
no zeros if it is fully actuated (each state can be contrafiddpendently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfertfands through
apole zero diagramas shown in Figur&.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are matjpbles or zeros at
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(a) Cart—pendulum system (c) Pole zero diagram far ¢

Figure 8.5: Poles and zeros for a balance system. The balance system (a) caékedn
around its vertical equilibrium point by a fourth order linear system. Tdiegpand zeros for
the transfer functionslyr andH,¢ are shown in (b) and (c), respectively.

a fixed location, these are often indicated with overlappirmg®es or circles (or
other annotations). Poles in the left half-plane correspgoratable modes of the
system, and poles in the right half-plane correspond toalestmodes. We thus
call a pole in the left-half plane stable poleand a pole in the right-half plane an
unstable poleA similar terminology is used for zeros, even though thegeto
not directly relate to stability or instability of the syateNotice that the gain must
also be given to have a complete description of the trangfeation.

Example 8.5 Balance system

Consider the dynamics for a balance system, shown in F&yBré&he transfer func-
tion for a balance system can be derived directly from thesg®rder equations,
given in Example.1:

d?p d?0 dp . do. 2
Mi—— — ml— — I —) " =F
tge ~ Mg cosd +egr +m sme(dt) :

d?p d?6 _ .
—mIcos@W + JIW —mglsing +y6 = 0.

If we assume that andé are small, we can approximate this nonlinear system by
a set of linear second-order differential equations,

d?p d%9 ~ dp

M— —ml— +c— = F
gz~ Mae T Ca ’

d2p  _d2%  do
—ml— + J— 47— —mglp = 0.
m dt2+JIdt2+ydt mglo =0
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If we let F be an exponential signal, the resulting response satisfies
Ms?> p —mls?0 +cs p= F,
3s?0 —mls’ p+ysf —mgld =0,

where all signals are exponential signals. The resultingsfea functions for the
position of the cart and the orientation of the pendulum arergby solving forp
andé in terms ofF to obtain

mls
Hyr = ,
7T (M —mA2)s3 + (7 My + c)s? + (¢y — Mimgl)s — mglc
Js? 4+ ys—mgl

- (M gy — m22)s? + (y My + ¢ J)s® + (cy — Mymgl)s2 — mglcs’

where each of the coefficients is positive. The pole zero diagr®r these two
transfer functions are shown in FiguB& using the parameters from Examplé.
If we assume the damping is small andset 0 andy = 0, we obtain

ml
Hop =
oF (M{Jy — m212)s2 — M¢mgl’
s> — mgl

Hor = .
PF (Mg — m212)s? — Mimg)
This gives nonzero poles and zeros at

| mglM /mgl
P Mg — m?|2 %8 2 J 09

We see that these are quite close to the pole and zero losatidilgure8.5. V

8.3 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions p@waerful way to
represent control systems. Transfer functions relatifigreint signals in the system
can be derived by purely algebraic manipulations of thesfiexnfunctions of the
blocks usingolock diagram algebraTo show how this can be done, we will begin
with simple combinations of systems.

Consider a system that is a cascade combination of systetinghei transfer
functionsG;(s) andG,(s), as shown in Figur®@.6a Let the input of the system
beu = €. The pure exponential output of the first block is the expoésignal
G1u, which is also the input to the second system. The pure expiahentput of

the second system is
y = G2(G1u) = (G2Ga)u.

The transfer function of the series connection is tBus: G,Gy, i.e., the product
of the transfer functions. The order of the individual tramdtinctions is due to
the fact that we place the input signal on the right-hand efdilis expression,
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G
u y u y u € y
G G, = =) G,
G2
-G,
(@) Gyy = G,G; (b) Gyu = G1 + G2 (©) Gyu = G
146G,

Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) antbéekdc) con-
nections are shown. The transfer functions for the composite systembecderived by
algebraic manipulations assuming exponential functions for all signals.

hence we first multiply by, and then byG,. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typicalixetibe signal flow
from left to right, so one needs to be careful. The orderingartant if eitheiG,
or G; is a vector-valued transfer function, as we shall see in saxaeples.
Consider next a parallel connection of systems with thestearfunctionsG;
andG,, as shown in Figur8.6h Lettingu = €' be the input to the system, the
pure exponential output of the first system is thygn= G,u and the output of the
second system ig = G,u. The pure exponential output of the parallel connection

is thus
y =Giu+ Gou = (G1 + Gy)u,

and the transfer function for a parallel connectiois= G; + G».

Finally, consider a feedback connection of systems withriduesfer functions
G1 andG,, as shown in Figur8.6¢ Letu = €°' be the input to the systemy,be
the pure exponential output, ardbe the pure exponential part of the intermediate
signal given by the sum afand the output of the second block. Writing the relations
for the different blocks and the summation unit, we find

y = Gi6, e=u—Gyy.

Elimination ofe gives

G:
=Giu-G 1+ G1Gy)y =Gy = ——U.
y 1( 2y) = (14 G1Gyy i =y 17 GG,
The transfer function of the feedback connection is thus
G,
G=——F—.
1+ G.Gy

These three basic interconnections can be used as the basisrfputing transfer
functions for more complicated systems.
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Figure 8.7: Block diagram of a feedback system. The inputs to the system are therrede
signalr, the process disturbandeand the measurement noiseThe remaining signals in
the system can all be chosen as possible outputs, and transfer furtetiobs used to relate
the system inputs to the other labeled signals.

Control System Transfer Functions

Consider the system in Figu8e7, which was given at the beginning of the chapter.
The system has three blocks representing a proPess feedback controlle€
and a feedforward controlldf. TogetherC andF define thecontrol lawfor the
system. There are three external signals: the referenceifamand signaly, the
load disturbance and the measurement noiseA typical problem is to find out
how the erroie is related to the signals d andn.

To derive the relevant transfer functions we assume thatigtials are expo-
nential signals, drop the arguments of signals and trafisfetions and trace the
signals around the loop. We begin with the signal in which vedaterested, in this
case the control errag, given by

e=Fr—y.
The signaly is the sum oh andy, wherey is the output of the process:
y=n+rn, n = P(d+u, u=_Ce
Combining these equations gives
e=Fr—y=Fr—(n+n)=Fr—(n+Pd+u)
=Fr — (n+ P(d +Ce),
and hence
e=Fr—-n—-Pd-PCe
Finally, solving this equation fog gives
F 1 P
e= r— n—
1+ PC 1+ PC 1+ PC

and the error is thus the sum of three terms, depending oreteesncer, the
measurement noiseand the load disturbanck The functions

F -1 -P
Ger = ——, Gen=——, Geq =
T 11 PC T 1rPC “=17PC
are transfer functions from referencenoisen and disturbancd to the errore.

d = Gerr + Genn + Gedd, (818)

(8.19)
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Figure 8.8: Example of block diagram algebra. The results from multiplying the poaed
controller transfer functions (from FiguBe7) are shown in (a). Replacing the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the temgining
blocks gives the reference to output representation in (c).

We can also derive transfer functions by manipulating tleelodiagrams di-
rectly, asillustrated in Figur@.8. Suppose we wish to compute the transfer function
between the referenceand the outpuy. We begin by combining the process and
controller blocks in Figurd.7 to obtain the diagram in Figui&8a. We can now
eliminate the feedback loop using the algebra for a feedlvaekconnection (Fig-
ure 8.8b) and then use the series interconnection rule to obtain

PCF
14 pPC
Similar manipulations can be used to obtain the other trarfafections (Exer-
cise8.8).

The derivation illustrates an effective way to manipulateegquations to obtain
the relations between inputs and outputs in a feedbackray3tee general idea is
to start with the signal of interest and to trace signalsiaddbe feedback loop until
coming back to the signal we started with. With some practcgiations §.18
and 8.19 can be written directly by inspection of the block diagravetice, for
example, that all terms in equatio®.{9 have the same denominators and that the
numerators are the blocks that one passes through when djoé&ugjy from input
to output (ignoring the feedback). This type of rule can beldise&ompute transfer
functions by inspection, although for systems with muéifdedback loops it can
be tricky to compute them without writing down the algebraleitly.

(8.20)

Example 8.6 Vehicle steering

Consider the linearized model for vehicle steering inticetlin Examplés.12 In
Examples6.4 and 7.3 we designed a state feedback compensator and state esti-
mator for the system. A block diagram for the resulting colnglystem is given in
Figure8.9. Note that we have split the estimator into two componeBjg(s) and
Gyy(s), corresponding to its inputsandy. The controller can be described as the
sum of two (open loop) transfer functions

u= Guy(s)y + Gur(9)r.

The first transfer functionG,y(s), describes the feedback term and the second,
Gur (), describes the feedforward term. We call thepen looptransfer functions
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Figure 8.9: Block diagram for a steering control system. The control system is wiesitp
maintain the lateral position of the vehicle along a reference curve (Iéf¢) sfructure of the
control system is shown on the right as a block diagram of transfetifunsc The estimator
consists of two components that compute the estimatedssfaben the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commandethgtaagleu.

because they represent the relationships between thdssigitlhout considering
the dynamics of the process (e.g., removii@) from the system description). To
derive these functions, we compute the transfer functiongdch block and then
use block diagram algebra.

We begin with the estimator, which takasandy as its inputs and produces
an estimatX. The dynamics for this process were derived in Exanipdand are
given by

% = (A—LC)X + Ly + Bu,
%= (sl —(A—LC)) 'Bu+ (sl —(A—LC))'Ly.

Gsu Gsy

Using the expressions f@k, B, C andL from Example7.3, we obtain

yS-l-l |1S—|—|2
SZ+|1S+|2 Sz+|1S+|2
Gsu(s) = , Ggy(s) = ,
S+|1—y|2 |2$
241541, 24+ 1is+1o

wherel; andl, are the observer gains anpdis the scaled position of the center
of mass from the rear wheels. The controller was a state fekdtmmpensator,
which can be viewed as a constant, multi-input, single-autt@nsfer function of
the formu = —KX.

We can now proceed to compute the transfer function for trezadlvcontrol
system. Using block diagram algebra, we have

—KGgy(s) s(kil1 + kal2) + kil2

Guy(s) = =—
uy() 1+ KGgu(s) 2+ s(yky + ko +17) + kg + 1o + kol — y kol
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and

kr _ ki (s* + 115 +12)
1+ KGygu(s) 24 s(yky + ko +11) + kg + 15 + kol — Kolo’
wherek; andk; are the state feedback gains dnds the reference gain.

Finally, we compute the full closed loop dynamics. We begirdbyiving the
transfer function for the proce$(s). We can compute this directly from the state
space description of the dynamics, which was given in Exasd2 Using that
description, we have

Gur(s) =

ys+1
sz

-1
P(9) = Gyu(s) = C(s1 —A)*B+D = [1 0 [(5) _31] [Vll _

The transfer function for the full closed loop system betwtwmninputr and the
outputy is then given by
_ P(s)Gyr . k(ys+1)

1-P(O)Guy(s) s+ (kiy +ka)s+ki
Note that the observer gaihsandl, do not appear in this equation. This is because
we are considering steady-state analysis and, in steatdy sta estimated state

exactly tracks the state of the system assuming perfect Isidde will return to
this example in Chapter2 to study the robustness of this particular approachi.

Gyr

Pole/Zero Cancellations

Because transfer functions are often polynomials,iit can sometimes happen
that the numerator and denominator have a common factochvelain be canceled.
Sometimes these cancellations are simply algebraic singildits, but in other
situations they can mask potential fragilities in the moltgbarticular, if a pole/zero
cancellation occurs because terms in separate blockastdigppen to coincide,
the cancellation may not occur if one of the systems is diigigrturbed. In some
situations this can result in severe differences betweemxpected behavior and
the actual behavior.

To illustrate when we can have pole/zero cancellationssiden the block dia-
gram in Figure8.7with F = 1 (no feedforward compensation) aBcand P given

by

Nc(s) Np(s)
C(s) = , P(s) = ——.
=2 9740
The transfer function from to e is then given by
1 dc(s)dp(s
Curls) = (9)dp(9)

1+ PC~ de(5)dp(s) + Ne()Np(S)°

If there are common factors in the numerator and denomimatignomials, then
these terms can be factored out and eliminated from bothuheerator and de-
nominator. For example, if the controller has a zers at —a and the process has
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a pole ats = —a, then we will have
(s + a)dc(s)dy,(s) _ de(s)di(s)
(s+ a)do(8)d(s) + (S+aNLS)NR(S)  de(9)d(S) + Ny(S)Np(S)’

whereng(s) and dy(s) represent the relevant polynomials with the tesm- a
factored out. In the case when < 0 (so that the zero or pole is in the right
half-plane), we see that there is no impact on the transfeatiion Ge, .

Suppose instead that we compute the transfer functiondrtme, which repre-
sents the effect of a disturbance on the error between theerefe and the output.
This transfer function is given by

Ger(S) =

de(S)Np(s)
(s + @)de(s)d(S) + (S + a)ng(S)np(s)”

Notice thatifa < 0, then the pole is in the right half-plane and the transfecfion
Geq is unstable Hence, even though the transfer function froto e appears to be
okay (assuming a perfect pole/zero cancellation), thesteairiunction fromd to e
can exhibit unbounded behavior. This unwanted behaviopis#&y of anunstable
pole/zero cancellatian

It turns out that the cancellation of a pole with a zero can hsunderstood in
terms of the state space representation of the systemsh&tmbity or observability
is lost when there are cancellations of poles and zeros (Eesf8cll). A conse-
guence is that the transfer function represents the dyrsaomly in the reachable
and observable subspace of a system (see Setthn

Ged(S) ==

Example 8.7 Cruise control

The input/output response from throttle to velocity for thmeérized model for a
car has the transfer functi@(s) = b/(s—a),a < 0. Asimple (but not necessarily
good) way to design a PI controller is to choose the parameteing PI controller
so that the controller zero at= —k; /K, cancels the process polesat= a. The
transfer function from reference to velocity®s, (s) = bk,/(s+bk;), and control
design is simply a matter of choosing the ginThe closed loop system dynamics
are of first order with the time constantiiky,.

Figure8.10shows the velocity error when the car encounters an inciedbe
road slope. A comparison with the controller used in Figu&b (reproduced in
dashed curves) shows that the controller based on poletaacellation has very
poor performance. The velocity error is larger, and it takiesg time to settle.

Notice that the control signal remains practically constdtert = 15 even if
the error is large after that time. To understand what happenwill analyze the
system. The parameters of the systemare —0.0101 andb = 1.32, and the
controller parameters akg = 0.5 andk; = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5 s, and we would expect that the error would settle in abhOws
(4 time constants). The transfer functions from road slopestocity and control
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocityr ésro
shown on the left and the throttle is shown on the right. Results with a Pl comtvatle
kp = 0.5 andk = 0.0051, where the process pale= —0.0101, is shown by solid lines, and
a controller withk, = 0.5 andk; = 0.5 is shown by dashed lines. Compare with Figu@h

signals are
bgs bky
(s—a)(s+ bkp)’ s+ bk,
Notice that the canceled mode= a = —0.0101 appears i,y but not inGy.
The reason why the control signal remains constant is thaiahgoller has a zero

ats = —0.0101, which cancels the slowly decaying process mode. dlttiat the
error would diverge if the canceled pole was unstable. \%

Gua(s) =

GUH(S) =

The lesson we can learn from this example is that it is a bad tioldgy to
cancel unstable or slow process poles. A more detailed sh#mu of pole/zero
cancellations is given in Sectidi?.4.

Algebraic Loops

When analyzing or simulating a system described by a bladgdin, itis necessary
to form the differential equations that describe the congmgstem. In many cases
the equations can be obtained by combining the differeatjahtions that describe
each subsystem and substituting variables. This simpleegtoe cannot be used
when there are closed loops of subsystems that all haved dinenection between
inputs and outputs, known as algebraic loop

To see what can happen, consider a system with two blockst-affttsr non-

linear system,
dx

a = f(X, U), y= h(X),

and a proportional controller described by= —ky. There is no direct term since
the functionh does not depend an In that case we can obtain the equation for the
closed loop system simply by replacindy —ky in (8.21) to give

(8.21)

=ty y=hoo

Such a procedure can easily be automated using simple fonmangulation.
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The situation is more complicated if there is a direct terny. # h(x, u), then
replacingu by —ky gives

dx
a = f(Xa _ky)a y = h(Xa _ky)

To obtain a differential equation fog, the algebraic equation= h(x, —ky) must
be solved to givey = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to sajebiic equations
to obtain the differential equations for the complete systResolving algebraic
loops is a nontrivial problem because it requires the syilsolution of algebraic
equations. Most block diagram-oriented modeling langsamggnot handle alge-
braic loops, and they simply give a diagnosis that such leopgresent. In the era
of analog computing, algebraic loops were eliminated byuhicing fast dynamics
between the loops. This created differential equationsfaghand slow modes that
are difficult to solve numerically. Advanced modeling langesilike Modelica use
several sophisticated methods to resolve algebraic loops.

8.4 The Bode Plot

The frequency response of a linear system can be computedtftransfer func-
tion by settings = i w, corresponding to a complex exponential

u(t) = € = cogwt) +i sin(wt).
The resulting output has the form
y(t) = G(iw)e® = M@+ = M cogwt + ¢) + iM sin(wt + ¢),
whereM andgy are the gain and phase Gf

. Im G(i )
M = |G(|Cl))|, Q0 = arctar‘m.
The phase 06 is also called thargumenbf G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single simids(sin or cos) is
amplified byM and phase-shifted hy. Note that—-z < ¢ < &, so the arctangent
must be taken respecting the signs of the numerator and deatam It will often
be convenient to represent the phase in degrees rathertians. We will use the
notationZG (i w) for the phase in degrees and &¢ ) for the phase in radians. In
addition, while we always take afg(i w) to be in the rangé—=, =], we will take
/G(iw) to be continuous, so that it can take on values outside tlgerafi-180°
to 180'.

The frequency respong&(i w) can thus be represented by two curves: the gain
curve and the phase curve. Tdn curvegives|G(i w)| as a function of frequency
w, and thephase curvgives/G(i w). One particularly useful way of drawing these
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Figure 8.11: Bode plot of the transfer functio@(s) = 20 + 10/s + 10s corresponding to
an ideal PID controller. The top plot is the gain curve and the bottom plot isithse curve.
The dashed lines show straight-line approximations of the gain curve amtiesponding
phase curve.

curves is to use a log/log scale for the gain plot and a logdlirscale for the phase
plot. This type of plot is called Bode plotand is shown in Figur8.11

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy &ickand interpret.
Since the frequency scale is logarithmic, they cover thedehaf a linear system
over a wide frequency range.

Consider a transfer function that is a rational functionhaf form

_ bi(s)ba(s)
Gle) = a1 (s)ax(s)’
We have
log|G(s)| = log|bi(s)| + log|b2(s)| — log|ai(s)| — log|ax(s)l,

and hence we can compute the gain curve by simply adding drichsting gains
corresponding to terms in the numerator and denominatoila8iyn

Z£G(s) = Zbu(s) + £ba(s) — Lau(s) — Lay(s),

and so the phase curve can be determined in an analogousfaShice a polyno-
mial can be written as a product of terms of the type

kK, s, s+a, S*+427wes+ wj,

it suffices to be able to sketch Bode diagrams for these ternesBblde plot of a
complex system is then obtained by adding the gains and plo&tiee terms.
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Figure 8.12: Bode plots of the transfer functior®(s) = s* fork = —2,-1,0,1,2. On a
log-log scale, the gain curve is a straight line with sl@pesing a log-linear scale, the phase
curves for the transfer functions are constants, with phase equal to 90

The simplest term in a transfer function is one of the fafinwherek > 0 if
the term appears in the numerator &né O if the term is in the denominator. The

gain and phase of the term are given by
log|G(iw)| = klogw, ZG(iw) = 90k.

The gain curve is thus a straight line with sldpend the phase curve is a constant

at 90 x k. The case whek = 1 corresponds to a differentiator and has slope 1 with

phase 90 The case whek = —1 corresponds to an integrator and has slefle

with phase-90°. Bode plots of the various powerslkfre shown in Figur8.12
Consider next the transfer function of a first-order systexgrgby

a
G(s) = —.
®) s+a
We have al
G(9)| = , /G(s) = L(a) — Z(s+ a),
IG(9)| S+ al () @ ( )
and hence

: 1 . 180
log|G(iw)| = loga — > log (0?4 a%), /G(iw)=—-—"— arctang.
T

The Bode plot is shown in Figu& 13a with the magnitude normalized by the zero
frequency gain. Both the gain curve and the phase curve capgreximated by
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Figure 8.13:Bode plots for first- and second-order systems. (a) The first-eyetemG(s) =

a/(s + a) can be approximated by asymptotic curves (dashed) in both the gain @nd th
frequency, with the breakpoint in the gain curvesat a and the phase decreasing by 90
over afactor of 100 in frequency. (b) The second-order sy&ésh = w?/(S? + 2; woS+ @)

has a peak at frequeneyand then a slope 6f2 beyond the peak; the phase decreases from
0° to —180°. The height of the peak and the rate of change of phase dependingadamtiping
ratio¢ (¢ = 0.02, 0.1, 0.2, 0.5 and 1.0 shown).

the following straight lines

log|G(iwm)| ~ [0

ifo<a
loga —logw if > a,

0 if o <a/10
/G(iw) ~ § —45—45(logw — loga) a/10 < w < 10a
-90 if o > 10a.

The approximate gain curve consists of a horizontal line ujpelguencyn = a,
called thebreakpointor corner frequencyafter which the curve is a line of slope
—1 (on a log-log scale). The phase curve is zero up to frequapt9 and then
decreases linearly by 4lecade up to frequency &0at which point it remains
constant at 90 Notice that a first-order system behaves like a constantofer |
frequencies and like an integrator for high frequencies)mare with the Bode plot

in Figure8.12

Finally, consider the transfer function for a second-orgstem,

G(s) =

3

S+ 200(S + ©F
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for which we have

. 1
log|G(iw)| = 2logwg — > log (0* + 2050 (20% — 1) + @),

/G(iw) = —@arctanszowz.
T a)o —
The gain curve has an asymptote with zero slopedfor wq. For large val-
ues ofw the gain curve has an asymptote with slep2. The largest gail) =
max, |G(iw)| &~ 1/(2), called theQ-value is obtained forw ~ wg. The phase
is zero for low frequencies and approaches®180 large frequencies. The curves
can be approximated with the following piecewise linearregpions

. 0 if
l0g|G(iw)| ~ P
2logwg — 2logw  if o > wo,

0 if o < g

/G(iw) ~
() [—180 if o > wg.

The Bode plot is shown in Figu&13h Note that the asymptotic approximation is
poor neakn = wo and that the Bode plot depends stronglyamear this frequency.

Given the Bode plots of the basic functions, we can now skistetirequency
response for a more general system. The following exampistifites the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) = k(s+ b) ’
(S+ a)(S2 + 2L woS + ®F)
The Bode plot for this transfer function appears in Fig8uk4 with the complete
transfer function shown as a solid line and the asymptofic@pmation shown as
a dashed line.
We begin with the gain curve. At low frequency, the magnitisdgiven by
kb

G0 = —.
© aw?

a<k b wo.

When we reaclw = a, the effect of the pole begins and the gain decreases with
slope—1. At w = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used tnatieffect of the
second-order pole is seen@t= wg, at which point the asymptote changes to slope
—2. We see that the gain curve is fairly accurate except inggmn of the peak
due to the second-order pole (since for this gagereasonably small).

The phase curve is more complicated since the effect of theepstmetches
out much further. The effect of the pole beginswat= a/10, at which point we
change from phase 0 to a slope -6fi5°/decade. The zero begins to affect the
phase atv = b/10, producing a flat section in the phase.cAt= 10a the phase
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for the
transfer functionG(s) = k(s + b)/(s + a)(s? + 27 woS + »3), wherea <« b < wo. Each
segment in the gain and phase curves represents a separate pothienapproximation,
where either a pole or a zero begins to have effect. Each segmentagpheximation is a
straight line between these points at a slope given by the rules for comphéreffects of
poles and zeros.

contributions from the pole end, and we are left with a sloped®°/decade (from
the zero). At the location of the second-order psle; i wp, we get a jump in phase

of —180. Finally, atw = 10b the phase contributions of the zero end, and we are
left with a phase 0of~180 degrees. We see that the straight-line approximation fo
the phase is not as accurate as it was for the gain curve,dngstcapture the basic
features of the phase changes as a function of frequency. \%

The Bode plot gives a quick overview of a system. Since any bicgna be
decomposed into a sum of sinusoids, it is possible to viseidhie behavior of a
system for different frequency ranges. The system can beedaw a filter that can
change the amplitude (and phase) of the input signals aogpta the frequency
response. For example, if there are frequency ranges whergain curve has
constant slope and the phase is close to zero, the actior afyftem for signals
with these frequencies can be interpreted as a pure gaina8ynior frequencies
where the slope is +1 and the phase close tg 8@ action of the system can be
interpreted as a differentiator, as shown in Fig8ire2

Three common types of frequency responses are shown in FigliseThe
system in Figure3.15ais called alow-pass filtetbecause the gain is constant for
low frequencies and drops for high frequencies. Notice tiafphase is zero for
low frequencies and-180 for high frequencies. The systems in Fig8t&5band
c are called @and-pass filteandhigh-pass filteifor similar reasons.

To illustrate how different system behaviors can be reachftioe Bode plots
we consider the band-pass filter in Fig&@& 5. For frequencies around = wy,
the signal is passed through with no change in gain. Howéwelirequencies well
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Figure 8.15: Bode plots for low-pass, band-pass and high-pass filters. The topapéothe
gain curves and the bottom plots are the phase curves. Each systess foagaencies in a
different range and attenuates frequencies outside of that range.

below or well abovayg, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frecjasibelowwg/100
there is a phase lead of 9@nd for frequencies above 1bBQthere is a phase lag

of 90°. These actions correspond to differentiation and integmadi the signal in

these frequency ranges.

Example 8.9 Transcriptional regulation

Consider a genetic circuit consisting of a single gene. Véhta study the response
of the protein concentration to fluctuations in the mRNA dyi@mWe consider
two cases: aonstitutive promotefno regulation) and self-repression (negative
feedback), illustrated in Figui@16 The dynamics of the system are given by

dm dp
H_a(p)_ym_uz a_ﬁm_épa

whereu is a disturbance term that affects mRNA transcription.
For the case of no feedback we hamg) = oo, and the system has an equi-
librium point atme = ag/y, Pe = fao/(0y ). The transfer function from to p is

given by 5
ol . B
C0® =i n6ETro

p
For the case of negative regulation, we have
a1

1+ kp"

a(p) = + ao,

and the equilibrium points satisfy

m 0 o N m 70
= — on = = — .
e ﬁpe, 1+kp2 0= 7IMe ﬂpe
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulatednégative feedback
(repressor). The frequency response for each circuit is shoya).in

The resulting transfer function is given by

p _ nogkp™?
(s+7)(s+6)+ po’ 7= (1+kpD)?’

Figure8.16cshows the frequency response for the two circuits. We se¢htba
feedback circuit attenuates the response of the systensturioiinces with low-
frequency content but slightly amplifies disturbances &t fiigquency (compared
to the open loop system). Notice that these curves are vaiiasito the frequency
response curves for the op amp shown in Figli&h \Y%

| (g) —
Gh,(s) =

Transfer Functions from Experiments

The transfer function of a system provides a summary of thetioptput response
and is very useful for analysis and design. However, moddiiom first principles
can be difficult and time-consuming. Fortunately, we candfigld an input/output
model for a given application by directly measuring the érelacy response and
fitting a transfer function to it. To do so, we perturb the infmuthe system using a
sinusoidal signal at a fixed frequency. When steady statachesl, the amplitude
ratio and the phase lag give the frequency response for titagan frequency. The
complete frequency response is obtained by sweeping oeerme of frequencies.

By using correlation techniques it is possible to deterntireefrequency re-
sponse very accurately, and an analytic transfer funcéonbe obtained from the
frequency response by curve fitting. The success of this apjproas led to in-
struments and software that automate this process, cgectrum analyzersVe
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope
Toillustrate the utility of spectrum analysis, we consitierdynamics of the atomic
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an afonue
microscope. The Bode plot shows the response of the measure@triamstion (solid) and
the fitted transfer function (dashed).

force microscope, introduced in SectiBrb. Experimental determination of the
frequency response is particularly attractive for thigeyysbecause its dynamics are
very fast and hence experiments can be done quickly. A tygi@mple is given in
Figure8.17, which shows an experimentally determined frequency mresp¢solid
line). In this case the frequency response was obtainegithan a second. The
transfer function

kw%w%wé(sz + 20018 + w%) (S? + 2044S + wi)e_ST
W25 (S? + 202025 + 3)(S? + 203w3S + @3)(S? + 25055 + wE)’

with wx = 27z fy and f; = 2.42 kHz,;1 = 0.03, f, = 2.55 kHz,i» = 0.03, f3 =

6.45 kHz,;3 = 0.042, f4 = 8.25 kHz,i4 = 0.025, fs = 9.3 kHz,(5 = 0.032,

r = 10~* s andk = 5, was fit to the data (dashed line). The frequencies associated
with the zeros are located where the gain curve has mininthtfenfrequencies
associated with the poles are located where the gain cus/bal maxima. The
relative damping ratios are adjusted to give a good fit to maxdnd minima. When

a good fitto the gain curve is obtained, the time delay is a€lst give a good fit to

the phase curve. The piezo drive is preloaded, and a simplelrabits dynamics is
derived in Exercis@®.7. The pole at 2.42 kHz corresponds to the trampoline mode
derived in the exercise; the other resonances are higheesnod

G(s) =

\%

Example 8.11 Pupillary light reflex dynamics

The human eye is an organ that is easily accessible for expetanit has a control

system that adjusts the pupil opening to regulate the liglkenisity at the retina.
This control system was explored extensively by Stark in th@039Sta68.

To determine the dynamics, light intensity on the eye wamdasinusoidally and

the pupil opening was measured. A fundamental difficulty & the closed loop



8.5. LAPLACE TRANSFORMS 261

@‘/@

(a) Closed loop (b) Open loop (c) High gain

Figure 8.18:Light stimulation of the eye. In (a) the light beam is so large that it alwayerso
the whole pupil, giving closed loop dynamics. In (b) the light is focusedanb@am which
is so narrow that it is not influenced by the pupil opening, giving opep thmamics. In (c)
the light beam is focused on the edge of the pupil opening, which hasféoe @fincreasing
the gain of the system since small changes in the pupil opening have aeféegeon the
amount of light entering the eye. From StaBt463.

system is insensitive to internal system parameters, slysasa@f a closed loop
system thus gives little information about the internalggndies of the system. Stark
used a clever experimental technique that allowed him testigate both open and
closed loop dynamics. He excited the system by varying tieasgity of a light beam
focused on the eye and measured pupil area, as illustraiédune8.18 By using

a wide light beam that covers the whole pupil, the measurégiees the closed
loop dynamics. The open loop dynamics were obtained by usimgraw beam,
which is small enough that it is not influenced by the pupil apgnThe result of
one experiment for determining open loop dynamics is gimdfigure8.19 Fitting

a transfer function to the gain curve gives a good fit@gs) = 0.17/(1+ 0.08s)3.
This curve gives a poor fit to the phase curve as shown by the dashee in
Figure8.19 The fit to the phase curve is improved by adding a time delayghvhi
leaves the gain curve unchanged while substantially mojfthe phase curve.
The final fit gives the model

0.17
G(s) = —0.2s
©) (14 0.08s)3
The Bode plot of this is shown with solid curves in Fig@&4&9 Modeling of the
pupillary reflex from first principles is discussed in detai[IK501]. \%

Notice that for both the AFM drive and pupillary dynamics itriet easy to
derive appropriate models from first principles. In practitis often fruitful to use
acombination of analytical modeling and experimental idieation of parameters.
Experimental determination of frequency response is léstitze for systems with
slow dynamics because the experiment takes a long time.

8.5 Laplace Transforms @

Transfer functions are conventionally introduced usinglaeg transforms, and in
this section we derive the transfer function using this falism. We assume basic
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Figure 8.19: Sample curves from an open loop frequency response of the et)eaftef a

Bode plot for the open loop dynamics (right). The solid curve showsdd fite data using a
third-order transfer function with time delay. The dashed curve in theeBdat is the phase
of the system without time delay, showing that the delay is needed to pragztyre the
phase. (Figure redrawn from the data of Sts8tab§.)

familiarity with Laplace transforms; students who are notifear with them can
safely skip this section. A good reference for the mathesahtnaterial in this
section is the classic book by Widdé&td41].

Traditionally, Laplace transforms were used to computeaeses of linear sys-
tems to different stimuli. Today we can easily generate #sponses using com-
puters. Only a few elementary properties are needed foc basirol applications.
There is, however, a beautiful theory for Laplace transfotmsnakes it possible
to use many powerful tools from the theory of functions of enptex variable to
get deep insights into the behavior of systems.

Consider a functiorf (t), f : Rt — R, that is integrable and grows no faster
thane™! for some finitesy € R and larget. The Laplace transform magsto a
functionF = Lf : C —» C of a complex variable. It is defined by

F(s) = /OOO e stf(t)dt, Res> . (8.22)

The transform has some properties that makes it well suitetbéd with linear

systems.
First we observe that the transform is linear because

L(@f +bg) = / e S'(af(t) + bg(t)) dt
* . (8.23)
= a/ e St (t)dt + b/ e S'gt)dt =aLf + bLg.
0 0

Next we calculate the Laplace transform of the derivative fofnetion. We have

df o0 00 o0
L— =/ e st f/(t)dt = e‘Stf(t)‘ + s/ e st f(t)dt = —f(0) + s,
dt 0 0 0
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where the second equality is obtained using integrationdsispWe thus obtain
df

La =sLf — f(0) =sF(s) — f(0). (8.24)

Thisformulais particularly simple if the initial conditisrare zero because it follows
that differentiation of a function corresponds to muligliion of the transform by
S.

Since differentiation corresponds to multiplication siywe can expect that
integration corresponds to division ByThis is true, as can be seen by calculating
the Laplace transform of an integral. Using integration btpave get

L/Otf(r)dr =/Ooo(e‘5t/0tf(r)dr)dt

g-st t 00 00 g—St 1 OO—ST
== /Of(z)dzjo +/0 - f(r)dr:;/o e f (¢) dr,

t 1 1
c/o fo)dr = ZLf = “F(s). (8.25)

hence

Next consider a linear time-invariant system with zeroiahistate. We saw in
Section5.3 that the relation between the inputand the outpuy is given by the
convolution integral

y(t) = /OOO ht — 1)u(o) dr.

whereh(t) is the impulse response for the system. Taking the Laplansftean of
this expression, we have

Y(S) = /Ooo e Sty(t)dt = /OOO e‘St/Ooo h(t — r)u(z) dz dt
00 t
:/ / e St=9e S h(t — r)u(r) dr dt
o Jo

= /OO e >u(r)dr /OO e Sth(t) dt = H(s)U(s).
0 0

Thus, the input/output response is givenYogs) = H(s)U (s), whereH, U and
Y are the Laplace transforms bf u andy. The system theoretic interpretation
is that the Laplace transform of the output of a linear systein product of two
terms, the Laplace transform of the inpuits) and the Laplace transform of the
impulse response of the syste(s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the tfamss of the functions
that are convolved. The fact that the formiés) = H(s)U (s) is much simpler
than a convolution is one reason why Laplace transforms hewerbe popular in
engineering.

We can also use the Laplace transform to derive the transifetifun for a state
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space system. Consider, for example, a linear state spatm@rsgescribed by

d
d—1(=Ax+Bu, y =Cx+ Du.

Taking Laplace transformsnder the assumption that all initial values are zero
gives
sX(s) = AX(s) + BU(s) Y(s) = CX(s) + DU(s).

Elimination of X(s) gives
Y(s) = (C(sl —AB+ D)U(s). (8.26)

The transfer function i§(s) = C(s| — A)"1B + D (compare with equatior(4)).

8.6 Further Reading

The idea of characterizing a linear system by its steadg-ségponse to sinusoids
was introduced by Fourier in his investigation of heat cantidun in solids Fou07.
Much later, it was used by the electrical engineer Steinmdia introduced the

i o method for analyzing electrical circuits. Transfer funos were introduced via
the Laplace transform by Gardner Barn&B§ 2, who also used them to calcu-
late the response of linear systems. The Laplace transfornvevgsmportant in
the early phase of control because it made it possible to farsients via tables
(see, e.g. JNP47). Combined with block diagrams, transfer functions andlaag
transforms provided powerful techniques for dealing witmplex systems. Cal-
culation of responses based on Laplace transforms is lesstiamp today, when
responses of linear systems can easily be generated usimguters. There are
many excellent books on the use of Laplace transforms andftnafunctions for
modeling and analysis of linear input/output systems. ifi@athl texts on control
such as PB04], [FPENOQ3 and [Oga0] are representative examples. Pole/zero
cancellation was one of the mysteries of early control thdbis clear that com-
mon factors can be canceled in a rational function, but detimss have system
theoretical consequences that were not clearly understoidkalman’s decom-
position of a linear system was introduc&HNG63]. In the following chapters, we
will use transfer functions extensively to analyze stépiéind to describe model
uncertainty.

Exercises

8.1 Let G(s) be the transfer function for a linear system. Show that if we ap
ply an inputu(t) = Asin(wt), then the steady-state output is given yo§) =
|G(iw)|Asin(wt + argG(iw)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)
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8.2 Consider the system

X—ax+u
dt ’

Compute the exponential response of the system and use thasive the transfer
function fromu to x. Show that whers = a, a pole of the transfer function, the
response to the exponential input) = e is x(t) = €'x(0) + te*.

8.3 (Inverted pendulum) A model for an inverted pendulum wasonhiced in
Example2.2 Neglecting damping and linearizing the pendulum arouediftright
position gives a linear system characterized by the matrice

0 1 0
A= [mgl/Jt 0], B = [1/Jt]’ c=[1 0], p=0
Determine the transfer function of the system.

8.4 (Solutions corresponding to poles and zeros) Consider ffegetitial equation

dny dn—ly dn—lu dn—2u
gin Tagmor T @y =i b 4+ bou,

(a) Let/ be aroot of the characteristic polynomial

+---+a,=0.

Show that ifu(t) = 0, the differential equation has the solutip(t) = e*'.
(b) Letx be a zero of the polynomial

Sn + a_:Lsn—l

b(s) = byS" 1 + bs" 2+ .- + b,

Show that if the input isu(t) = €, then there is a solution to the differential
equation that is identically zero.

8.5 (Operational amplifier) Consider the operational amplifi¢raduced in Sec-
tion 3.3and analyzed in Examp&3. A PI controller can be constructed using an
op amp by replacing the resistBp with a resistor and capacitor in series, as shown
in Figure3.10 The resulting transfer function of the circuit is given by

1 kCs
G(s) = - (R2 T c_) ' (((k + 1RC + RC)s+ 1)’

wherek is the gain of the op amR; andR; are the resistances in the compensation
network andC is the capacitance.

(a) Sketch the Bode plot for the system under the assumptadi ti R, > R;.
You should label the key features in your plot, including ¢iagn and phase at low
frequency, the slopes of the gain curve, the frequenciehethvihe gain changes
slope, etc.
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(b) Suppose now that we include some dynamics in the ampliBesudined in
Example 8.1. This would involve replacing the g&iwith the transfer function

H(s) =

Compute the resulting transfer function for the system, (ieplacek with H(s))
and find the poles and zeros assuming the following paramahees

—< =100 k=10, RC=1 T =001

(c) Sketch the Bode plot for the transfer function in part (b)ng straight line
approximations and compare this to the exact plot of thesfeairfunction (using
MATLAB). Make sure to label the important features in your plot

8.6(Transfer function for state space system) Consider tieafigtate space system

dx
— = AXx + Bu, =Cx.
at + y

Show that the transfer function is

_ bys" 4 bps" 24 by

G(s
® S"+as" -+

>

where

bj=CB, b;=CAB+a&CB, ..., by=CA"'B+a,CA"?B+---+a, 1CB
andi(s) = s" + a;s" 1 + - - - + @, is the characteristic polynomial fak.

8.7 (Kalman decomposition) Show that the transfer function ofssesm depend

only on the dynamics in the reachable and observable subsgabe Kalman
decomposition. (Hint: Consider the representation giveaduation 7.27).)

8.8 Using block diagram algebra, show that the transfer funstioomd to y and
ntoy in Figure8.7 are given by

P 1
YMTI1rPCc T 1xPC

8.9 (Bode plot for a simple zero) Show that the Bode plot for trangfinction
G(s) = (s+ a)/a can be approximated by

log|G(im)| ~ 0 '|fa)<a
logw —loga if w > a,
0 if o <a/10
/G(iw) ~ {45+ 45(logw — loga) a/10 < w < 10a
90 if o > 10a.
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8.10 (Vectored thrust aircraft) Consider the lateral dynamitca wectored thrust
aircraft as described in Examp®9. Show that the dynamics can be described
using the following block diagram:

r 0 % v 1
- — = —M ——
t Js? 9 ms + cs X

Use this block diagram to compute the transfer functionsiftg to ¢ andx and
show that they satisfy

r JS> —mgr
H9U1 = T 5> HXU]_ g

5 :
8.11 (Common poles) Consider a closed I]o%ggilzsfgr%s)of the form afrEig.7,
with F = 1 andP andC having a pole/zero cancellation. Show that if each syst
is written in state space form, the resulting closed loopesyss not reachable and
not observable.

8.12(Congestion control) Consider the congestion control rhadelscribed in Sec-
tion 3.4. Letw represent the individual window size for a setbidentical sources,

g represent the end-to-end probability of a dropped pabketpresent the number

of packets in the router’s buffer angl represent the probability that a packet is
dropped by the router. We write = Nw to represent the total number of packets
being received from alN sources. Show that the linearized model can be described
by the transfer functions

e s N
— Gpg(8) = —————,
eS+ e ! Oe(7eS + Qete)

where(we, be) is the equilibrium point for the system, is the steady-state round-
trip time andz is the forward propagation time.

Gpa(S) = Gpn(s) = p,

8.13(Inverted pendulum with PD control) Consider the normalireerted pen-
dulum system, whose transfer function is given Bys) = 1/(s?> — 1) (Exer-

cise8.3). A proportional-derivative control law for this systemsh@ansfer func-
tion C(s) = kp + Kgs (see TableB.1). Suppose that we choo§Xs) = a(s — 1).

Compute the closed loop dynamics and show that the systegoloastracking of
reference signals but does not have good disturbanceiogjgnbperties.

8.14(Vehicle suspensiorHB90]) Active and passive damping are used in cars to
give a smooth ride on a bumpy road. A schematic diagram of witha damping
system in shown in the figure below.
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(Porter Class | race car driven by Todd Cuffaro)

This model is called @uarter car modeland the car is approximated with two
masses, one representing one fourth of the car body and libe @twheel. The
actuator exerts a forceé between the wheel and the body based on feedback from
the distance between the body and the center of the wheeah{tieespacg.

Let xp, X, andx; represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by News equations for
the body and the wheel,

mbxb = F, mwxw =—-F+ kt(Xr - Xu))a

wherem, is a quarter of the body massy, is the effective mass of the wheel
including brakes and part of the suspension systemutiserung magsandk; is
the tire stiffness. For a conventional damper consisting sipring and a damper,
we haveF = k(x, — Xp) + c(X, — Xp). For an active damper the forde can
be more general and can also depend on riding conditiongr Ramfort can be
characterized by the transfer functiGg,, from road heighk, to body acceleration
a = Xp. Show that this transfer function has the propedy (iwi) = ki/mp,
wherew; = /k;/m,, (thetire hop frequency The equation implies that there are
fundamental limitations to the comfort that can be achievild any damper.

8.15(Vibration absorber) Damping vibrations is a common engjiimg problem.
A schematic diagram of a damper is shown below:

LF
=.

1
ol £, %
ny

B

s
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The disturbing vibration is a sinusoidal force acting on nragsand the damper
consists of the mass, and the sprind,. Show that the transfer function from
disturbance force to heightt of the massn; is

m252 + ko
MyMys* 4+ Mpci S8 + (Makz + Ma(ky + k2))S? + kaCis + kako |

How should the mass, and the stiffnes&, be chosen to eliminate a sinusoidal
oscillation with frequencysg. (More details are vibration absorbers is given in the
classic text by Den HartodJH85, pp. 87-93].)

GX1F =



Chapter Nine

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tedti ffossessed the
advantages which he had predicted for it. In particular, its gain was consteahigh degree,
and it was linear enough so that spurious signals caused by the interaafithe various
channels could be kept within permissible limits. For best results the fekdbetor 4 had
to be numerically much larger than unity. The possibility of stability with a feddbaztor
larger than unity was puzzling.

Harry Nyquist, “The Regeneration Theory,” 193%yjq56].

In this chapter we study how the stability and robustnes$osea loop systems
can be determined by investigating how sinusoidal signaiéfierent frequencies
propagate around the feedback loop. This technique allow® wsason about
the closed loop behavior of a system through the frequenoyadtoproperties of
the open loop transfer function. The Nyquist stability thesors a key result that
provides a way to analyze stability and introduce measurdegrees of stability.

9.1 The Loop Transfer Function

Determining the stability of systems interconnected bylfeek can be tricky be-
cause each system influences the other, leading to potgrdiadular reasoning.
Indeed, as the quote from Nyquist above illustrates, thawiehof feedback sys-
tems can often be puzzling. However, using the mathemditazakwork of transfer
functions provides an elegant way to reason about suchregstehich we calloop
analysis

The basic idea of loop analysis is to trace how a sinusoidabsjgropagates in
the feedback loop and explore the resulting stability byestigating if the prop-
agated signal grows or decays. This is easy to do becauseati@rission of
sinusoidal signals through a linear dynamical system isacitarized by the fre-
qguency response of the system. The key result is the Nyquaisilist theorem,
which provides a great deal of insight regarding the stghif a system. Unlike
proving stability with Lyapunov functions, studied in Chapd, the Nyquist crite-
rion allows us to determine more than just whether a systestalde or unstable.
It provides a measure of the degree of stability through tfenidion of stability
margins. The Nyquist theorem also indicates how an unstaiskers should be
changed to make it stable, which we shall study in detail iagérs10-12.

Considerthe systemin Figugela The traditional way to determine ifthe closed
loop system is stable is to investigate if the closed loopaittaristic polynomial
has all its roots in the left half-plane. If the process aradbntroller have rational
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Y

P(s) - = —= L

C(s)

—1 | —1] |-

@) (b)

Figure 9.1: The loop transfer function. The stability of the feedback system (a) ean b
determined by tracing signals around the loop. Letting: P C represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected atoiné A has the
same magnitude and phase when it reaches point B.

transfer functionsP(s) = np(s)/dp(s) andC(s) = n¢(s)/d:(s), then the closed
loop system has the transfer function

PC Np(S)nc(s)
1+ PC  dp(S)de(S) + Np(S)Ne(s)’
and the characteristic polynomial is
A(8) = dp(s)dc(S) + Np(S)Nc(S).

To check stability, we simply compute the roots of the chimmstic polynomial
and verify that they each have negative real part. This apprizastraightforward
but it gives little guidance for design: it is not easy to tediv the controller should
be modified to make an unstable system stable.

Nyquist's idea was to investigate conditions under whidtillzgions can occur
in a feedback loop. To study this, we introduce kbep transfer function ks) =
P(s)C(s), which is the transfer function obtained by breaking thelbeek loop,
as shown in Figur®.1h The loop transfer function is simply the transfer function
from the input at position A to the output at position B muigg by —1 (to account
for the usual convention of negative feedback).

We will first determine conditions for having a periodic okatibn in the loop.
Assume that a sinusoid of frequeney is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequengy It seems reasonable
that an oscillation can be maintained if the signal at B hasttime amplitude and
phase as the injected signal because we can then disconeaggeicted signal and
connect A to B. Tracing signals around the loop, we find thastpgeals at A and
B are identical if

Gyr (S) =

L(iwo) = —1, (9.1)

which then provides a condition for maintaining an osditlat The key idea of
the Nyquist stability criterion is to understand when thas diappen in a general
setting. As we shall see, this basic argument becomes mbtie suhen the loop
transfer function has poles in the right half-plane.

Example 9.1 Operational amplifier circuit
Consider the op amp circuit in Figu€e2a whereZ, andZ, are the transfer func-
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1 » 72 1 - —G(S) -
Zy Z1+ 2,
o ‘o)
(a) Amplifier circuit (b) Block diagram

Figure 9.2: Loop transfer function for an op amp. The op amp circuit (a) has aimedm
transfer functiorm,/v; = Z,(S)/Z1(S), whereZ; and Z, are the impedances of the circuit
elements. The system can be represented by its block diagram (bg weeow include the
op amp dynamic§&(s). The loop transfer function ik = Z,G/(Z; + Z,).

tions of the feedback elements from voltage to current. Thefieedback because
voltagen; is related to voltage through the transfer functionG describing the op
amp dynamics and voltageis related to voltage, through the transfer function
Z1/(Z1 + Z5). The loop transfer function is thus

Gz

i+ Zy
Assuming that the currertis zero, the current through the elemeBtsandZ; is
the same, which implies

9.2)

L1 —0 L — U2

Z Zy

Solving forv gives
_ Zov1 + Z102 _ Zov1 — Z1Go Zo L

= = ——p1— Lo
Z1+ 27, Z1+ 275 Z,G '
Sincev, = —Go the input/output relation for the circuit becomes
Z, L
Guzvl = 0 4 -
Z;1+L

A block diagram is shown in Figur@.2h It follows from (9.1) that the condition
for oscillation of the op amp circuit is
Z1(iw)G(iw)

L) = o) + ZoG0) ~ + ®3)

\%

One of the powerful concepts embedded in Nyquist’s apprtastability anal-
ysis is that it allows us to study the stability of the feedbagstem by looking at
properties of the loop transfer function. The advantage afgithis is that it is
easy to see how the controller should be chosen to obtainigeddsop transfer
function. For example, if we change the gain of the contrptlee loop transfer
function will be scaled accordingly. A simple way to stabi#lian unstable system is
then to reduce the gain so that thé& point is avoided. Another way is to introduce
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(a) Nyquist D contour (b) Nyquist plot

Figure 9.3: The Nyquist contouf” and the Nyquist plot. The Nyquist contour (a) encloses
the right half-plane, with a small semicircle around any polek @) on the imaginary axis
(illustrated here at the origin) and an arc at infinity, represente® by oo. The Nyquist
plot (b) is the image of the loop transfer functibris) whens traversed in the clockwise
direction. The solid line correspondsdo> 0, and the dashed line to < 0. The gain and
phase at the frequeney areg = |L(iw)| andg = ZL(iw). The curve is generated for
L(s) = 1.4e75/(s + 1)2.

a controller with the property that it bends the loop tran&faction away from the
critical point, as we shall see in the next section. Difféngays to do this, called
loop shaping, will be developed and will be discussed in @rad.

9.2 The Nyquist Criterion

In this section we present Nyquist's criterion for deterimgnthe stability of a
feedback system through analysis of the loop transfer imctVe begin by intro-
ducing a convenient graphical tool, the Nyquist plot, analxshow it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear systamie represented
by its frequency response and graphically illustrated byédeBplot. To study the
stability of a system, we will make use of a different repreagon of the frequency
response called ldyquist plot The Nyquist plot of the loop transfer functian(s)

is formed by tracings € C around the Nyquist “D contour,” consisting of the
imaginary axis combined with an arc at infinity connecting émelpoints of the
imaginary axis. The contour, denotedlas C, is illustrated in Figuré.3a The
image ofL (s) whens traversed" gives a closed curve in the complex plane and is
referred to as the Nyquist plot far(s), as shown in Figur®.3hb Note that if the
transfer functiorl (s) goes to zero asgets large (the usual case), then the portion
of the contour “at infinity” maps to the origin. Furthermoreg {hortion of the plot
corresponding ta < 0 is the mirror image of the portion wita > 0.
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There is a subtlety in the Nyquist plot when the loop transfacfion has poles
on the imaginary axis because the gain is infinite at the pdtesolve this problem,
we modify the contoul” to include small deviations that avoid any poles on the
imaginary axis, as illustrated in Figu8e3a(assuming a pole df (s) at the origin).
The deviation consists of a small semicircle to the right efithaginary axis pole
location.

The condition for oscillation given in equatiof.{) implies that the Nyquist
plot of the loop transfer function go through the point= —1, which is called
the critical point. Let w. represent a frequency at whietlL (iw.) = 180, corre-
sponding to the Nyquist curve crossing the negative real dxiuitively it seems
reasonable that the system is stablg.ifi wc)| < 1, which means that the critical
point —1 is on the left-hand side of the Nyquist curve, as indicatefigure9.3h
This means that the signal at point B will have smaller amgétthan the injected
signal. This is essentially true, but there are several stidél that require a proper
mathematical analysis to clear up. We defer the detailsdarand state the Nyquist
condition for the special case whetés) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion) Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figui&) and assume that L has
no poles in the closed right half-plan&¢s > 0) except for single poles on the
imaginary axis. Then the closed loop system is stable if artg ibthe closed
contour given b2 = {L(iw) : —00 < w < oo} c C has no net encirclements of
the critical point s= —1.

The following conceptual procedure can be used to deternhiaiethere are
no encirclements. Fix a pin at the critical pomt= —1, orthogonal to the plane.
Attach a string with one end at the critical point and the potirethe Nyquist plot.
Let the end of the string attached to the Nyquist curve travére whole curve.
There are no encirclements if the string does not wind up opitnerhen the curve
is encircled.

Example 9.2 Third-order system
Consider a third-order transfer function

1

FO=vap
To compute the Nyquist plot we start by evaluating pointslaniimaginary axis
S = iw, which yields

1 (@—iw)® a®-3aw? . o°-32%0
(otap @+a2f @ta?R T @xarp
This is plotted in the complex plane in Fig@e}, with the points corresponding to
w > 0 drawn as a solid line and < 0 as a dashed line. Notice that these curves

are mirror images of each other.
To complete the Nyquist plot, we compultgs) for s on the outer arc of the

Liw)=
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Figure 9.4: Nyquist plot for a third-order transfer function. The Nyquist plot sists of a
trace of the loop transfer functidn(s) = 1/(s + a)®. The solid line represents the portion
of the transfer function along the positive imaginary axis, and the ddsiethe negative
imaginary axis. The outer arc of the D contour maps to the origin.

Nyquist D contour. This arc has the fosn= Re’ for R — oo. This gives

. 1
0y _

Thus the outer arc of thB contour maps to the origin on the Nyquist plot. V

An alternative to computing the Nyquist plot explicitly determine the plot
from the frequency response (Bode plot), which gives thelistgurve fors = i w,
w > 0. We start by plottings (iw) from w = 0 tow = oo, which can be read off
from the magnitude and phase of the transfer function. We piftet G (Re?) with
0 e[—r/2,7/2] andR — oo, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror in@fdbe curve thus far
(normally plotted using a dashed line). The plot can then beléa with arrows
corresponding to a clockwise traversal around the D cor{tbersame direction in
which the first portion of the curve was plotted).

Example 9.3 Third-order system with a pole at the origin
Consider the transfer function

L(s) = se1 1P

where the gain has the nominal value- 1. The Bode plot is shown in FiguBeba
The system has a single polesat 0 and a double pole at= —1. The gain curve
of the Bode plot thus has the slopd. for low frequencies, and at the double pole
s = 1 the slope changes t63. For smalk we havel =~ k/s, which means that the
low-frequency asymptote intersects the unit gain line at k. The phase curve
starts at—90° for low frequencies, it is-180° at the breakpoinky = 1 and it is
—270 at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyqudtt phown
in Figure9.5h It starts with a phase of90° for low frequencies, intersects the
negative real axis at the breakpoint= 1 whereL (i) = —0.5 and goes to zero
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Figure 9.5: Sketching Nyquist and Bode plots. The loop transfer functidn(® = 1/(s(s+
1)?). The large semicircle is the map of the small semicircle ofite@ntour around the pole
at the origin. The closed loop is stable because the Nyquist curve doesaiele the critical
point. The point where the phase-#4.80° is marked with a circle in the Bode plot.

along the imaginary axis for high frequencies. The smalt-badfle of thel" contour
at the origin is mapped on a large circle enclosing the rightplane. The Nyquist
curve does not encircle the critical point, and it followarfrthe simplified Nyquist
theorem that the closed loop is stable. Sihge) = —k/2, we find the system
becomes unstable if the gain is increaseH te 2 or beyond. \Y%

The Nyquist criterion does not require thiti w)| < 1forallw corresponding
toacrossing of the negative real axis. Rather, it sayslteatumber of encirclements
must be zero, allowing for the possibility that the Nyquistwe could cross the
negative real axis and cross back at magnitudes greaterlth@he fact that it
was possible to have high feedback gains surprised thedeslgners of feedback
amplifiers, as mentioned in the quote in the beginning of thagpter.

One advantage of the Nyquist criterion is that it tells us leaystem is in-
fluenced by changes of the controller parameters. For exaihjdevery easy to
visualize what happens when the gain is changed since gtisgales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system desciib8éction3.4. Suppose
we haveN identical sources and a disturbarmteaepresenting an external data
source, as shown in Figuge6a We letw represent the individual window size for
a sourceq represent the end-to-end probability of a dropped patkegpresent
the number of packets in the router’s buffer gmdepresent the probability that a
packet is dropped by the router. We writefor the total number of packets being
received from allN sources. We also include a time delay between the router and
the senders, representing the time delays between thersertieeceiver.

To analyze the stability of the system, we use the transfestfons computed



9.2. THE NYQUIST CRITERION 277

Admission
Router Control A ImL(iw)
d o [= b
L Gb,;)(S) - pr(S) b >
P _ N
- AN
Pe \
_ 7 V' ReL(io)
. . 1
s Link Link eris =
delay delay 05
A TCP
w q
N Bl qu(s) <

Figure 9.6: Internet congestion control. A set bf sources using TCP/Reno send messages
through a single router with admission control (left). Link delays are iredifdr the forward
and backward directions. The Nyquist plot for the loop transfer fundsoshown on the
right.

in Exercise8.12
1

TS+ e TS Qe(7eS + Qetve)’
where(we, be) is the equilibrium point for the system\ is the number of sources,
7e IS the steady-state round-trip time ands the forward propagation time. We use
Gy to represent the transfer function with the forward timeagieemoved since
this is accounted for as a separate block in Figuéa Similarly, G,,q = G;q/N
since we have pulled out the multiplidr as a separate block as well.

The loop transfer function is given by

Gpin () = Guq(s) = Gpb(S) = p,

N 1
L(S)=p- — - e s,
7eS+ €775 (e(7eS + Jete)
Using the fact thatle &~ 2N /w2 = 2N3/(7.c)? andwe = be/N = 7.c/N from
equation 8.22), we can show that

N c3r3
1eS+ €77 2N3(cr2s + 2N?)

Note that we have chosen the signlgf) to use the same sign convention as in
Figure9.1h The exponential term representing the time delay givesifgignt
phase above» = 1/7¢, and the gain at the crossover frequency will determine
stability.

To check stability, we require that the gain be sufficienthairat crossover. If
we assume that the pole due to the queue dynamics is sufficfastithat the TCP
dynamics are dominant, the gain at the crossover frequentygiven by

—7eS

L) =p-

g pCre
2N3CTBZCOC 2N2a)c

Using the Nyquist criterion, the closed loop system will Instable if this quantity

ILwe) =p-N-
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Figure 9.7: Nyquist curve for the loop transfer functid(s) = o7 The plot on the right
is an enlargement of the box around the origin of the plot on the left. Thguisycurve
intersects the negative real axis twice but has no net encirclements. of

is greater than 1. In particular, for a fixed time delay, theteyswill become
unstable as the link capacityis increased. This indicates that the TCP protocol
may not be scalable to high-capacity networks, as pointelaydiow et al. LPD0Z].
Exercise9.7 provides some ideas of how this might be overcome. \%

Conditional Stability

Normally, we find that unstable systems can be stabilizedIgitmpreducing the
loop gain. There are, however, situations where a system eastdbilized by
increasing the gain. This was first encountered by electriggiheers in the design
of feedback amplifiers, who coined the teconditional stability The problem was
actually a strong motivation for Nyquist to develop his thedVe will illustrate by
an example.

Example 9.5 Third-order system

Consider a feedback system with the loop transfer function
3(s + 6)2

s(s+1)2°

The Nyquist plot of the loop transfer function is shown in Fg@u7. Notice that the
Nyquist curve intersects the negative real axis twice. Theifitsrsection occurs at

L = —12forw = 2, and the second at= —4.5 forw = 3. The intuitive argument
based on signal tracing around the loop in Figudbis strongly misleading in this
case. Injection of a sinusoid with frequency 2 rad/s and duodd 1 at A gives, in
steady state, an oscillation at B that is in phase with thatiapd has amplitude
12. Intuitively it seems unlikely that closing of the looplwiesult in a stable
system. However, it follows from Nyquist’s stability cniten that the system is
stable because there are no net encirclements of the tpbo#. Note, however,
that if we decreasdhe gain, then we can get an encirclement, implying that the
gain must be sufficiently large for stability. \%

L(s) = (9.4)
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General Nyquist Criterion

Theorem9.1 requires that_(s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general ieseatjuired. Nyquist
originally considered this general case, which we sumraatza theorem.

Theorem 9.2(Nyquist’s stability theorem)Consider a closed loop system with the
loop transfer function Ks) that has P poles in the region enclosed by the Nyquist
contour. Let N be the net number of clockwise encirclementd diy L(s) when s
encircles the Nyquist contour in the clockwise direction. The closed loop system
then has Z= N + P poles in the right half-plane.

The full Nyquist criterion states that if(s) hasP poles in the right half-plane,
then the Nyquist curve fo (s) should haveP counterclockwise encirclements of
—1 (so thatN = —P). In particular, thisequiresthat|L (iwc)| > 1 for somew,
corresponding to a crossing of the negative real axis. Casédbe taken to get the
right sign of the encirclements. The Nyquist contour has tvdesrsed clockwise,
which means thab moves from—oo to co andN is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockeyi thenN will be
negative (the desired caseHf+# 0).

As in the case of the simplified Nyquist criterion, we use srsathicircles of
radiusr to avoid any poles on the imaginary axis. By letting> O, we can use
Theorem9.2to reason about stability. Note that the image of the smalicecles
generates a section of the Nyquist curve whose magnitudeagies infinity,
requiring care in computing the winding number. When phgfiNyquist curves on
the computer, one must be careful to see that such poles@verfy handled, and
often one must sketch those portions of the Nyquist plot mdhbaeing careful to
loop the right way around the poles.

Example 9.6 Stabilized inverted pendulum

The linearized dynamics of a normalized inverted pendulunbearepresented by
the transfer functiof (s) = 1/(s®>— 1), where the input is acceleration of the pivot
and the output is the pendulum angleas shown in Figur8.8 (Exercise8.3). We
attempt to stabilize the pendulum with a proportional~give (PD) controller
having the transfer functio@(s) = k(s + 2). The loop transfer function is

The Nyquist plot of the loop transfer function is shown in Fig@r8h We have
L(0) = —2k andL(c0) = 0. If k > 0.5, the Nyquist curve encircles the critical
points = —1 in the counterclockwise direction when the Nyquist contpus
encircled in the clockwise direction. The number of encireats is thusN = —1.
Since the loop transfer function has one pole in the rightplaifie P = 1), we
findthatZ = N+ P = 0 and the system is thus stable ko 0.5. Ifk < 0.5, there
is no encirclement and the closed loop will have one pole éritht half-plane.
\Y%



9.2. THE NYQUIST CRITERION 280

A mL(io)
’ \| RelL(iw)
N

() Inverted pendulum (b) Nyquist plot

Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a maisis th
balanced by applying a force at the pivot point. A proportional-dévigacontroller with
transfer functiorC(s) = k(s + 2) is used to command based ord. (b) A Nyquist plot of
the loop transfer function for galkn= 1. There is one counterclockwise encirclement of the
critical point, givingN = —1 clockwise encirclements.

Derivation of Nyquist's Stability Theorem @

We will now prove the Nyquist stability theorem for a genédoalp transfer function

L (s). This requires some results from the theory of complex véegbor which
the reader can consult Ahlforall66]. Since some precision is needed in stating
Nyquist's criterion properly, we will use a more mathemaitistyle of presenta-
tion. We also follow the mathematical convention of cougtimcirclements in the
counterclockwise direction for the remainder of this s@ttiThe key result is the
following theorem about functions of complex variables.

Theorem 9.3(Principle of variation of the argument).et D be a closed region
in the complex plane and I&t be the boundary of the region. Assume the function
f : C — Cisanalyticin D and orT", except at a finite number of poles and zeros.
Then thewinding numbero, is given by
1 1 f'(2)
=—Arargf(z) = —

Wn =5 Arag @ 27i Jr f(2)
whereAr is the net variation in the angle when z traverses the coniour the
counterclockwise direction, Z is the number of zeros in D Bnid the number of
poles in D. Poles and zeros of multiplicity m are counted neéim

dz=27-P,

Proof. Assume that = ais a zero of multiplicitym. In the neighborhood of = a
we have

f(2) = (z-a)"g(2),

where the functiomy is analytic and different from zero. The ratio of the derivati
of f toitself is then given by

f'z) m 4 g
fzg z—a 9@’
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and the second term is analyticzat a. The functionf’/f thus has a single pole
atz = a with the residuen. The sum of the residues at the zeros of the function is
Z. Similarly, we find that the sum of the residues for the polesis and hence
1 f'(2) 1 d 1
= — dz=— | —logf(zydz= —Arlog f
221 ) T2 927 201 )L a7 09 T @dz= 57 Arlog 1(2),

whereAr again denotes the variation along the contbuWe have

Z-P

log f(z) =log|f(2)| +iargf(z),
and since the variation ¢ff (z)| around a closed contour is zero it follows that
Arlog f(z) =iArargf(2),
and the theorem is proved. O

This theoremis useful in determining the number of poles anaiszof a function
of complex variables in a given region. By choosing an appate closed region
D with boundaryl”, we can determine the difference between the number of poles
and zeros through computation of the winding number.

Theoremd.3can be used to prove Nyquist's stability theorem by chooFiag
the Nyquist contour shown in FiguBe3a which encloses the right half-plane. To
construct the contour, we start with part of the imaginangax R < s < jR and
a semicircle to the right with radiur. If the function f has poles on the imaginary
axis, we introduce small semicircles with radiio the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettiRg— oo andr — 0.
Note thatl” has orientatiomppositethat shown in Figur®.3a (The convention in
engineering is to traverse the Nyquist contour in the cldskwdirection since this
corresponds to moving upwards along the imaginary axisghvitiakes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argumetitopute stability,
consider a closed loop system with the loop transfer fundti). The closed loop
poles ofthe system are the zeros of the funcfi¢s) = 1+ L (s). To find the number
of zeros in the right half-plane, we investigate the windmgnber of the function
f(s) = 1+ L(s) ass moves along the Nyquist contolirin the counterclockwise
direction. The winding number can conveniently be deterdhinem the Nyquist
plot. A direct application of Theorer®.3 gives the Nyquist criterion, taking care
to flip the orientation. Since the image oft1L(s) is a shifted version of (s),
we usually state the Nyquist criterion as net encirclemehtie —1 point by the
image ofL (s).

9.3 Stability Margins

In practice it is not enough that a system is stable. There atssbe some margins
of stability that describe how stable the system is and iastness to perturbations.
There are many ways to express this, but one of the most constloa iise of gain
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Figure 9.9: Stability margins. The gain marg@, and phase margin,, are shown on the the
Nyquist plot (a) and the Bode plot (b). The gain margin correspontietemallest increase
in gain that creates an encirclement, and the phase margin is the smadlegedh phase
that creates an encirclement. The Nyquist plot also shows the stabilitymsargvhich is
the shortest distance to the critical point.

and phase margins, inspired by Nyquist’s stability crieriThe key idea is that it
is easy to plot the loop transfer functitris). An increase in controller gain simply
expands the Nyquist plot radially. An increase in the phdiskeocontroller twists
the Nyquist plot. Hence from the Nyquist plot we can easitkmff the amount of
gain or phase that can be added without causing the systeettorie unstable.
Formally, thegain margin g, of a system is defined as the smallest amount that
the open loop gain can be increased before the closed lotgnsgees unstable. For
a system whose phase decreases monotonically as a funtfrequency starting
at @, the gain margin can be computed based on the smallest fregudere the
phase of the loop transfer functidr(s) is —180°. Letwy represent this frequency,
called thephase crossover frequencyhen the gain margin for the system is given

b
Y 1

T LGiwpo)l”
Similarly, thephase margiris the amount of phase lag required to reach the stability
limit. Let wgc be thegain crossover frequencthe smallest frequency where the loop

transfer functiorL (s) has unit magnitude. Then for a system with monotonically
decreasing gain, the phase margin is given by

These margins have simple geometric interpretations onyheiist diagram of
the loop transfer function, as shown in FigAr8a where we have plotted the portion
of the curve corresponding to > 0. The gain margin is given by the inverse of
the distance to the nearest point betwednand 0 where the loop transfer function
crosses the negative real axis. The phase margin is giverelsnthllest angle on
the unit circle between-1 and the loop transfer function. When the gain or phase

Om (9.5)
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Figure 9.10: Stability margins for a third-order transfer function. The Nyquist plottios
left allows the gain, phase and stability margins to be determined by megeidistances
of relevant features. The gain and phase margins can also be fedidhaf Bode plot on the
right.

is monotonic, this geometric interpretation agrees withfdrmulas above.

A drawback with gain and phase margins is that it is necedsagive both of
them in order to guarantee that the Nyquist curve is not dio$ke critical point.
An alternative way to express margins is by a single numhbeistability margin
Sm, Which is the shortest distance from the Nyquist curve tcctiteeal point. This
number is related to disturbance attenuation, as will beudised in Sectiohl.3

For many systems, the gain and phase margins can be detdrinumethe Bode
plot of the loop transfer function. To find the gain margin wetfiinsd the phase
crossover frequenayy: where the phase is180°. The gain margin is the inverse
of the gain at that frequency. To determine the phase margifirst determine the
gain crossover frequenayy, i.e., the frequency where the gain of the loop transfer
function is 1. The phase margin is the phase of the loop trafigfetion at that
frequency plus 180 Figure9.9billustrates how the margins are found in the Bode
plot of the loop transfer function. Note that the Bode pla¢ipretation of the gain
and phase margins can be incorrect if there are multiplei&eges at which the
gain is equal to 1 or the phase is equaHb30°.

Example 9.7 Third-order system

Consider a loop transfer functidn(s) = 3/(s + 1)3. The Nyquist and Bode plots
are shown in Figur8.1Q To compute the gain, phase and stability margins, we can
use the Nyquist plot shown in FigugelQ This yields the following values:

Om = 2.67, om = 41.7, sm = 0.464
The gain and phase margins can also be determined from theuide \%

The gain and phase margins are classical robustness metsaitréave been
used for a long time in control system design. The gain masgiveil defined if the
Nyquist curve intersects the negative real axis once. Aymlsly, the phase margin
is well defined if the Nyquist curve intersects the unit ciienly one point. Other
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Figure 9.11: System with good gain and phase margins but a poor stability margin. Nyquis
(a) and Bode (b) plots of the loop transfer function and step respahser (@ system with
good gain and phase margins but with a poor stability margin. The Nydaisthpws on the
portion of the curve corresponding &> 0.

more general robustness measures will be introduced int€hEp
Even if both the gain and phase margins are reasonable, ttesrsysay still

not be robust, as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

(5 = 0.38(s? + 0.1s + 0.55)
~ s(s+1)(s? +0.06s + 0.5)°

A numerical calculation gives the gain margingas= 266, and the phase margin
is 70°. These values indicate that the system is robust, but the islyqurve is
still close to the critical point, as shown in Figu®ell The stability margin is
Sm = 0.27, which is very low. The closed loop system has two resonadies, one
with damping ratiqc = 0.81 and the other witlh = 0.014. The step response of
the system is highly oscillatory, as shown in FigQrélc \%

The stability margin cannot easily be found from the Bode pliothe loop
transfer function. There are, however, other Bode plotswiibgive sy; these will
be discussed in Chapt&@. In general, it is best to use the Nyquist plot to check
stability since this provides more complete informatioartithe Bode plot.

When designing feedback systems, it will often be usefutfon@ the robustness
of the system using gain, phase and stability margins. Theswders tell us how
much the system can vary from our nominal model and still &blst Reasonable
values of the margins are phase margin= 30°—60°, gain marging, = 2-5 and
stability margins,, = 0.5-0.8.

There are also other stability measures, such addlay margin which is the
smallesttime delay required to make the system unstalitéptransfer functions
that decay quickly, the delay margin is closely related sphase margin, but for
systems where the gain curve of the loop transfer functigrsheeral peaks at high
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Figure 9.12:Nyquist and Bode plots of the loop transfer function for the AFM systeém) (
with an integral controller. The frequency in the Bode plot is normalizeal Byre parameters
are¢ = 0.01 andk; = 0.008.

frequencies, the delay margin is a more relevant measure.

Example 9.9 Nanopositioning system for an atomic force microscope
Consider the system for horizontal positioning of the samiplan atomic force
microscope. The system has oscillatory dynamics, and asimptlel is a spring—
mass system with low damping. The normalized transfer fands given by

2
Wo

S2 + 20 woS + @§
where the damping ratio typically is a very small number,,&.g= 0.1.

We will start with a controller that has only integral actidrhe resulting loop
transfer function is )
K; ()

S(S2 4 20 weS + w})’
wherek; is the gain of the controller. Nyquist and Bode plots of thepldransfer
function are shown in Figur@.12 Notice that the part of the Nyquist curve that is
close to the critical point-1 is approximately circular.

From the Bode plot in Figur@.12b, we see that the phase crossover frequency
IS wpe = @, which will be independent of the gakq. Evaluating the loop transfer
function at this frequency, we halgiwg) = —ki /(2 wo), which means that the
stability margin iss,, = 1 — ki /(20 wp). To have a desired stability margin s§
the integral gain should be chosen as

ki = 27 wo(1 — Sm).

Figure9.12shows Nyquist and Bode plots for the system with gain maggie- 2.5

and stability margirs,, = 0.6. The gain curve in the Bode plot is almost a straight
line for low frequencies and has a resonant peak at wq. The gain crossover
frequency is approximately equal kp. The phase decreases monotonically from
—90° to —270: itis equal to—180 atw = wg. The curve can be shifted vertically
by changingk;: increasingk; shifts the gain curve upward and increases the gain

P(s) = (9.7)

L(s)
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crossover frequency. Since the phase 180’ at the resonant peak, it is necessary
that the peak not touch the line(iw)| = 1. \Y%

9.4 Bode’s Relations and Minimum Phase Systems

An analysis of Bode plots reveals that there appears to blatore between the
gain curve and the phase curve. Consider, for example, tlie Biots for the
differentiator and the integrator (shown in Fig@8d.2. For the differentiator the
slope is+1 and the phase is a constan®2 radians. For the integrator the slope is
—1 and the phase isz /2. For the first-order syste@@(s) = s + a, the amplitude
curve has the slope 0 for small frequencies and the sldptor high frequencies,
and the phase is 0 for low frequencies an@ for high frequencies.

Bode investigated the relations between the curves foesystith no poles
and zeros in the right half-plane. He found that the phaseunagiely given by
the shape of the gain curve, and vice versa:

agGiion) = 3 [ 1@ gt

wheref is the weighting kernel

| .
dloge ~ 7 dlog|G(iw)|

dlogw 2 dlogow ° (0-8)

f(w) = %Iog w+wo‘.
T w — o

The phase curve is thus a weighted average of the derivatitreeajain curve. If

the gain curve has constant slapehe phase curve has constant vaiag'2.

Bode’s relations4.8) hold for systems that do not have poles and zeros in the
right half-plane. Such systems are caliethimum phase systerecause systems
with poles and zeros in the right half-plane have a largeselg. The distinction
is important in practice because minimum phase systemsaarereo control than
systems with a larger phase lag. We will now give a few exaspi@onminimum
phase transfer functions.

The transfer function of a time delay efunits isG(s) = e€~5°. This transfer
function has unit gainG(iw)| = 1, and the phase is a@(iw) = —wr. The
corresponding minimum phase system with unit gain has tester function
G(s) = 1. The time delay thus has an additional phase lagzofNotice that the
phase lag increases linearly with frequency. Figii3ashows the Bode plot of
the transfer function. (Because we use a log scale for fregy¢he phase falls off
exponentially in the plot.)

Consider a system with the transfer functiGgs) = (a — s)/(a + s) with
a > 0, which has a zers = a in the right half-plane. The transfer function
has unit gainG(iw)| = 1, and the phase is a@iw) = —2arctanw/a). The
corresponding minimum phase system with unit gain has tester function
G(s) = 1. Figure9.13bshows the Bode plot of the transfer function. A similar
analysis of the transfer functidd(s) = (s + a)/(s — a) with a > 0, which has a
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Figure 9.13:Bode plots of systems that are not minimum phase. (a) Time @&(sy= €75,
(b) system with a right half-plane (RHP) zeBx(s) = (a — s)/(a + s) and (c) system with
right half-plane pole. The corresponding minimum phase system hasatiefer function
G(s) = 1in all cases, the phase curves for that system are shown as dagsed lin

pole in the right half-plane, shows that its phase isGfign) = —2 arctaria/w).
The Bode plot is shown in Figui@13c

The presence of poles and zeros in the right half-plane ingseseere limitations
onthe achievable performance. Dynamics of this type sHzeiéloided by redesign
of the system whenever possible. While the poles are intrip®perties of the
system and they do not depend on sensors and actuatorsrésedepend on how
inputs and outputs of a system are coupled to the states. Zandbus be changed
by moving sensors and actuators or by introducing new seresad actuators.
Nonminimum phase systems are unfortunately quite commereictice.

The following example gives a system theoretic interpretatif the common
experience that it is more difficult to drive in reverse geat dlustrates some of
the properties of transfer functions in terms of their pealed zeros.

Example 9.10 Vehicle steering
The nonnormalized transfer function from steering anglateral velocity for the
simple vehicle model is
avpS + vg

bs ’
whereog is the velocity of the vehicle and,b > 0 (see Examplé.12. The
transfer function has a zero st= vg/a. In normal driving this zero is in the left
half-plane, but itis in the right half-plane when drivingraversepy < 0. The unit
step response is

G(s) =

avg vgt
)= —+ —.
y(t) bt

The lateral velocity thus responds immediately to a steeramgmand. For reverse

steering is negative and the initial response is in the wrong diregt@#obehavior

that is representative for nonminimum phase systems (tatiewerse responge
Figure 9.14 shows the step response for forward and reverse drivindhi$n t
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Figure 9.14:Vehicle steering for driving in reverse. (a) Step responses fromisgegngle to
lateral translation for a simple kinematics model when driving forwaeslteéd) and reverse
(solid). With rear-wheel steering the center of mass first moves in thagwdirection and
that the overall response with rear-wheel steering is significantly dézympared with that
for front-wheel steering. (b) Frequency response for drivingvéod (dashed) and reverse
(solid). Notice that the gain curves are identical, but the phase cungrifdng in reverse
has nonminimum phase.

simulation we have added an extra pole with the time con3tdatapproximately
account for the dynamics in the steering system. The parasnatea = b = 1,
T = 0.1, v = 1 for forward driving andg = —1 for reverse driving. Notice that
fort > ty = a/vg, Wherety is the time required to drive the distanagthe step
response for reverse driving is that of forward driving wittle time delayy. The
position of the zer@y/a depends on the location of the sensor. In our calculation
we have assumed that the sensor is at the center of mass. Dhie Hee transfer
function disappears if the sensor is located at the rear whbe difficulty with
zeros in the right half-plane can thus be visualized by aghbaxperiment where
we drive a car in forward and reverse and observe the latesilipn through a
hole in the floor of the car. \%

9.5 Generalized Notions of Gain and Phase @

A key idea in frequency domain analysis is to trace the bemavi sinusoidal
signals through a system. The concepts of gain and phasseapee by the transfer
function are strongly intuitive because they describe #og# and phase relations
between input and output. In this section we will see how termc the concepts
of gain and phase to more general systems, including sommaeansystems. We
will also show that there are analogs of Nyquist’s stabtitigerion if signals are
approximately sinusoidal.
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System Gain

We begin by considering the case of a static linear system Au, whereA is
a matrix whose elements are complex numbers. The matrix datelsane to be
square. Let the inputs and outputs be vectors whose elenrerdsraplex numbers

and use the Euclidean norm
lull = VEui 2. (9.9)

lyll? = u*A*Au,

wherex denotes the complex conjugate transpose. The mAtrixis symmetric
and positive semidefinite, and the right-hand side is a qtiadoam. The square
root of eigenvalues of the matrix* A are all real, and we have

Y12 < Zmax(A* A)|lul|?.

The gain of the system can then be defined as the maximum ratie oiutput to
the input over all possible inputs:

V= ml?xm =V Amax(A* A). (9.10)

full

The square root of the eigenvalues of the ma#iA are called thesingular values
of the matrixA, and the largest singular value is denofdd).

To generalize this to the case of an input/output dynamigstiesn, we need
to think of the inputs and outputs not as vectors of real nusbat as vectors of
signals For simplicity, consider first the case of scalar signals lehdhe signal
spacel, be square-integrable functions with the norm

lull, = ‘//O u2(r) dr.

This definition can be generalized to vector signals by reptattie absolute value
with the vector normd.9). We can now formally define the gain of a system taking
inputsu € L, and producing outputg € L, as

y = Su Iyl (9.11)

uel, [IUll”

where sup is theupremumgdefined as the smallest number that is larger than its
argument. The reason for using the supremum is that the maximay not be
defined foru € L,. This definition of the system gain is quite general and can even
be used for some classes of nonlinear systems, though ode todee careful about
how initial conditions and global nonlinearities are haatl

The norm 0.11) has some nice properties in the case of linear systems. In
particular, given a single-input, single-output stableeéir system with transfer
functionG(s), it can be shown that the norm of the system is given by

y =sup|G(im)| =: |Gl (9.12)

The norm of the output is
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Figure 9.15:Afeedback connection of two general nonlinear systelnasndH,. The stability
of the system can be explored using the small gain theorem.

In other words, the gain of the system corresponds to theyada& of the frequency
response. This corresponds to our intuition that an inpudyxces the largest output
when we are at the resonant frequencies of the systéiih,, is called thanfinity
normof the transfer functiorG(s).

This notion of gain can be generalized to the multi-input, tiralitput case as
well. For a linear multivariable system with a real ratiotrahsfer function matrix
G(s) we can define the gain as

7 = IGllec = sups (G(iw)). (9.13)

Thus we can combine the idea of the gain of a matrix with the adelae gain of a
linear system by looking at the maximum singular value oldrequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist's theorem that thosed loop is stable
if the gain of the loop transfer function is less than 1 fofituencies. This result
can be extended to a larger class of systems by using themtafthe system gain
defined in equation9(11).

Theorem 9.4 (Small gain theorem)Consider the closed loop system shown in
Figure9.15 where H and H, are stable systems and the signal spaces are properly
defined. Let the gains of the systemsaldd H, be y; andy,. Then the closed loop
system is input/output stableyify, < 1, and the gain of the closed loop system is
o

1-y1y2

Notice that if systemsl; andH, are linear, it follows from the Nyquist stability
theorem that the closed loop is stable becausg)$ < 1, the Nyquist curve is
always inside the unit circle. The small gain theorem is thugxension of the
Nyquist stability theorem.

Although we have focused on linear systems, the small gaoréém also holds
for nonlinear input/output systems. The definition of gainguation ©.11) holds
for nonlinear systems as well, with some care needed in lantdile initial condi-
tion.

The main limitation of the small gain theorem is that it does camsider the
phasing of signals around the loop, so it can be very congeevdo define the

’y:
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Figure 9.16: Describing function analysis. A feedback connection between a statiimnon
earity and a linear system is shown in (a). The linear system is charadtésizts transfer
function L (s), which depends on frequency, and the nonlinearity by its describirgifum

N (a), which depends on the amplitudef its input. The Nyquist plot of (i w) and the plot

of the—1/N(a) are shown in (b). The intersection of the curves represents a possifile lim
cycle.

notion of phase we require that there be a scalar productsdiasre-integrable
functions this can be defined as

. y) = / u(e)y(e) dr.
0
The phase between two signals can now be defined as

(u,y) = llulllyll cosp).

Systems where the phase between inputs and outputs s %€ss for all inputs
are calledpassive systemét follows from the Nyquist stability theorem that a
closed loop linear system is stable if the phase of the loapsfer function is
between—z andz. This result can be extended to nonlinear systems as well. It i
called thepassivity theorenand is closely related to the small gain theorem. See
Khalil [KhaO]] for a more detailed description.

Additional applications of the small gain theorem and itplegation to robust
stability are given in Chaptelr2.

Describing Functions @

For special nonlinear systems like the one shown in Fi@utéa which consists
of a feedback connection between a linear system and a atatlmearity, it is
possible to obtain a generalization of Nyquist’s stabititiferion based on the idea
of describing functiong~ollowing the approach of the Nyquist stability condition
we will investigate the conditions for maintaining an okatibn in the system. If
the linear subsystem has low-pass character, its outpppi®aimately sinusoidal
even if its input is highly irregular. The condition for odation can then be found
by exploring the propagation of a sinusoid that correspaadse first harmonic.
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To carry out this analysis, we have to analyze how a sinukeidaal propa-
gates through a static nonlinear system. In particular wesitigate how the first
harmonic of the output of the nonlinearity is related tosis@soidal) input. Letting
F represent the nonlinear function, we expdn@ “!) in terms of its harmonics:

F(aéwt) — Z Mn(a)ei(nwtwn(a))’
n=0
whereMp(a) andgn(a) represent the gain and phase of tike harmonic, which
depend on the input amplitude since the functris nonlinear. We define the
describing function to be the complex gain of the first harrapni

N(a) = My(a)e @, (9.14)

The function can also be computed by assuming that the inpusisusoid and
using the first term in the Fourier series of the resulting outp

Arguing as we did when deriving Nyquist’s stability criteni, we find that an
oscillation can be maintained if

Liiw)N(@) = —1. (9.15)

This equation means that if we inject a sinusoid at A in Figui& the same signal
will appear at B and an oscillation can be maintained by coting the points.
Equation 9.15 gives two conditions for finding the frequeneyof the oscillation
and its amplitude: the phase must be 180and the magnitude must be unity. A
convenient way to solve the equation is to pldiw) and—1/N(a) on the same
diagram as shown in Figu816@. The diagram is similar to the Nyquist plot where
the critical point—1 is replaced by the curvel/N (a) anda ranges from 0 tec.

It is possible to define describing functions for types of ispother than si-
nusoids. Describing function analysis is a simple methad,itois approximate
because it assumes that higher harmonics can be neglectadldaktreatments of
describing function techniques can be found in the texts theAon Ath75] and
Graham and McRueGM61].

Example 9.11 Relay with hysteresis
Consider a linear system with a nonlinearity consisting télay with hysteresis.
The output has amplitudeand the relay switches when the inputis, as shown in
Figure9.17a Assumingthatthe inputis = a sin(wt), we find that the outputis zero
if a < ¢, andifa > c, the output is a square wave with amplituziénat switches at
timeswt = arcsinc/a)+nz . The firstharmonicisthey(t) = (4b/7) sin(wt—a),
where sim = c/a. Fora > c the describing function and its inverse are

4b ¢ .c 1 tv/a?—c?  =wcC

N(a):—( 1——2—|—), = +i—,

ar a a N(a) 4b 4b
where the inverse is obtained after simple calculationsurgi§.17bshows the
response of the relay to a sinusoidal input with the first haimof the output
shown as a dashed line. Describing function analysis istithted in Figur®.17¢
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Figure 9.17:Describing function analysis for arelay with hysteresis. The input/ougpation
of the hysteresis is shown in (a) and the input with amplitade 2, the output and its first
harmonic are shown in (b). The Nyquist plots of the transfer fundti(s) = (s + 1)~* and
the negative of the inverse describing function for the relay With 3 andc = 1 are shown
in (c).

which shows the Nyquist plot of the transfer functibfs) = 2/(s + 1)* (dashed
line) and the negative inverse describing function of ayrelih b = 1 andc = 0.5.
The curves intersect fa = 1 andw = 0.77 rads, indicating the amplitude and
frequency for a possible oscillation if the process and #h@yrare connected in a
a feedback loop. \%

9.6 Further Reading

Nyquist's original paper giving his now famous stabilityterion was published in
theBell Systems Technical Jourrial1932 Nyq32. More accessible versions are
found in the book BK64], which also includes other interesting early papers on
control. Nyquist's paper is also reprinted in an IEEE coll@ctf seminal papers on
control Bas01. Nyquist usedt1 as the critical point, but Bode changed it+4,
which is now the standard notation. Interesting perspestbn early developments
are given by BlackBla77], Bode Bod6( and BennettBen93. Nyquist did a direct
calculation based on his insight into the propagation aisiidal signals through
systems; he did not use results from the theory of complegtioims. The idea
that a short proof can be given by using the principle of ¥emmof the argument

is presented in the delightful book by MacCoWfc45. Bode made extensive
use of complex function theory in his booB¢d43, which laid the foundation
for frequency response analysis where the notion of minimpbase was treated in
detail. A good source for complex function theory is the siaby Ahlfors JAhI66].
Frequency response analysis was a key element in the emergfecantrol theory

as described in the early texts by James eg&lPF47, Brown and CampbelBC48

and OldenburgerQld56], and it became one of the cornerstones of early control
theory. Frequency response methods underwent a resurgéecerabust control
emerged in the 1980s, as will be discussed in Chdgter
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Exercises

9.1 (Operational amplifier) Consider an op amp circuit wikh = Z, that gives
a closed loop system with nominally unit gain. Let the tran$fimction of the
operational amplifier be

kayao

G(s) = ,
©) (s+a)(s+a)(s+ay)
wherea;, a, > a. Show that the condition for oscillation ks < a; + a, and
compute the gain margin of the system. Hint: Assuame 0.

9.2 (Atomic force microscope) The dynamics of the tapping modaroatomic
force microscope are dominated by the damping of the caatil@brations and
the system that averages the vibrations. Modeling thelesatias a spring—mass
system with low damping, we find that the amplitude of the \ibres decays as
exp(—¢wt), whereg is the damping ratio and is the undamped natural frequency
of the cantilever. The cantilever dynamics can thus be mddejethe transfer

function

a
G(s) = ——
© =y

wherea = wg. The averaging process can be modeled by the input/outjatitne|

1 t
woz;[ U(v)do,

-7
where the averaging time is a multipleof the period of the oscillation2/w. The
dynamics of the piezo scanner can be neglected in the firsbeippation because
they are typically much faster than A simple model for the complete system is
thus given by the transfer function

_a(l—e™)
P(s) = st(s+a)

Plot the Nyquist curve of the system and determine the gain mfoaortional
controller that brings the system to the boundary of stigbili

9.3 (Heat conduction) A simple model for heat conduction in adsisl given by
the transfer function

P(s) = ke V5.
Sketch the Nyquist plot of the system. Determine the frequerere the phase of
the process is-180° and the gain at that frequency. Show that the gain required to
bring the system to the stability boundarykis= " .

9.4 (Vectored thrust aircraft) Consider the state space chatrdesigned for the
vectored thrust aircraft in Exampl&s8 and 7.5. The controller consists of tw

components: an optimal estimator to compute the state sigiem from the output
and a state feedback compensator that computes the input tiie (estimated)
state. Compute the loop transfer function for the systemdmatermine the gain,
phase and stability margins for the closed loop dynamics.
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9.5 (Vehicle steering) Consider the linearized model for vihiteering with a
controller based on state feedback discussed in Exanl&he transfer functions
for the process and controller are given by

ys+1 C(S) _ S(k1|1+k2|2)+k1|2
S s +S(yky + ko +11) + ki + 12 + koly — y kol
as computed in Examplg.6. Let the process parameter pe= 0.5 and assume

that the state feedback gains &re= 1 andk, = 0.914 and that the observer gains
arel, = 2.828 and, = 4. Compute the stability margins numerically.

P(s) =

9.6 (Stability margins for second-order systems) A process whiysiamics is
described by a double integrator is controlled by an ideal Blroller with the
transfer functiorC(s) = kqs + kp, Where the gains afe; = 2; o andk, = 3.
Calculate and plot the gain, phase and stability marginsfasation .

9.7 (Congestion control in overload conditions) A strongly glified flow model
of a TCP loop under overload conditions is given by the loopdfar function

k
L(s)=—-e*
(s) &

where the queuing dynamics are modeled by an integratofr GRewindow control

is a time delayr and the controller is simply a proportional controller. Ajora

difficulty is that the time delay may change significantly dgrithe operation of
the system. Show that if we can measure the time delay, it isilpleso choose a
gain that gives a stability margin gf > 0.6 for all time delays.

9.8 (Bode’s formula) Consider Bode’s formul@.8) for the relation between gain
and phase for a transfer function that has all its singigarin the left half-plane.
Plot the weighting function and make an assessment of thadresies where the
approximation ar@s =~ (z/2)dlog|G|/dlogw is valid.

9.9 (Padé approximation to a time delay) Consider the transfestions
_1—s7/2
T 14s7/2°
Show that the minimum phase properties of the transfer fonstare similar for

frequencieso < 1/7. A long time delayr is thus equivalent to a small right half-
plane zero. The approximatiof.(6) is called a first-ordePadé approximation

Gi(s) =€, Gys)=¢e~ (9.16)

9.10(Inverse response) Consider a system whose input/outgpanse is modeled
by G(s) = 6(—s+ 1)/(s> + 5s + 6), which has a zero in the right half-plane.
Compute the step response for the system, and show that thet @oes in the
wrong direction initially, which is also referred to asiamerse respons€ompare
the response to a minimum phase system by replacing the zeee & with a zero
ats= —1.

9.11(Describing function analysis) . Consider the system whthtilock diagram
shown on the left below.
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The blockR is a relay with hysteresis whose input/output responsedi@sion the

right and the process transfer functionAgs) = =57 /s. Use describing function
analysis to determine frequency and amplitude of possiti tycles. Simulate
the system and compare with the results of the describingtifumanalysis.



Chapter Ten
PID Control

Based on a survey of over eleven thousand controllers in the refiffiegjicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 200DM02].

This chapter treats the basic properties of proportionagiml-derivative (PI1D)
control and the methods for choosing the parameters of theallers. We also
analyze the effects of actuator saturation and time dedayjrhportant features of
many feedback systems, and describe methods for compansatithese effects.
Finally, we will discuss the implementation of PID controfieas an example of
how to implement feedback control systems using analoggitaticomputation.

10.1 Basic Control Functions

PID control, which was introduced in Sectidn5 and has been used in several
examples, is by far the most common way of using feedbackgmerring systems.
It appears in simple devices and in large factories with shods of controllers.
PID controllers appear in many different forms: as stana@loontrollers, as part
of hierarchical, distributed control systems and builbietnbedded components.
Most PID controllers do not use derivative action, so theyusdhetrictly speaking
be called PI controllers; we will, however, use PID as a gerterin for this class
of controller. There is also growing evidence that PID cordgppears in biological
systems YHSDOQ.

Block diagrams of closed loop systems with PID controlleessdrown in Fig-
urel0.1 The control signal for the system in Figur&0.1ais formed entirely from
the errore; there is no feedforward term (which would corresponk} tan the state
feedback case). A common alternative in which proportiamal derivative action
do not act on the reference is shown in Figli@elly combinations of the schemes
will be discussed in Sectioh0.5 The command signail is called the reference
signal in regulation problems, or tlsetpointin the literature of PID control. The
input/output relation for an ideal PID controller with erfeedback is

t de 1/t de
u=kpe+k e(r)d — =kple+ = [ e(r)d T¢—). (10.1
p+|/o (T) T+kddt p(+Ti/o (T) T+ ddt) ( )

The control action is thus the sum of three terms: proporti@ealback, the integral

term and derivative action. For this reason PID controlleesenoriginally called
three-term controllersThe controller parameters are the proportional girthe



10.1. BASIC CONTROL FUNCTIONS 298

r 1
~O—{k/sf—
P | | Ly y
| kp (%) | P(s)
3 kqs |
3 — -1
-1 ' Controller
(a) PID using error feedback (b) PID using two degrees of freedom

Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con
trollers have one output, the control signalThe controller in (a), which is based on error
feedback, has one input, the control emes r — y. For this controller proportional, integral
and derivative action acts on the erm& r — y. The two degree-of-freedom controller in
(b) has two inputs, the referencend the process output Integral action acts on the error,
but proportional and derivative action act on the process oytput

integral gaink; and the derivative gaily. The time constant3; and Ty, called
integral time (constant) and derivative time (constamg,sometimes used instead
of the integral and derivative gains.

The controller £0.1) represents an idealized controller. It is a useful abstac
for understanding the PID controller, but several modificegionust be made to
obtain a controller that is practically useful. Before dissing these practical issues
we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figuy2ashows the
responses of the process output to a unit step in the refevahee for a system with
pure proportional control at different gain settings. la #ibsence of a feedforward
term, the output never reaches the reference, and henceavieftawith nonzero
steady-state error. Letting the process and the controflee transfer functions
P(s) andC(s), the transfer function from reference to output is

yr = %, (10.2)
and thus the steady-state error for a unit step is
1-Gy(0) = ;
1+kp,P(0)

For the system in Figur&0.2awith gainsk, = 1, 2 and 5, the steady-state error
is 0.5,0.33 and 0.17. The error decreases with increasimg lgat the system also
becomes more oscillatory. Notice in the figure that the ihitEdue of the control
signal equals the controller gain.

To avoid having a steady-state error, the proportional 'ambe changed to

u(t) = kpe(t) + ug, (10.3)
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Figure 10.2:Responses to step changes in the reference value for a system witlogipral
controller (a), Pl controller (b) and PID controller (c). The process the transfer function
P(s) = 1/(s+1)3, the proportional controller has parametgys= 1,2 and 5, the Pl controller
has parameteiks, = 1,k = 0,0.2,0.5and 1, and the PID controller has paraméjess 2.5,

ki =1.5andky =0, 1, 2 and 4.

whereug is a feedforward term that is adjusted to give the desireddststate
value. If we choosels = r/P(0) = k.r, then the output will be exactly equal
to the reference value, as it was in the state space caseadgdothat there are
no disturbances. However, this requires exact knowledgieegbrocess dynamics,
which is usually not available. The paramatgr calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Sectio.4, integral action guarantees that the process output
agrees with the reference in steady state and provides ematit/e to the feed-
forward term. Since this result is so important, we will pawia general proof.
Consider the controller given by equatidtO(1). Assume that there exists a steady
state withu = ug ande = &y. It then follows from equationl(0.1) that

Uo = Kp€o + ki eot,

which is a contradiction unless or k; is zero. We can thus conclude that with
integral action the error will be zero if it reaches a steadjes Notice that we have
not made any assumptions about the linearity of the proacehke disturbances. We
have, however assumed that an equilibrium exists. Usirgrat action to achieve
zero steady-state error is much better than using feedfdrwehich requires a
precise knowledge of process parameters.

The effect of integral action can also be understood fromueegy domain
analysis. The transfer function of the PID controller is

qg=m+%+ms (10.4)
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(a) Automatic reset (b) Derivative action

Figure 10.3:Implementation of Pl and PD controllers. The block diagram in (a) shaws h
integral action is implemented usipgsitive feedbaclith a first-order system, sometimes
called automatic reset. The block diagram in (b) shows how derivati@nazan be imple-
mented by taking differences between a static system and a first-osiensy

The controller has infinite gain at zero frequen€y(@) = o), and it then follows
from equation 10.2 that Gy, (0) = 1, which implies that there is no steady-state
error for a step input.

Integral action can also be viewed as a method for generdtaépedforward
termug in the proportional controllerl0.3 automatically. One way to do this is
shown in Figurel0.3g where the controller output is low-pass-filtered and fekbac
with positive gain. This implementation, calladtomatic resewas one of the early
inventions of integral control. The transfer function of gystem in Figurel0.3a
is obtained by block diagram algebra; we have

1+4sT Kp
Gue—kp S.E —kp+s_.ﬁa
which is the transfer function for a Pl controller.

The properties of integral action are illustrated in Figb@e2bfor a step input.
The proportional gain is constak}, = 1, and the integral gains ake= 0, 0.2, 0.5
and 1. The casle = 0 corresponds to pure proportional control, with a steddes
error of 50%. The steady-state error is eliminated when rate&gin action is used.
The response creeps slowly toward the reference for smalesaifk; and goes
faster for larger integral gains, but the system also besammre oscillatory.

The integral gairk; is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control and assurhéhthaystem is
stable and initially at rest with all signals being zero. Apunit step disturbance at
the process input. After a transient the process outputtga@eso and the controller
output settles at a value that compensates for the distoeb#riollows from (L0.1)
that

u(oo) = k; /0'00 e(t)dt.

The integrated error is thus inversely proportional to thegral gairk; . The integral
gain is thus a measure of the effectiveness of disturbateeuation. A large gain
k; attenuates disturbances effectively, but too large a gaas@scillatory behavior,
poor robustness and possibly instability.

We now return to the general PID controller and consider tiecebf the
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derivative termky. Recall that the original motivation for derivative feedkavas
to provide predictive or anticipatory action. Notice thhae tcombination of the
proportional and the derivative terms can be written as
de
dt
wheree,(t) can be interpreted as a prediction of the error at timeTy by linear
extrapolation. The prediction tim& = kq/Kkj is the derivative time constant of
the controller.

Derivative action can be implemented by taking the diffeesimetween the signal
and its low-pass filtered version as shown in Figl@e3h The transfer function
for the system is

de

sTy
Gue(s) = kp(1 - .
ue(S) p( 1+sTd) P1+sTy

The system thus has the transfer functi®(s) = sTq/(1 + sTy), which approxi-
mates a derivative for low frequencigs|(< 1/ Ty).

Figure10.2cillustrates the effect of derivative action: the systemssiltatory
when no derivative action is used, and it becomes more dampdue derivative
gain is increased. Performance deteriorates if the derevgtin is too high. When
the input is a step, the controller output generated by thivatee term will be
an impulse. This is clearly visible in Figui®.2¢c The impulse can be avoided by
using the controller configuration shown in Figui@. 1b.

Although PID control was developed in the context of engimegapplications,
it also appears in nature. Disturbance attenuation by fagdm biological sys-
tems is often calleddaptation A typical example is the pupillary reflex discussed
in Example8.11, where it is said that the eye adapts to changing light intens
Analogously, feedback with integral action is called petrfedaptationYHSDOQ].

In biological systems proportional, integral and derivataction is generated by
combining subsystems with dynamical behavior similarlymuat is done in en-
gineering systems. For example, Pl action can be generatdtebgteraction of
several hormoneESGKO03.

Example 10.1 PD action in the retina
The response of cone photoreceptors in the retina is an egavhgire proportional
and derivative action is generated by a combination of caneshorizontal cells.
The cones are the primary receptors stimulated by light, vimiturn stimulate the
horizontal cells, and the horizontal cells give inhibitgnggative) feedback to the
cones. A schematic diagram of the system is shown in Fi@jQréa The system
can be modeled by ordinary differential equations by regmesg neuron signals
as continuous variables representing the average putsdmg¥il99] it is shown
that the system can be represented by the differential emsat

dx 1 dx
. T (X —ke+u), ot
whereu is the light intensity anat; andx, are the average pulse rates from the cones

(10.5)

1
= —(X; — X
Th(l 2)
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Figure 10.4: Schematic diagram of cone photoreceptors (C) and horizontal cellin(H)
the retina. In the schematic diagram in (a), excitatory feedback is indibgtedrows and
inhibitory feedback by circles. A block diagram is shown in (b) and the i#sponse in (c).

and the horizontal cells. A block diagram of the system isashim Figure10.4h
The step response of the system shown in Fig@dcshows that the system has
a large initial response followed by a lower, constant stestdte response typical
of proportional and derivative action. The parameters usatié simulation are
k =4, T, = 0.025 andT,, = 0.08. \Y

10.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chaptgestha property that
the complexity of the controller is directly reflected by tlwerplexity of the model.
When designing controllers by output feedback in Chaptare found for single-
input, single-output systems that the order of the corgreVas the same as the order
of the model, possibly one order higher if integral actiorswequired. Applying
similar design methods for PID control will require that werddow-order models
of the processes to be able to easily analyze the results.

Low-order models can be obtained from first principles. Anyblgtasystem
can be modeled by a static system if its inputs are sufficiesitiw. Similarly a
first-order model is sufficient if the storage of mass, momeruenergy can be
captured by only one variable; typical examples are thecitglof a car on a road,
angular velocity of a stiff rotational system, the level iraak and the concentration
in a volume with good mixing. System dynamics are of secondrdfdhe storage
of mass, energy and momentum can be captured by two stasbhes; typical
examples are the position of a car on the road, the stalidizaf stiff satellites,
the levels in two connected tanks and two-compartment nsodelvide range of
techniques for model reduction are also available. In thagpter we will focus on
design techniques where we simplify the models to captwesential properties
that are needed for PID design.

We begin by analyzing the case of integral control. A stalgktesn can be
controlled by an integral controller provided that the riegiments on the closed
loop system are modest. To design the controller we assiatthgtransfer function
of the process is a constalit = P(0). The loop transfer function under integral
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controlthen becomesk; /s, and the closed loop characteristic polynomial is simply
s+ Kk;. Specifying performance by the desired time constartf the closed loop
system, we find that the integral gain is given by

ki = 1/(Ta P(0)).

The analysis requires th@ be sufficiently large that the process transfer function
can be approximated by a constant.

For systems that are not well represented by a constant wairtan obtain
a better approximation by using the Taylor series expangidhe loop transfer
function:

kiP(O
=k P'(0) + — S( ).
Choosingk; P’(0) = —0.5 gives a system with good robustness, as will be discussed

in Section12.5 The controller gain is then given by
1
kk = ——— 10.6
| ZP/(O) 5 ( )

and the expected closed loop time constartjise —2P’(0)/P(0).

L = PO L KPO+5PO)

Example 10.2 Integral control of AFM in tapping mode

A simplified model of the dynamics of the vertical motion of araic force
microscope in tapping mode was discussed in Exe&2eThe transfer function
for the system dynamics is

—ST
P9 = 22— )
st(s+a)
wherea = ¢wp, 7 = 27 n/wo and the gain has been normalized to 1. We have
P0) = 1 andP’(0) = —z/2 — 1/a, and it follows from (0.6 that the integral
gain can be chosen &s = a/(2 + ar). Nyquist and Bode plots for the resulting
loop transfer function are shown in Figut8.5 \%

A first-order system has the transfer function

b

With a PI controller the closed loop system has the charatiegolynomial
S(S + @) + bkys + bk = s? + (a + bky)s + bk.

The closed loop poles can thus be assigned arbitrary valugsdper choice of
the controller gains. Requiring that the closed loop sydtene the characteristic
polynomial

p(s) ="+ as + ay,

we find that the controller parameters are

al;a, K =2 (10.7)
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is desidn
based on the slope of the process transfer function at 0. The congiolsrgood robustness
properties based on a very simple analysis.

If we require a response of the closed loop system that isslithvan that of the open
loop system, a reasonable choic&js= a + a anda, = aa. If a response faster
than that of the open loop system is required, it is reaseralthoose; = 27 wo
anda, = 3, wherewy and¢ are undamped natural frequency and damping ratio
of the dominant mode. These choices have significant impadteorobustness of
the system and will be discussed in Secti@4 An upper limit towg is given by

the validity of the model. Large values af, will require fast control actions, and
actuators may saturate if the value is too large. A first-ordedel is unlikely to
represent the true dynamics for high frequencies. We ilitistthe design by an
example.

Example 10.3 Cruise control using Pl feedback

Consider the problem of maintaining the speed of a car ases gp a hill. In
Example5.14 we found that there was little difference between the lineead

nonlinear models when investigating Pl control, provideat the throttle did not
reach the saturation limits. A simple linear model of a cas gigen in Exampl&.11

% — —a( — ve) + b(U — Ue) — g0, (10.8)

wherev is the velocity of the caw is the input from the engine argtis the slope
of the hill. The parameters weee= 0.0101,b = 1.3203,g = 9.8, v = 20 and
Ue = 0.1616. This model will be used to find suitable parameters of &lespeed
controller. The transfer function from throttle to velocitya first-order system.
Since the open loop dynamics is so slow, it is natural to spedi&ster closed loop
system by requiring that the closed loop system be of secoter with damping
ratioc and undamped natural frequengy The controller gains are given biQ.7).
Figure 10.6 shows the velocity and the throttle for a car that initiallpwas
on a horizontal road and encounters a hill with a slope°dditdtimet = 6 s. To
design a PI controller we chooge= 1 to obtain a response without overshoot,
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Figure 10.6: Cruise control using Pl feedback. The step responses for theartoinput
illustrate the effect of parameteys= 1 andw, on the response of a car with cruise control.
A change in road slope front Qo 4° is applied betweeh = 5 and 6 s. (a) Responses for
wo = 0.5and; = 0.5, 1 and 2. Choosing = 1 gives no overshoot. (b) Responsesfet 1
andwg = 0.2, 0.5 and 1.0.

as shown in Figurd0.6a The choice ofwg is a compromise between response
speed and control actions: a large value gives a fast respbuosit requires fast
control action. The trade-off is illustrated in Figur@.6h The largest velocity error
decreases with increasimg, but the control signal also changes more rapidly. In
the simple modelX0.8) it was assumed that the force responds instantaneously to
throttle commands. For rapid changes there may be additilynamics that have

to be accounted for. There are also physical limitationseéa#lte of change of the
force, which also restricts the admissible valuevgf A reasonable choice @y

is in the range 0.5-1.0. Notice in Figut@.6that even withwg = 0.2 the largest
velocity error is only 1 m/s. \%

A Pl controller can also be used for a process with secondragdemics, but
there will be restrictions on the possible locations of tlesed loop poles. Using a
PID controller, it is possible to control a system of secordkoin such a way that
the closed loop poles have arbitrary locations; see Exet€isz

Instead of finding a low-order model and designing contrslfer them, we
can also use a high-order model and attempt to place only ademnant poles.
An integral controller has one parameter, and it is posgiblgosition one pole.
Consider a process with the transfer functi®s). The loop transfer function with
anintegral controlleri (s) = ki P(s)/s. The roots of the closed loop characteristic
polynomial are the roots &f + ki P(s) = 0. Requiring thas = —a be a root, we
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Figure 10.7: Ziegler—Nichols step and frequency response experiments. Thetepites
sponse in (a) is characterized by the parametensdz . The frequency response method (b)
characterizes process dynamics by the point where the Nyquist alitve process transfer
function first intersects the negative real axis and the frequepeyhere this occurs.

find that the controller gain should be chosen as
a
ki = .
' P(-a)
The poles = —a will be dominant ifa is small. A similar approach can be applied
to Pl and PID controllers.

(10.9)

10.3 PID Tuning

Users of control systems are frequently faced with the tha#ljasting the controller
parameters to obtain a desired behavior. There are manyediffeays to do this.
One approach is to go through the conventional steps of rimgdahd control
design as described in the previous section. Since the PlDotlenthas so few
parameters, a number of special empirical methods havebeakso developed for
direct adjustment of the controller parameters. The firstiiniles were developed
by Ziegler and NicholsZN42]. Their idea was to perform a simple experiment,
extract some features of process dynamics from the expetiamel determine the
controller parameters from the features.

Ziegler—Nichols’ Tuning

In the 1940s, Ziegler and Nichols developed two methods fotrotier tuning
based on simple characterization of process dynamics itirtteeand frequency
domains.

The time domain method is based on a measurement of part optreloop
unit step response of the process, as shown in Fifj0réa The step response is
measured by applying a unit step input to the process anddiegathe response.
The response is characterized by parametargdz, which are the intercepts of the
steepest tangent of the step response with the coordinese Blixe parameteris
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Table 10.1:Ziegler—Nichols tuning rules. (a) The step response methods give thmpters
in terms of the interce@ and the apparent time delay(b) The frequency response method
gives controller parameters in termsasitical gain k. andcritical period Te.

Type kT Ty Type  kp T Tq

P 1/a P 0.5

PI 0.9a 3 PI 0.4, 0.8T;
PID 12/a 2 05 PID 0.6 0.5T, 0.125T;
(a) Step response method (b) Frequency response method

an approximation of the time delay of the system andis the steepest slope of the
step response. Notice that it is not necessary to wait upfildy state is reached to
find the parameters, it suffices to wait until the response hdwahanflection point.
The controller parameters are given in Tab1l The parameters were obtained
by extensive simulation of a range of representative psaEsesA controller was
tuned manually for each process, and an attempt was then tmaderelate the
controller parameters with andz.

In the frequency domain method, a controller is connectatiégrocess, the
integral and derivative gains are set to zero and the prigpaitgain is increased
until the system starts to oscillate. The critical value @& groportional gairk,
is observed together with the period of oscillatign It follows from Nyquist's
stability criterion that the loop transfer functitn= k. P(s) intersects the critical
point at the frequency. = 27/ T.. The experiment thus gives the point on the
Nyquist curve of the process transfer function where thespHag is 180, as
shown in Figurel0.7h

The Ziegler—Nichols methods had a huge impact when they wéradinced
in the 1940s. The rules were simple to use and gave initialitiond for manual
tuning. The ideas were adopted by manufacturers of contsdtheroutine use. The
Ziegler—Nichols tuning rules unfortunately have two sewna@vbacks: too little
process information is used, and the closed loop systensthaobtained lack
robustness.

The step response method can be improved significantly by atieaizang the
unit step response by paramet&rsz andT in the model

P(s) = K e (10.10)

The parameters can be obtained by fitting the model to a meastegdesponse.
Notice that the experiment takes a longer time than the @xpet in Figurel0.7a
because to determin€itis necessary to wait until the steady state has been rdache
Also notice that the interceptin the Ziegler—Nichols rule is given ly= Kz/T.
The frequency response method can be improved by measurirggpoinits on
the Nyquist curve, e.g., the zero frequency giimr the point where the process
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step regmns
(b) for PI control of the vertical motion of an atomic force microscop&pping mode. The
averaging parameter is = 20. Results with Ziegler—Nichols tuning are shown by dashed
lines, and modified Ziegler—Nichols tuning is shown by solid lines. The Nygig of the
process transfer function is shown by dotted lines.

has a 90 phase lag. This latter point can be obtained by connectingntagrial
controller and increasing its gain until the system reat¢hesstability limit. The
experiment can also be automated by using relay feedbadkilldse discussed
later in this section.

There are many versions of improved tuning rules. As an ithtisin we give
the following rules for Pl control, based oAHO05]:

0.157 +0.35T ,0.9T 0.467 +0.02T ,0.3T
Kp = Kz (Kr )’ ' Kz2 (Krz)’

0.07 0.16k. 0.62 0.5k (10.11)
kp =022 — =~ (0‘4'“)’ K= Tk ( Te )

The values for the Ziegler—Nichols rule are given in parergheblotice that the
improved formulas typically give lower controller gainsaththe Ziegler—Nichols
method. The integral gain is higher for systems where the mijcgare delay-
dominatedz > T.

Example 10.4 Atomic force microscope in tapping mode

A simplified model of the dynamics of the vertical motion of aeraic force
microscope in tapping mode was discussed in Exarh@l2 The transfer function
is normalized by choosing/a as the time unit. The normalized transfer function

is et

sTh(s+1)’

whereT, = 2nza/wo = 2nz¢. The Nyquist plot of the transfer function is shown
in Figure10.8afor z = 0.002 andch = 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Re= —0.0461 forw = 13.1. The critical gain

P(s) =
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Figure 10.9:Block diagram of a process with relay feedback (a) and typical sighal e
process outpwy is a solid line, and the relay outpuis a dashed line. Notice that the signals
u andy have opposite phases.

is thusk, = 21.7 and the critical period i3, = 0.48. Using the Ziegler—Nichols
tuning rule, we find the parameteks = 8.87 andk; = 22.6 (T; = 0.384) for
a PI controller. With this controller the stability margingg = 0.31, which is
quite small. The step response of the controller is shown iarEig0.8 Notice in
particular that there is a large overshoot in the contraiaiig

The modified Ziegler—Nichols ruld.0.1]) gives the controller parameteks =
3.47 andk; = 8.73 (T; = 0.459) and the stability margin becomgs= 0.61. The
step response with this controller is shown in Figlie8 A comparison of the
responses obtained with the original Ziegler—Nichols ratengs that the overshoot
has been reduced. Notice that the control signal reacrstsédy-state value almost
instantaneously. It follows from Exampl.2that a pure integral controller has
the normalized gaik; = 1/(2 + T,) = 0.44. Comparing this with the gains of a
PI controller, we can conclude that a PI controller gives mustitelp performance
than a pure integral controller. \%

Relay Feedback

The Ziegler—Nichols frequency response method increasgathef a proportional
controller until oscillation to determine the critical gd{; and the corresponding
critical periodT, or, equivalently, the point where the Nyquist curve intets¢he
negative real axis. One way to obtain this information awtecally is to connect
the process in a feedback loop with a nonlinear element bavirelay function as
shown in Figurel0.9a For many systems there will then be an oscillation, as shown
in Figure10.9h where the relay output is a square wave and the process output
y is close to a sinusoid. Moreover the input and the output arefophase, which
means that the system oscillates with the critical pefligdvhere the process has
a phase lag of 180 Notice that an oscillation with constant period is esttisid
quickly.

The critical period is simply the period of the oscillatioro @ietermine the
critical gain we expand the square wave relay output in aiepsgeries. Notice
in the figure that the process output is practically sinuddiéaause the process
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attenuates higher harmonics effectively. It is then sufficie consider only the
first harmonic component of the input. Lettidgbe the relay amplitude, the first
harmonic of the square wave input has amplitudgé= If a is the amplitude
of the process output, the process gain at the critical #equow. = 27/ T, is
|P(iwc)| = wa/(4d) and the critical gain is
4d
ar’
Having obtained the critical gaik. and the critical periody, the controller pa-
rameters can then be determined using the Ziegler—Nichlgs.iumproved tuning
can be obtained by fitting a model to the data obtained fromelag experiment.
The relay experiment can be automated. Since the amplitudhe afScillation
is proportional to the relay output, it is easy to control yt &djusting the relay
output.Automatic tunindgased on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing adsuthat activates relay
feedback. The relay amplitude is automatically adjustedetepkthe oscillations
sufficiently small, and the relay feedback is switched to a RIDtoller as soon as
the tuning is finished.

Ke (10.12)

10.4 Integrator Windup

Many aspects of a control system can be understood fronrlinedels. There are,
however, some nonlinear phenomena that must be taken intmaic These are
typically limitations in the actuators: a motor has limitgaeed, a valve cannot be
more than fully opened or fully closed, etc. For a system dipatrates over a wide
range of conditions, it may happen that the control variabbehes the actuator
limits. When this happens, the feedback loop is broken amdsyfstem runs in
open loop because the actuator remains at its limit indegghydof the process
output as long as the actuator remains saturated. The ihtegrawill also build
up since the error is typically nonzero. The integral term thigdcontroller output
may then become very large. The control signal will then rensaiturated even
when the error changes, and it may take a long time beforentbgrator and the
controller output come inside the saturation range. Theeamuence is that there
are large transients. This situation is referred tmgegrator windup illustrated in
the following example.

Example 10.5 Cruise control

The windup effect s illustrated in Figudd.10awhich shows what happens when
a car encounters a hill that is so steep) tGat the throttle saturates when the cruise
controller attempts to maintain speed. When encountehieglope at tim¢ = 5,

the velocity decreases and the throttle increases to germame torque. However,
the torque required is so large that the throttle saturateserror decreases slowly
because the torque generated by the engine is just a literlaghan the torque
required to compensate for gravity. The error is large andhtiegral continues to
build up until the error reaches zero at time 30, but the odletroutput is still larger
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Figure 10.10:Simulation of Pl cruise control with windup (a) and anti-windup (b). Thaerig
shows the speed and the throttlau for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The contrat@mpters are

kp = 0.5andk; = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

than the saturation limit and the actuator remains satiratee integral term starts
to decrease, and at time 45 and the velocity settles quioktii¢ desired value.
Notice that it takes considerable time before the contraligput comes into the
range where it does not saturate, resulting in a large owetsh \%

There are many methods to avoid windup. One method is illiestran Fig-
ure 10.11 the system has an extra feedback path that is generated dgunrey
the actual actuator output, or the output of a mathematicalehof the saturating
actuator, and forming an error signal as the difference between the output of
the controller» and the actuator output The signale; is fed to the input of the
integrator through gaik;. The signak; is zero when there is no saturation and the
extra feedback loop has no effect on the system. When thatactsaturates, the
signale; is fed back to the integrator in such a way thagoes toward zero. This
implies that controller output is kept close to the satoratimit. The controller
output will then change as soon as the error changes sigmégtal windup is
avoided.

The rate at which the controller output is reset is governedhkyfeedback
gaink;; a large value ok; gives a short reset time. The paramé¢erannot be too
large because measurement noise can then cause an uridesgab A reasonable
choice is to choosl as a fraction of 1T;. We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control with anti-windup
Figure10.10bshows what happens when a controller with anti-windup idiegp
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Figure 10.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (¥s) consists of the error term plus a “reset” based on input saturatione If th
actuator is not saturated, then= u — v, otherwisee; will decrease the integrator input to
prevent windup.

to the system simulated in Figut®.10aBecause of the feedback from the actuator
model, the output of the integrator is quickly reset to a galuch that the controller
output is at the saturation limit. The behavior is drasticdifferent from that in
Figurel0.10aand the large overshoot is avoided. The tracking gain is 2 in the
simulation. \%

10.5 Implementation

There are many practical issues that have to be consideradimpgementing PID
controllers. They have been developed over time based otigadeexperience. In
this section we consider some of the most common. Similarideretions also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivativas high gain for
high-frequency signals. This means that high-frequencysoreanent noise will
generate large variations in the control signal. The effecteasurement noise may
be reduced by replacing the tekgs by kys/(1 + sTt), which can be interpreted
as an ideal derivative of a low-pass filtered signal. For saidlé transfer function
is approximatelykys and for larges it is equal toky/ T+. The approximation acts
as a derivative for low-frequency signals and as a consaintfgr high-frequency
signals. The filtering time is chosen&s = (kq/kp)/N, with N in the range 2—-20.
Filtering is obtained automatically if the derivative is ilemented by taking the
difference between the signal and its filtered version as shiowigurel0.3b(see
equation 10.9).

Instead of filtering just the derivative, it is also possild@se an ideal controller
and filter the measured signal. The transfer function of sucmaaller with a filter
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is then

C(s) =k, (1+ Si + sTd) ! (10.13)

T 14T +(sT¢)2/2°
where a second-order filter is used.

Setpoint Weighting

Figure 10.1 shows two configurations of a PID controller. The system in Fig-
ure 10.1ahas a controller witherror feedbackwhere proportional, integral and
derivative action acts on the error. In the simulation of Pkiltcollers in Fig-
ure 10.2cthere is a large initial peak in the control signal, whichasised by the
derivative of the reference signal. The peak can be avoidessimg the controller
in Figure10.1h where proportional and derivative action acts only on tloe@ss
output. An intermediate form is given by

dr dy)

u=kp(fr -v) +ki/0 (r(r)—y(r))olwkd(ya—a

where the proportional and derivative actions act on fomsty andy of the refer-
ence. Integral action has to act on the error to make suréht@arror goes to zero
in steady state. The closed loop systems obtained for differdues of andy
respond to load disturbances and measurement noise imtigevgay. The response
to reference signals is different because it depends orefnes off andy , which
are calledeference weightsr setpoint weightsWe illustrate the effect of setpoint
weighting by an example.

(10.14)

Example 10.7 Cruise control with setpoint weighting

Consider the PI controller for the cruise control systemweetiin Examplel0.3
Figure10.12shows the effect of setpoint weighting on the response ofyseem

to a reference signal. With = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to thetgration limit. There is no
overshoot with3 = 0 and the control signal is much smaller, clearly a much bette
drive comfort. The frequency responses gives another vidineosame effect. The
parametels is typically in the range 0-1, ang is normally zero to avoid large
transients in the control signal when the reference is obéng \%

The controller given by equatiotQ.14 is a special case of the general controller
structure having two degrees of freedom, which was discliss8ection?.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different techgiel® Figurel0.13
shows how Pl and PID controllers can be implemented by feedirackd opera-
tional amplifiers.

To show that the circuit in Figur0.13 is a PID controller we will use the
approximate relation between the input voltagand the output voltage of the
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Figure 10.12: Time and frequency responses for Pl cruise control with setpointhiiegy
Step responses are shown in (a), and the gain curves of the frggesponses in (b). The
controller gains ar&, = 0.74 andk; = 0.19. The setpoint weights afe= 0, 0.5 and 1, and
y =0.

operational amplifier derived in ExamBe3,
In this equatior¥; is the impedance between the negative input of the amplifgbr an

the input voltages, andZ, is the impedance between the zero input of the amplifier
and the output voltage. The impedances are given by

Ry 1
Z,(8) = ———, Z(8) =R+ —,
1(s) 17 RCis 2(9) 2+ S8
Il
1
C
O——AM— F— o——wWA—— —
R | B2 Ry R ¢,
e e ®) e S
u u
o 0 o ‘o)
(a) PI controller (b) PID controller

Figure 10.13:Schematic diagrams for Pl and PID controllers using op amps. Thetdircu
(a) uses a capacitor in the feedback path to store the integral of theTreocircuit in (b)
adds a filter on the input to provide derivative action.
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and we find the following relation between the input voltaged the output voltage
u:
—ée _ RO+RGCs)1+ RzCzS)e
Z1 a Ry R,Cos '

This is the input/output relation for a PID controller of therfo(10.1) with param-
eters

u=

R,C R,C RiR,C;:C
kp: 1C1 + 22’ T = RCy + RyCo, T, = 12102

The corresponlcji’rrg:g} results for a PI controller are obtaine%bﬁ}rfg 812(::2 0 (re-
moving the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may bplemented using
a computer. The computer typically operates periodicaliyh wignals from the
sensors sampled and converted to digital form by the A/D edav, and the control
signal computed and then converted to analog form for thea#mts. The sequence
of operation is as follows:

1. Wait for clock interrupt 4. Send output to the actuator
2. Read input from sensor 5. Update controller variables
3. Compute control signal 6. Repeat

Notice that an output is sent to the actuators as soon asvaikhble. The time
delay is minimized by making the calculations in step 3 astsé® possible and
performing all updates after the output is commanded. Thigla way of reducing
the latency is, unfortunately, seldom used in commercistesys.

As an illustration we consider the PID controller in Figdr@.11, which has
a filtered derivative, setpoint weighting and protectioniasfaintegral windup.
The controller is a continuous-time dynamical system. Tolémgnt it using a
computer, the continuous-time system has to be approxihiatex discrete-time
system.

A block diagram of a PID controller with anti-windup is showrRigurel0.11
The signab is the sum of the proportional, integral and derivative ®rand the
controller output is1 = sai(»), where sat is the saturation function that models the
actuator. The proportional terky (Sr — y) is implemented simply by replacing the
continuous variables with their sampled versions. Hence

P(t) = kp (Br () — y(t0) , (10.15)

where{ty} denotes the sampling instants, i.e., the times when the gtmnppeads
its input. We leth represent the sampling time, so that; = tx + h. The integral
term is obtained by approximating the integral with a sum,

h
| () = 1 (00 +kh et + = (satv) — v). (10.16)
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whereT; = h/k; represents the anti-windup term. The filtered derivative tBrm

is given by the differential equation
dD
Ti— + D = —kgy.
fgr T Kay

Approximating the derivative with a backward differencees
f D(t) — D(tc-1) y(t) — y(t-1)

T D(ty) = —
P + D(t) Kd b
which can be rewritten as
Ty
D(ty) = D(tx—1) — t) — y(t—1)) . 10.17
(tk) T+ (tk—1) Tf+h(y(k) y(tk-1)) ( )

The advantage of using a backward difference is that the peaity /(T + h)

is nonnegative and less than 1 forlalk- 0, which guarantees that the difference
equation is stable. Reorganizing equatiat3.{5—(10.17, the PID controller can
be described by the following pseudocode:

% Preconpute controller coefficients
bi =ki *h

ad=Tf/ ( Tf +h)

bd=kd/ ( Tf +h)

br=h/ Tt

% Control algorithm- main | oop
while (running) {

r=adi n(chl) % read setpoint fromchl

y=adi n(ch?2) % read process variable fromch2
P=kp* (b*r-vy) % conput e proportional part
D=ad* D- bd* (y-yol d) % updat e derivative part

v=P+| +D % conput e tenporary out put

u=sat (v, ul ow, uhi gh) % si mul ate actuator saturation
daout (ch1l) % set anal og out put chl

I =1 +bi *(r-y)+br*(u-v) % updat e i ntegral

yol d=y % updat e ol d process out put

sl eep(h) % wait until next update interval

}

Precomputation of the coefficients , ad, bd andbr saves computer time in
the main loop. These calculations have to be done only wheinatlem parameters
are changed. The main loop is executed once every samplir@gp@&he program
has three stateyol d, | , andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the aimgogand setting
the analog output consists of four multiplications, foudiéidns and evaluation
of thesat function. All computations can be done using fixed-point gkttons
if necessary. Notice that the code computes the filtered ataré/of the process
output and that it has setpoint weighting and anti-windugigmtion.
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10.6 Further Reading

The history of PID control is very rich and stretches back toltbginning of the
foundation of control theory. Very readable treatmentgaren by BennettBen79
Ben93 and Mindel Min02]. The Ziegler-Nichols rules for tuning PID controllers,
first presentedin 194ZN42], were developed based on extensive experiments with
pneumatic simulators and Vannevar Bush'’s differentialyaea at MIT. An inter-
esting view of the development of the Ziegler—Nichols russgiven in an interview
with Ziegler Bli90]. An industrial perspective on PID control is given Bi@95,
[Shi9q and [YH91] and in the papedMO02] cited in the beginning of this chapter.

A comprehensive presentation of PID control is givenAiRD5]. Interactive learn-

ing tools for PID control can be downloaded fraritp://www.calerga.com/contrib

Exercises

10.1(Ideal PID controllers) Consider the systems representéutddylock diagrams
in Figure10.1 Assume that the process has the transfer fun®i®) = b/(s+a)
and show that the transfer functions fronto y are

B bkgs? + bkps + bk

@ Gy =7 bky)s? + (a + bky)s + bk’
b d

(b) Gyr (s) = .

(1+ bkg)s? + (a+ bkp)s + bk -
Pick some parameters and compare the step responses oftdrasys

10.2 Consider a second-order process with the transfer function

The closed loop system with a Pl controller is a third-ordetesyis Show that it is
possible to position the closed loop poles as long as the $thra poles is-a;. Give
equations for the parameters that give the closed loop cteaistic polynomial

(S + (Xo) (82 + 2{06{)08 + COS)

10.3 Consider a system with the transfer functibits) = (s + 1)~2. Find an
integral controller that gives a closed loop polsat —a and determine the value
of a that maximizes the integral gain. Determine the other poié¢ise system and
judge if the pole can be considered dominant. Compare watlidghue of the integral
gain given by equatiornl(Q.6).

10.4 (Ziegler—Nichols tuning) Consider a system with transferction P(s) =
e5/s. Determine the parameters of P, Pl and PID controllers usirgjetieNichols
step and frequency response methods. Compare the paramletes obtained by
the different rules and discuss the results.
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10.5 (Vehicle steering) Design a proportional-integral colimofor the vehicle
steering system that gives the closed loop characterisjmpmial

S + 2w0S% + 2005 + ;.

10.6 (Congestion control) A simplified flow model for TCP transmissie de-
rived in [HMTGOO, LPDO0Z. The linearized dynamics are modeled by the transfer
function

b —STe

qu(S) (S + al)(s + az) © ’
which describes the dynamics relating the expected quegéhg to the expected
packet dropp. The parameters are given by = 2N?/(ct?2), a2 = 1/ze and
b = c¢?/(2N). The parametec is the bottleneck capacity\ is the number of
sources feeding the link and is the round-trip delay time. Use the parameter
valuesN = 75 sourcesC = 1250 packets/s and = 0.15 and find the parameters
of a PI controller using one of the Ziegler—Nichols rules arel ¢brresponding
improved rule. Simulate the responses of the closed loopsgsbbtained with the
Pl controllers.

10.7(Motor drive) Consider the model of the motor drive in ExeedslO Develop
an approximate second-order model of the system and usdésign an ideal PD
controller that gives a closed loop system with eigenvainigsog + i wg/1 — 2.
Add low-pass filtering as shown in equatidk0(13 and explore how largeg can
be made while maintaining a good stability margin. Simulagsdosed loop system
with the chosen controller and compare the results withdnéroller based on state
feedback in Exercis6.11

10.8 Consider the system in Exerci$6.7investigate what happens if the second-
order filtering of the derivative is replace by a first-order filte

10.9(Tuning rules) Apply the Ziegler—Nichols and the modified tuprules to
design PI controllers for systems with the transfer funaion
e’ e’
Pr=—, P,=——,
T s T s+1

Compute the stability margins and explore any patterns.

P; =€ 5.

10.10(Windup and anti-windup) Consider a Pl controller of the f@s) = 1+1/s

for a process with input that saturates wien> 1, and whose linear dynamics are
given by the transfer functioR(s) = 1/s. Simulate the response of the system to
step changes in the reference signal of magnitude 1, 2 anel@a®the simulation
when the windup protection scheme in Figd@11is used.

10.11 (Windup protection by conditional integration) Many medischave been
proposed to avoid integrator windup. One method catledditional integration
is to update the integral only when the error is sufficientlanTo illustrate this
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method we consider a system with Pl control described by

%_ e if el < g
dt |0 iflel > e,

dx
d_tl =u, u = sat,, (kpe + kix2),
wheree = r — x. Plot the phase portrait of the system for the parameter salue
kp = 1, ki = 1,up = 1 andey = 1 and discuss the properties of the system.
The example illustrates the difficulties of introducing ad hoalinearities without
careful analysis.



Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with sindiieriorations
in another frequency range, and the price is higher if the plant is opep-lowtable. This
applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 198&03.

In this chapter we continue to explore the use of frequencyalo techniques
with a focus on the design of feedback systems. We begin witior@e thorough
description of the performance specifications for contrsteams and then introduce
the concept of “loop shaping” as a mechanism for designingrobers in the
frequency domain. We also introduce some fundamentaHiioits to performance
for systems with time delays and right half-plane poles a&rdz

11.1 Sensitivity Functions

In the previous chapter, we considered the use of propattiotegral-derivative
(PID) feedback as a mechanism for designing a feedback dientfor a given
process. In this chapter we will expand our approach to dehkuricher repertoire
of tools for shaping the frequency response of the closepl $ystem.

One of the key ideas in this chapter is that we can design theviier of the
closed loop system by focusing on the open loop transfertimmcThis same
approach was used in studying stability using the Nyquittrion: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedoop system. From a design perspective, the use of loop asétdyds is very
powerful: since the loop transfer functionlis= P C, if we can specify the desired
performance in terms of propertieslof we can directly see the impact of changes
in the controllerC. This is much easier, for example, than trying to reason threc
about the tracking response of the closed loop system, winassfer function is
given byGy, = PC/(1+ PC).

We will start by investigating some key properties of thedegck loop. A
block diagram of a basic feedback loop is shown in Fidurd. The system loop is
composed of two components: the process and the contrbiercontroller itself
has two blocks: the feedback blo€kand the feedforward block. There are two
disturbances acting on the process, the load disturbararzel the measurement
noisen. The load disturbance represents disturbances that devertitess away
from its desired behavior, while the measurement noisesgmits disturbances that
corrupt information about the process given by the sensotbe figure, the load
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——= F@ P(s) =

Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedora. Th
controller has a feedback blo¢k and a feedforward block. The external signals are the
reference signal, the load disturbance and the measurement noiseThe process output
is 57, and the control signal is.

disturbance is assumed to act on the process input. This me@ifstation since
disturbances often enter the process in many different waytsit allows us to
streamline the presentation without significant loss of gaitg.

The process outpytis the real variable that we want to control. Control is based
on the measured signg] where the measurements are corrupted by measurement
noisen. The process is influenced by the controller via the controlaée u.
The process is thus a system with three inputs—the contr@hlaru, the load
disturbancel and the measurement noise-and one output—the measured signal
y. The controller is a system with two inputs and one output. Hpeits are the
measured signal and the reference signal and the output is the control signal
u. Note that the control signal is an input to the process and the output of the
controller, and that the measured sigpas$ the output of the process and an input
to the controller.

The feedback loop in Figurgl.1lis influenced by three external signals, the
reference, the load disturbanceé and the measurement noiseAny of the re-
maining signals can be of interest in controller designetheling on the particular
application. Since the system is linear, the relations betvike inputs and the in-
teresting signals can be expressed in terms of the transfetibns. The following
relations are obtained from the block diagram in Figltel

- PCF P 1
1+PC 1+PC 1+PC
y PCF p —PC
0 1;Ec 1+1PC 1+gc ;
V| =|1iypc 1ipc 1iec| | (11.1)
u CF  -PC -C n
e 1+PC 1+PC 1+PC
F —p —1
[1yPC 1+PC 14PC)

In addition, we can write the transfer function for the ellvetween the reference
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r and the outpug; (not an explicit signal in the diagram), which satisfies

e:r—n:(l—liCPFC)r —P d+ PC

+ 1+ PC 1+ PCn’

There are several interesting conclusions we can draw fresetaquations. First
we can observe that several transfer functions are the sadri@at the majority of
the relations are given by the following set of six transterdtions, which we call
the Gang of Six

PCF = =)
:1+CPC’ T:1+(F:’c’ F)S:1+ pPC’
. . (11.2)
CFS= ——_ CS= _~ S— ,
1+ PC’ 1+ PC’ 1+ PC

The transfer functions in the first column give the responséeforocess output
and control signal to the reference signal. The second colyivas the response
of the control variable to the load disturbance and the naisd the final column
gives the response of the process output to those two ingatie that only four
transfer functions are required to describe how the systawts to load disturbances
and measurement noise, and that two additional transfetituns are required to
describe how the system responds to reference signals.

The linear behavior of the system is determined by the sixsfearfunctions
in equation 11.2), and specifications can be expressed in terms of thesedransf
functions. The special case wheén= 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedivankthe error only and
the system is completely characterized by four transfectfans, namely, the four
rightmost transfer functions in equatiohl(2, which have specific names:

s—__ 1 sensitivity pPS—_ ?eandsitivity
1+ PC function 1+ PC function
(11.3)
PC complementary C noise
T= T sensitivity S= 11 pC sensitivity
function function

These transfer functions and their equivalent systems #isml¢che Gang of Four
The load sensitivity function is sometimes called the inguisitivity function and
the noise sensitivity function is sometimes called the ougensitivity function.
These transfer functions have many interesting propettigswill be discussed
in detail in the rest of the chapter. Good insight into thesmerties is essential
in understanding the performance of feedback systems éoptinposes of both
analysis and design.

Analyzing the Gang of Six, we find that the feedback contrdllenfluences
the effects of load disturbances and measurement noisieeNbat measurement
noise enters the process via the feedback. In Sedtait will be shown that
the controller influences the sensitivity of the closed loogptocess variations.
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C -

Figure 11.2: A more general representation of a feedback system. The progassuin
represents the control signal, which can be manipulated, and the piopesw represents
other signals that influence the process. The process owtmithe vector of measured
variables ana are other signals of interest.

The feedforward paifE of the controller influences only the response to command
signals.

In Chapter9 we focused on the loop transfer function, and we found tlsat it
properties gave useful insights into the properties of sesysTo make a proper
assessment of a feedback system it is necessary to cormdmoperties of all the
transfer functions11.2 in the Gang of Six or the Gang of Four, as illustrated in
the following example.

Example 11.1 The loop transfer function gives only limited insight

Consider a process with the transfer functi®(s) = 1/(s — a) controlled by a PI
controller with error feedback having the transfer funct@s) = k(s—a)/s. The
loop transfer function it = k/s, and the sensitivity functions are

T PC _ k , PS_ P _ s ’
1+ PC s+k 1+ PC (s—a)(s+Kk)
CcS— C :k(s—a)’ _ 1 _ s.
1+ PC s+k 1+ PC s+k

Notice that the factos — a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitiuitgtfon or the comple-
mentary sensitivity function. However, cancellation of factor is very serious if

a > 0 since the transfer functio” Srelating load disturbances to process output is
then unstable. In particular, a small disturbad@an lead to an unbounded output,
which is clearly not desirable. \%

The system in Figurél.1represents a special case because itis assumed that the
load disturbance enters at the process input and that theunesboutput is the sum
of the process variable and the measurement noise. Disiteb@an enter in many
different ways, and the sensors may have dynamics. A moteabg/ay to capture
the general case is shown in Figure.2 which has only two blocks representing
the process®) and the controllerd). The process has two inputs, the control signal
u and a vector of disturbances, and two outputs, the measured siggadnd a
vector of sighals that is used to specify performance. If we omit the reference
inputr, the system in Figur@1.1can be captured by choosing = (d, n) and
z= (n,v, e, €). The process transfer functi¢his a 5x 3 matrix, and the controller
transfer functiorC is a 1x 1 matrix; compare with Exerciskl.3
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Figure 11.3: Block diagram of a system with feedforward compensation for impraeed
sponse to reference signals and measured disturbances (2 DOR)syidtece feedforward
elements are preserf,(s) sets the desired output valug,(s) generates the feedforward
commandl;, and F4(s) attempts to cancel disturbances.

Processes with multiple inputs and outputs can also be cenesidby regarding
andy as vectors. Representations at these higher levels obabietr are useful for
the development of theory because they make it possibletsfon fundamentals
and to solve general problems with a wide range of applinatiblowever, care
must be exercised to maintain the coupling to the real-woolitrol problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point haveged on the role of
feedback and its effect on the dynamics of the system. Fegdfdiis a simple and
powerful technique that complements feedback. It can be lnsth to improve the
response to reference signals and to reduce the effect dfursdde disturbances.
Feedforward compensation admits perfect elimination ofudignces, but it is
much more sensitive to process variations than feedbackensation. A general
scheme for feedforward was discussed in SecTidusing Figurer.10 A simple
form of feedforward for PID controllers was discussed in $ec1i0.5 The con-
troller in Figurell.lalso has a feedforward block to improve response to command
signals. An alternative version of feedforward is shown igure11.3 which we
will use in this section to understand some of the trade{ugtsveen feedforward
and feedback.

Controllers with two degrees of freedom (feedforward aretifeack) have the
advantage that the response to reference signals can pae@dandependently of
the design for disturbance attenuation and robustness. \\Vérst consider the
response to reference signals, and we will therefore llyitesssume that the load
disturbancel is zero. LetF, represent the ideal response of the system to reference
signals. The feedforward compensator is characterizeddaydhsfer functiong,
andF,. When the reference is changed, the transfer fundiiarenerates the signal
us, which is chosen to give the desired output when appliedms to the process.
Under ideal conditions the outputis then equal tg/,, the error signal is zero and
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there will be no feedback action. If there are disturbaneceaadeling errors, the
signalsyn, andy will differ. The feedback then attempts to bring the erroreoaz

To make a formal analysis, we compute the transfer functiomfreference
input to process output:

P(CFn+ Fu) PF, — Fnm

1+pPC  "T1xpPC’
whereP = P,P;. The firstterm represents the desired transfer function. Tdawske
term can be made small in two ways. Feedforward compensatiofe used to

makeP F, — Fn, small, or feedback compensation can be used to makePC
large. Perfect feedforward compensation is obtained bysihgo
Fm

X

Design of feedforward using transfer functions is thus awimple task. Notice
that the feedforward compensatBy contains an inverse model of the process
dynamics.

Feedback and feedforward have different properties. Fesdfdraction is ob-
tained by matching two transfer functions, requiring pgedinowledge of the pro-
cess dynamics, while feedback attempts to make the errdt byndividing it by
a large quantity. For a controller having integral actidrg loop gain is large for
low frequencies, and it is thus sufficient to make sure thattaition for ideal
feedforward holds at higher frequencies. This is easier thang to satisfy the
condition (1.5 for all frequencies.

We will now consider reduction of the effects of the load diibinced in Fig-
ure11.3by feedforward control. We assume that the disturbancebigmeasured
and that the disturbance enters the process dynamics innenkmay (captured by
P, and P,). The effect of the disturbance can be reduced by feeding dasured
signal through a dynamical system with the transfer fumctg. Assuming that
the reference is zero, we can use block diagram algebra to find that the gansf
function from the disturbance to the process output is

P(1+ FqP1)
1+PC °’
whereP = P, P,. The effect of the disturbance can be reduced by makingdP;

small (feedforward) or by making-t P C large (feedback). Perfect compensation
is obtained by choosing

Gyr(s) = (11.4)

Fu= (11.5)

Gya = (11.6)

Fo=—P %, (11.7)

requiring inversion of the transfer functid®.

Asinthe case of reference tracking, disturbance attemiatin be accomplished
by combining feedback and feedforward control. Since lavgfrency disturbances
can be eliminated by feedback, we require the use of feediahenly for high-
frequency disturbances, and the transfer funckgim equation £1.7) can then be
computed using an approximation Bf for high frequencies.
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Figure 11.4:Feedforward control for vehicle steering. The plot on the left show/g #jectory
generated by the controller for changing lanes. The plots on the righttbledateral deviation

y (top) and the steering anglgbottom) for a smooth lane change control using feedforward
(based on the linearized model).

Equations {1.5 and (L1.7) give analytic expressions for the feedforward com-
pensator. To obtain a transfer function that can be impléeaanithout difficulties
we require that the feedforward compensator be stable adt thoes not require
differentiation. Therefore there may be constraints oniptesshoices of the de-
sired responsé&,, and approximations are needed if the process has zeros in th
right half-plane or time delays.

Example 11.2 Vehicle steering
A linearized model for vehicle steering was given in Exanp# The normalized
transfer function from steering angiéo lateral deviatiory is P(s) = (y s+ 1)/s%.

For a lane transfer system we would like to have a nice regpwitiout overshoot,
and we therefore choose the desired response, &8 = a?/(s + a)?, where the
response speed or aggressiveness of the steering is go\u®rilee parametea.
Equation (1.5 gives

Fm a’s?

P (ys+D(s+a?
which is a stable transfer function as longrias 0. Figurell.4shows the responses
of the system foa = 0.5. The figure shows that a lane change is accomplished
in about 10 vehicle lengths with smooth steering angles. atuekt steering angle
is slightly larger than 0.1 rad {{ Using the scaled variables, the curve showing

lateral deviationsy as a function ot) can also be interpreted as the vehicle path
(y as a function ok) with the vehicle length as the length unit. \%

Fu:

A major advantage of controllers with two degrees of freedbat combine
feedback and feedforward is that the control design probkmbe split in two parts.
The feedback controlle€ can be designed to give good robustness and effective
disturbance attenuation, and the feedforward part can Sigried independently
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to give the desired response to command signals.

11.3 Performance Specifications

A key element of the control design process is how we spebiydesired per-
formance of the system. It is also important for users to tstdad performance
specifications so that they know what to ask for and how to tegsgem. Specifi-
cations are often given in terms of robustness to procesativanrs and responses
to reference signals and disturbances. They can be givermis t&f both time and
frequency responses. Specifications for the step responstetemce signals were
given in Figure5.9in Section5.3 and in Sectior6.3. Robustness specifications
based on frequency domain concepts were provided in Sex8a@md will be con-
sidered further in Chaptdr2. The specifications discussed previously were based
on the loop transfer function. Since we found in Secfidrilthat a single transfer
function did not always characterize the properties of theex loop completely,
we will give a more complete discussion of specifications is siection, based on
the full Gang of Six.

The transfer function gives a good characterization of thedr behavior of a
system. To provide specifications it is desirable to captueecharacteristic prop-
erties of a system with a few parameters. Common featurdsrierresponses are
overshoot, rise time and settling time, as shown in Figu®eCommon features of
frequency responses are resonant peak, peak frequeney;rgasover frequency
and bandwidth. Aesonant peaks a maximum of the gain, and the peak frequency
is the corresponding frequency. Tigain crossover frequencig the frequency
where the open loop gain is equal one. Tamdwidthis defined as the frequency
range where the closed loop gain isv2 of the low-frequency gain (low-pass),
mid-frequency gain (band-pass) or high-frequency gagtigass). There are inter-
esting relations between specifications in the time and &egudomains. Roughly
speaking, the behavior of time responses for short timesased to the behavior
of frequency responses at high frequencies, and vice VErgaprecise relations
are not trivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figadel The response to reference signals
is described by the transfer functioBg, = PCF/(1+ PC) andG,, = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is usedutonsider
both the response of the output and that of the control signgparticular, the
control signal response allows us to judge the magnituderatedof the control
signal required to obtain the output response.

Example 11.3 Third-order system

Consider a process with the transfer funct®¢s) = (s+ 1)~2 and a PI controller
with error feedback having the gaikg = 0.6 andk; = 0.5. The responses are
illustratedin FigurdL1.5 The solid lines show results for a proportional-integra) (Pl
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Figure 11.5:Reference signal responses. The responses in processyatpltontrol signal
u to a unit step in the reference sigmadre shown in (a), and the gain curves3f, andG,
are shown in (b). Results with Pl control with error feedback are sHoysolid lines, and
the dashed lines show results for a controller with a feedforward cosapan

controller with error feedback. The dashed lines show regatta controller with
feedforward designed to give the transfer funct®p = (0.5s + 1)~3. Looking
at the time responses, we find that the controller with feeddod gives a faster
response with no overshoot. However, much larger contgolads are required to
obtain the fast response. The largest value of the contnohbig 8, compared to 1.2
for the regular Pl controller. The controller with feedfordgéas a larger bandwidth
(marked witho) and no resonant peak. The transfer functi&p also has higher
gain at high frequencies. \%

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to conethe output of the closed
loop system in Figurd@1.1with the output of the corresponding open loop system
obtained by settin@ = 0. If we let the disturbances for the open and closed loop
systems be identical, the output of the closed loop systeheis obtained simply
by passing the open loop output through a system with thesfegarfiunctionS.
The sensitivity function tells how the variations in the auttre influenced by
feedback (Exercisgl.7). Disturbances with frequencies such tf&i w)| < 1 are
attenuated, but disturbances with frequencies such $tab)| > 1 are amplified

by feedback. The maximum sensitivitys, which occurs at the frequeneyns,

is thus a measure of the largest amplification of the distua&snThe maximum
magnitude of X(1 4+ L) is also the minimum ofl + L|, which is precisely the
stability margins, defined in Sectior®.3, so thatMg = 1/s,. The maximum
sensitivity is therefore also a robustness measure.
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calculaptiperties of the
sensitivity function through the relatidd= 1/(1 + L). The sensitivity crossover frequency
wsc and the frequencyn,s where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a diffeform. All
points inside the dashed circle have sensitivities greater than 1.

If the sensitivity function is known, the potential imprawents by feedback
can be evaluated simply by recording a typical output andifilgeit through the
sensitivity function. A plot of the gain curve of the sensty function is a good way
to make an assessment of the disturbance attenuation. Bensertsitivity function
depends only on the loop transfer function, its propertes @lso be visualized
graphically using the Nyquist plot of the loop transfer ftiog. This is illustrated
in Figure11.6 The complex number 4+ L (iw) can be represented as the vector
from the point—1 to the pointL (i w) on the Nyquist curve. The sensitivity is thus
less than 1 for all points outside a circle with radius 1 andeeat—1. Disturbances
with frequencies in this range are attenuated by the feédbac

The transfer functiorsy4 from load disturbance to process outpuy for the
system in Figurd.1.1is

P T
Gyd = 1+PC_PS_C. (11.8)
Since load disturbances typically have low frequencies,rigitural to focus on the
behavior of the transfer function at low frequencies. Foystesm withP(0) # 0
and a controller with integral action, the controller gaoeg to infinity for small

frequencies and we have the following approximation forlssa
T 1 s

“c¥c Tk

wherek; is the integral gain. Since the sensitivity functiBmgoes to 1 for largs,

we have the approximatidByq ~ P for high frequencies.

Measurement noise, which typically has high frequenciesecates rapid vari-
ations in the control variable that are detrimental bec#tusgcause wear in many

Gyq (11.9)
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Figure 11.7: Disturbance responses. The time and frequency responses espragtputy
to load disturbancd are shown in (a) and the responses of control sigrialmeasurement
noisen are shown in (b).

actuators and can even saturate an actuator. It is thustampto keep variations in
the control signal due to measurement noise at reasonablsdea typical require-
ment is that the variations are only a fraction of the spamefcontrol signal. The
variations can be influenced by filtering and by proper desighehigh-frequency
properties of the controller.

The effects of measurement noise are captured by the trdnsfgion from the
measurement noise to the control signal,

C T

””_1+PC_CS_ 5 (11.10)
The complementary sensitivity function is close to 1 for loacuenciesd < wyc),
andGy, can be approximated by1/P. The sensitivity function is close to 1 for
high frequenciesd > wyc), andGy, can be approximated byC.

Example 11.4 Third-order system

Consider a process with the transfer funct®§s) = (s+ 1)~3 and a proportional-
integral-derivative (PID) controller with gairls, = 0.6, ki = 0.5 andky = 2.0.
We augment the controller using a second-order noise filtér Tyi = 0.1, so that
its transfer function is

 kes®+kps+ k
Cs(S2T?/24+sTi + 1)
The system responses are illustrated in Fidulrg. The response of the output to

a step in the load disturbance in the top part of Figlke’ahas a peak of 0.28 at
timet = 2.73 s. The frequency response in Figlile7ashows that the gain has a

C(s)
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maximum of 0.58 at» = 0.7 rad/s.

The response of the control signal to a step in measuremesg I®ishown
in Figure11.7h The high-frequency roll-off of the transfer functi@,(i w) is
due to filtering; without it the gain curve in Figudel.7bwould continue to rise
after 20 rads. The step response has a peak of 18:at0.08 s. The frequency
response has its peak 20a@t= 14 rad/s. Notice that the peak occurs far above
the peak of the response to load disturbances and far abevgaih crossover
frequencywy. = 0.78 rad/s. An approximation derived in Exercib.9 gives

max|C S(iw)| ~ kg/Ts = 20, which occurs ab = v/2/ Ty = 14.1 rad/s. \%

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that iaisdal on the loop transfer
function, which is related to the controller transfer fuantthroughL = PC. Itis
thus easy to see how the controller influences the loop trafisietion. To make
an unstable system stable we simply have to bend the Nyaunia: away from the
critical point.

This simple idea is the basis of several different design ouslcollectively
calledloop shaping These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. Oneilpbisis to determine
a loop transfer function that gives a closed loop system thigrdesired properties
and to compute the controller & = L/P. Another is to start with the process
transfer function, change its gain and then add poles arab zettil the desired
shape is obtained. In this section we will explore differemp-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfection that gives good
performance and good stability margins. Figlifie8shows a typical loop transfer
function. Good robustness requires good stability mar@@ngood gain and phase
margins), which imposes requirements on the loop transiiectfon around the
crossover frequencies,. andwg.. The gain ofL at low frequencies must be large
in order to have good tracking of command signals and go@shadtion of low-
frequency disturbances. SinBe= 1/(1+ L), it follows that for frequencies where
|[L| > 101 disturbances will be attenuated by a factor of 100 anttdleking error is
lessthan 1%. Itis therefore desirable to have a large cvesf@equency and a steep
(negative) slope of the gain curve. The gain at low frequencéa be increased by
a controller with integral action, which is also callled) compensatianTo avoid
injecting too much measurement noise into the system, the tiansfer function
should have low gain at high frequencies, which is caliggh-frequency roll-off
The choice of gain crossover frequency is a compromise amterguation of load
disturbances, injection of measurement noise and robestne
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Figure 11.8:Gain curve and sensitivity functions for a typical loop transfer funcfitre plot
on the left shows the gain curve and the plots on the right show the senditinitiion and
complementary sensitivity function. The gain crossover frequengynd the slopeg. of
the gain curve at crossover are important parameters that deterreir@btistness of closed
loop systems. At low frequency, a large magnitude lfoprovides good load disturbance
rejection and reference tracking, while at high frequency a small lagpig used to avoid
amplifying measurement noise.

Bode’s relations (see Secti®¥) impose restrictions on the shape of the loop
transfer function. Equatior®(8) implies that the slope of the gain curve at gain
crossover cannot be too steep. If the gain curve has a cosédae, we have the
following relation between slope,c and phase margipmy:

2
Nge = —2+ =, (11.11)

T
This formulais areasonable approximation when the gaireadives not deviate too
much from a straight line. It follows from equatiohl(.11) that the phase margins
30, 45° and 60 correspond to the slopesb/3, —3/2 and—4/3.

Loop shaping is a trial-and-error procedure. We typicablytswith a Bode plot
of the process transfer function. We then attempt to shapletp transfer function
by changing the controller gain and adding poles and zertssetoontroller trans-
fer function. Different performance specifications are eatdd for each controller
as we attempt to balance many different requirements bystadgucontroller pa-
rameters and complexity. Loop shaping is straightforwaapyoly to single-input,
single-output systems. It can also be applied to systenisamié input and many
outputs by closing the loops one at a time starting with theimost loop. The only
limitation for minimum phase systems is that large phasgdead high controller
gains may be required to obtain closed loop systems withtadaponse. Many
specific procedures are available: they all require expeeiebut they also give
good insight into the conflicting requirements. There are &mental limitations
to what can be achieved for systems that are not minimum pliasg will be
discussed in the next section.
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Figure 11.9:Frequency response for lead and lag compens@t@s= k(s+a)/(s+b). Lead
compensation (a) occurs whan< b and provides phase lead betweer= a andw = b.
Lag compensation (b) correspondsato- b and provides low-frequency gain. Pl control is
a special case of lag compensation and PD control is a special casal afdmpensation.
PI/PD frequency responses are shown by dashed curves.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfeiction of the process
and add simple compensators with the transfer function

s+a

C(s) = ks+ b (11.12)
The compensator is calledead compensatdf a < b, and alag compensatoif
a > b. The PI controller is a special case of a lag compensator lwith0, and
the ideal PD controller is a special case of a lead compengédtioa = 0. Bode
plots of lead and lag compensators are shown in Figar@ Lag compensation,
which increases the gain at low frequencies, is typicalldu® improve tracking
performance and disturbance attenuation at low frequenCiempensators that are
tailored to specific disturbances can be also designed, asi\shdexercisell.10
Lead compensation is typically used to improve phase mafdia.following ex-
amples give illustrations.

Example 11.5 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of annaitoforce micro-
scope in tapping mode was given in Exerc&2 The transfer function for the
system dynamics is
a(l—e™)

st(s+a) ’
wherea = (wg, T = 27n/wo and the gain has been normalized to 1. A Bode plot
of this transfer function for the parameters= 1 andz = 0.25 is shown in dashed
curvesinFigurd1.10aTo improve the attenuation of load disturbances we inereas

P(s) =
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Figure 11.10:Loop-shaping design of a controller for an atomic force microscopejpitig

mode. (a) Bode plots of the process (dashed), the loop transfetidarfor an integral
controller with critical gain (dotted) and a PI controller (solid) adjusted te gaasonable
robustness. (b) Gain curves for the Gang of Four for the system.

the low-frequency gain by introducing an integral congollThe loop transfer
function then becomek = k; P(s)/s, and we adjust the gain so that the phase
margin is zero, givinds; = 8.3. Notice the increase of the gain at low frequencies.
The Bode plot is shown by the dotted line in Figlte10awhere the critical point
is indicated byo. To improve the phase margin we introduce proportionabacti
and we increase the proportional g&ingradually until reasonable values of the
sensitivities are obtained. The valkie= 3.5 gives maximum sensitivit¥ls = 1.6
and maximum complementary sensitiviy = 1.3. The loop transfer function is
shown in solid lines in Figuré1.10a Notice the significant increase of the phase
margin compared with the purely integral controller (ddtiee).
To evaluate the design we also compute the gain curves afthsfer functions
in the Gang of Four. They are shown in Figdre 10b The peaks of the sensitivity
curves are reasonable, and the plotR® shows that the largest value fSis
0.3, which implies that the load disturbances are well at¢ed. The plot oC S
shows that the largest controller gain is 6. The controllerdgain of 3.5 at high
frequencies, and hence we may consider adding high-fregueii-off.

\%

A common problem in the design of feedback systems is thgitihee margin
is too small, and phadead must then be added to the system. If weaet b in
equation 11.12, we add phase lead in the frequency range between the pae/z
pair (and extending approximately £0n frequency in each direction). By appro-
priately choosing the location of this phase lead, we cawigeoadditional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to tpe slithe magnitude,
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Symbol  Description Value
m Vehicle mass 4.0 kg
J Vehicle inertiagps axis  0.0475 kg
r Force moment arm 25.0cm
y c Damping coefficient 0.05 kg m/s
g Gravitational constant 9.8 n¥/s

(a) Simplified model (b) Parameter values

Figure 11.11:Roll control of a vectored thrust aircraft. (a) The roll angles controlled by
applying maneuvering thrusters, resulting in a moment generatéd.k{) The table lists
the parameter values for a laboratory version of the system.

increasing the phase requires increasing the gain of thettaosfer function over
the frequency range in which the lead compensation is apgleExercisel1.11
itis shown that the gain increases exponentially with theamhof phase lead. We
can also think of the lead compensator as changing the sfdipe wvansfer function
and thus shaping the loop transfer function in the cross@ggon (although it can
be applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircsath as the one illustrated
in Figure11.11 Following Exercise.10 we model the system with a second-order
transfer function of the form r

P(s) = —.

J&?

with the parameters given in Figuid.11b We take as our performance specifica-
tion that we would like less than 1% error in steady state asslthan 10% tracking
error up to 10 rad/s.

The open loop transfer function is shown in Figure.12a To achieve our
performance specification, we would like to have a gain ofadtl&0 at a frequency
of 10 rad/s, requiring the gain crossover frequency to behaglzer frequency. We
see from the loop shape that in order to achieve the desiréarpance we cannot
simply increase the gain since this would give a very low phasargin. Instead,
we must increase the phase at the desired crossover frgquenc

To accomplish this, we use a lead compensédttrl(d with a = 2 andb = 50.
We then set the gain of the system to provide a large loop gaiio the desired
bandwidth, as shown in Figulel.12b We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has manme & of phase
margin. \%
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Figure 11.12:Control design for a vectored thrust aircraft using lead compensatimBode
plot for the open loop proces$sis shown in (a) and the loop transfer functibn= P C using
a lead compensator in (b). Note the phase lead in the crossover regian £€100 rad/s.

The action of a lead compensator is essentially the sametas tha derivative
portion of a PID controller. As described in Sectib®.5 we often use a filter for
the derivative action of a PID controller to limit the highefjuency gain. This same
effect is present in a lead compensator through the pae=ab.

Equation (1.12 is afirst-order compensator and can provide up tadd@hase
lead. Larger phase lead can be obtained by using a higher{estecompensator
(Exercisell.1]):

(s+a)"

C(S) = km, a<h.

11.5 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility irsidaing the closed
loop response of a system, there are certain fundamentis lon what can be
achieved. We consider here some of the primary performamigtions that can
occur because of difficult dynamics; additional limitatiosakted to robustness are

considered in the next chapter.

Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to @dnirhe limitations are
related to poles and zeros in the right half-plane and tini@yde To explore the
limitations caused by poles and zeros in the right half-phae factor the process
transfer function as

P(S) = Pmp(S) Pap(9), (11.13)
wherePn, is the minimum phase part aii,, is the nonminimum phase part. The
factorization is normalized so thiR,p(i )| = 1, and the sign is chosen so tlit,
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has negative phase. The transfer functiag is called arall-pass systerhecause

it has unit gain for all frequencies. Requiring that the ghamargin bep,, we get
argL (iwge) = argPap(i wge) +arg Pmp(i wge) +argCiwge) > —m +om, (11.14)

whereC is the controller transfer function. Let,c be the slope of the gain curve
at the crossover frequency. Sind&(iw)| = 1, it follows that

dlog|L(iw)] dlog|Pmp(iw)C(iw)|
gc =—-— =
dlogw dlogw

W=wgc W=Wgc

Assuming that the slopey. is negative, it has to be larger thas® for the system
to be stable. It follows from Bode’s relations, equati®sj, that

argPmp(iw) + argCiw) ~ ngcg.

Combining this with equationl(l.14 gives the following inequality for the allow-
able phase lag of the all-pass part at the gain crossovardrey:

. T
—argPap(ivge) < 7 — om + Nge = 41- (11.15)

This condition, which we call thgain crossover frequency inequalighows that the
gain crossover frequency must be chosen so that the phasktlEgnonminimum
phase component is not too large. For systems with high tobss requirements
we may choose a phase margin of 9, = 7 /3) and a slop@&y. = —1, which
gives an admissible phase lag= = /6 = 0.52 rad (30). For systems where we
can accept alower robustness we may choose a phase margir{@f4= = /4) and
the slopengc = —1/2, which gives an admissible phase lag= 7 /2 = 1.57 rad
(90°).

The crossover frequency inequality shows that nonminimuaselcomponents
impose severe restrictions on possible crossover fredgeiiicalso means that there
are systems that cannot be controlled with sufficient stgioiiargins. We illustrate
the limitations in a number of commonly encountered situregi

Example 11.7 Zero in the right half-plane
The nonminimum phase part of the process transfer functioa 8ystem with a

right half-plane zero is s
Pap(s) = ——,
ap(8) = —

wherez > 0. The phase lag of the nonminimum phase part is
—argPap(iw) =2 arctan%o.

Since the phase lag ¢, increases with frequency, the inequaliyl(19 gives
the following bound on the crossover frequency:

wgc < Ztan(p,/2). (11.16)
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With ¢, = 7 /3 we getwy. < 0.6z. Slow right half-plane zeroz(mall) therefore
give tighter restrictions on possible gain crossover feggpies than fast right half-
plane zeros. \Y%

Time delays also impose limitations similar to those givgrzéros in the right
half-plane. We can understand this intuitively from the €agproximation
_1-05st 2/t —s
T 14058t 2/t+s
A long time delay is thus equivalent to a slow right half-gaeroz = 2/z.

—ST

Example 11.8 Pole in the right half-plane
The nonminimum phase part of the transfer function for a systih a pole in the
right half-plane is

s+ p
Pap(s) = S — p:
wherep > 0. The phase lag of the nonminimum phase part is

—argPyp(iw) =2 arctanE,
w

and the crossover frequency inequality becomes

p
Y7 tan(pi/2)°
Right half-plane poles thus require that the closed loogesy$ave a sufficiently
high bandwidth. Withy, = 7 /3 we getwg. > 1.7p. Fast right half-plane poles
(p large) therefore give tighter restrictions on possiblengabssover frequencies
than slow right half-plane poles. The control of unstabléeys imposes minimum
bandwidth requirements for process actuators and sensors. \Y%

(11.17)

We will now consider systems with aright half-plane zeamd a right half-plane
pole p. If p = z, there will be an unstable subsystem that is neither redeimaio
observable, and the system cannot be stabilized (see S&djowe can therefore
expect that the system is difficult to control if the right hpléne pole and zero are
close. A straightforward way to use the crossover frequérexyuality is to plot the
phase of the nonminimum phase facky, of the process transfer function. Such
a plot, which can be incorporated in an ordinary Bode ploff,imimediately show
the permissible gain crossover frequencies. An illugira given in Figurd.1.13
which shows the phase &, for systems with a right half-plane pole/zero pair
and systems with a right half-plane pole and a time delay.dfrequire that the
phase lag, of the nonminimum phase factor be less thah 9@ must require that
the ratioz/ p be larger than 6 or smaller than 1/6 for systems with right-plane
poles and zeros and that the prodpetbe less than 0.3 for systems with a time
delay and a right half-plane pole. Notice the symmetry ingtrablem forz > p
andz < p: in either case the zeros and the poles must be sufficientlgyfart
(Exercisell.12. Also notice that possible values of the gain crossoveyueacy
wgc are quite restricted.
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Figure 11.13:Example limitations due to the gain crossover frequency inequality. Theeigu
show the phase lag of the all-pass fadByg as a function of frequency. Since the phase lag
of P, at the gain crossover frequency cannot be too large, it is necdssempose the gain
crossover frequency properly. All systems have a right half-piente ats = 1. The system

in (a) has zeros &= 2, 5, 20 and 100 (solid lines) andsa& 0.5, 0.2, 0.05 and 0.01 (dashed
lines). The system in (b) has time delays- 0.02 0.1, 0.5 and 1.

Using the theory of functions of complex variables, it canshewn that for
systems with a right half-plane pofeand a right half-plane zem(or a time delay
7), any stabilizing controller gives sensitivity functiowgth the property

p+z
lp—12z
This result is proven in Exerciskl.13

As the examples above show, right half-plane poles and zggusficantly
limit the achievable performance of a system, hence onediikd to avoid these
whenever possible. The poles of a system depend on the intdyisamics of the
system and are given by the eigenvalues of the dynamicsofedfia linear system.
Sensors and actuators have no effect on the poles; the onlyorghange poles
is to redesign the system. Notice that this does not imply whatable systems
should be avoided. Unstable system may actually have aatyasitone example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actua&tcsugted to
the states. The zeros depend on all the matrige8, C and D in a linear system.
The zeros can thus be influenced by moving the sensors andastaaby adding
sensors and actuators. Notice that a fully actuated syBtesm does not have any
zeros.

sup|S(iw)| > sup|T (iw)| > eP*. (11.18)

Example 11.9 Balance system
As an example of a system with both right half-plane poleszands, consider the
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balance system with zero damping, whose dynamics are given b
ml
— (Mg — m22)s2 + mglM,’
—Js?> + mgl
Hor = 212)a2 :
S2(—(M¢J — m212)s? + mgl M)

Assume that we want to stabilize the pendulum by using thepeegition as the
measured signal. The transfer function from the input fd¥de the cart position
p has poleq0, 0, +,/mglM,/(M; J; — m?12)} and zerog+./mgl/J}. Using the
parameters in Exampk7, the right half-plane pole is gi = 2.68 and the zero is
atz = 2.09. Equation 11.18 then gives S(iw)| > 8, which shows that it is not
possible to control the system robustly.

The right half-plane zero of the system can be eliminated Bypging the output
of the system. For example, if we choose the output to cooresfo a position at a

distance along the pendulum, we haye= p — r sing and the transfer function
for the linearized output becomes

Hor =

(mlr — J)s? + mgl
?(—=(MJ — m?12)s? + mgl M)
If we chooser sufficiently large, themmlr — J; > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary gefidie gain crossover
frequency inequality is then based just on the right hafplpole (Exampl&1.8).

If our admissible phase lag for the nonminimum phase pait is 45°, then our
gain crossover must satisfy

Hyr = Hpr —THpr =

p
wgc > ————— = 6.48 rad/s
*7 tan(p/2)
If the actuators have sufficiently high bandwidth, e.g., @adiaof 10 abovevy. or
roughly 10 Hz, then we can provide robust tracking up to tregdiency. \Y%

Bode’s Integral Formula

In addition to providing adequate phase margin for robwadtikty, a typical control
designwill have to satisfy performance conditions on tmsg# ity functions (Gang

of Four). In particular, the sensitivity functioB = 1/(1 + PC) represents the
disturbance attenuation and also relates the tracking etocthe reference signal:
we usually want the sensitivity to be small over the rangeexfdiencies where we
want small tracking error and good disturbance attenuafidrmasic problem is to
investigate ifS can be made small over a large frequency range. We will syart b
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-ordergs®and a proportional
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controller. Let the loop transfer function be

L(s) = PC =

s+ 1
where parametdt is the controller gain. The sensitivity function is
s+1
S(s) =
) s+1+k

and we have

_ 14+ w?
S = .
ISA)] \/1+2k+k2+w2

Thisimplies thatS(iw)| < 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by makingufficiently large. V

The system in Examplé&l1.10is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is cetalyl contained in
the right half-plane. Such systems are calbedsive and their transfer functions
are positive real For typical control systems there are severe constramthe
sensitivity function. The following theorem, due to Bodegyides insights into the
limits of performance under feedback.

Theorem 11.1(Bode’s integral formula) Assume that the loop transfer function
L(s) of a feedback system goes to zero faster thenas s— oo, and let §s)
be the sensitivity function. If the loop transfer functicastpoles p in the right
half-plane, then the sensitivity function satisfies thifaing integral:

/0 log |S(i w)| dew = /0 'Ogm do=7 D px. (11.19)

Equation (1.19 implies that there are fundamental limitations to what can
be achieved by control and that control design can be viewedl r@distribution
of disturbance attenuation over different frequenciespdrticular, this equation
shows that if the sensitivity function is made smaller famgdfrequencies, it must
increase at other frequencies so that the integral of3Gg)| remains constant.
This means that if disturbance attenuation is improved infogguency range, it
will be worse in another, a property sometime referred thvasvaterbed effectt
also follows that systems with open loop poles in the righ-pkane have larger
overall sensitivity than stable systems.

Equation ¢1.19 can be regarded asanservation lawif the loop transfer
function has no poles in the right half-plane, the equatiorpkfies to

/ log|S(iw)|dew = 0.
0

This formula can be given a nice geometric interpretationllastiated in Fig-
ure11.14 which shows logS(i w)| as a function of. The area over the horizontal
axis must be equal to the area under the axis when the fregieptotted on a
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Figure 11.14:Interpretation of thevaterbed effeciThe function lod S(i w)| is plotted versus
winlinear scales in (a). According to Bode’s integral formula.q9, the area of logS(i w) |
above zero must be equal to the area below zero. Gunter Stein’s ettgipn of design as a
trade-off of sensitivities at different frequencies is shown in (lQr(f{Ste03).

linear scale. Thus if we wish to make the sensitivity smaller up toes@maquency
wsc, We must balance this by increased sensitivity alyeControl system design
can be viewed as trading the disturbance attenuation atfsemesncies for distur-
bance amplification at other frequencies. Notice that theesysn Examplel1.10
violates the condition that li;, ., SL(S) = 0 and hence the integral formula does
not apply.

There is result analogous to equatidd (19 for the complementary sensitivity

function: )
*log|T (iw)| 1
/0 — do=7 Y - (11.20)

where the summation is over all right half-plane zeros. dothat slow right half-
plane zeros are worse than fast ones and that fast righplaaié poles are worse
than slow ones.

Example 11.11 X-29 aircraft

As an example of the application of Bode’s integral formwa, present an anal-
ysis of the control system for the X-29 aircraft (see Figlitel5g, which has an
unusual configuration of aerodynamic surfaces that are weditp enhance its
maneuverability. This analysis was originally carried oytGunter Stein in his
article “Respect the UnstableS{e03, which is also the source of the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parasrtbegrdescribe
the key properties of the system. The X-29 has longitudinabdyics that are very
similar to inverted pendulum dynamics (Exerc#s®8) and, in particular, have a pair
of poles at approximatelpg = +6 and a zero & = 26. The actuators that stabilize
the pitch have a bandwidth ef, = 40 rad/s and the desired bandwidth of the pitch
control loop isw; = 3 rad/s. Since the ratio of the zero to the pole is only 4.3, we
may expect that it may be difficult to achieve the specifications
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Figure 11.15:X-29 flight control system. The aircraft makes use of forward swépgs and
a set of canards on the fuselage to achieve high maneuverability @jleRired sensitivity
for the closed loop system is shown in (b). We seek to use our contraritytto shape the
sensitivity curve so that we have low sensitivity (good performanced dgequencyw; by
creating higher sensitivity up to our actuator bandwidth

To evaluate the achievable performance, we search for aotdaiv such that
the sensitivity function is small up to the desired bandivatid not greater thavg
beyond that frequency. Because of the Bode integral fornad&now thatMg must
be greaterthan 1 at high frequencies to balance the smaitiséy at low frequency.
We thus ask if we can find a controller that has the shape showigime11.15b
with the smallest value ofMs. Note that the sensitivity above the frequengy
is not specified since we have no actuator authority at thguiénecy. However,
assuming that the process dynamics fall off at high frequethe sensitivity at
high frequency will approach 1. Thus, we desire to design setldoop system
that has low sensitivity at frequencies belaywand sensitivity that is not too large
betweenw; andw;.

From Bode’s integral formula, we know that whatever conénolve choose,
equation {1.19 must hold. We will assume that the sensitivity function iseg

by

wMg
i Vs o< w
IS(iw)| = 1
Ms w1 <o < w,,

corresponding to Figur&l.15b If we further assume that (s)| < J/w? for fre-
guencies larger than the actuator bandwidth, Bode’s iatégcomes

/oolog|S(ia))|dw:/walog|S(iw)|dw
0 0

=/ Iogw—'vlsdw+(cua—cul)long=7rp.
0 w1

Evaluation of the integral givesw; + @, log Mg = 7 p or
MS — e(” p+w1)/wa'
This formula tells us what the achievable valuevbf will be for the given control

specifications. In particular, using = 6, w1 = 3 andw, = 40 rad/s, we find
that Mg = 1.75, which means that in the range of frequencies betwgemdw,,
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Figure 11.16:Contour used to prove Bode’s theorem. For each right half-planengoteeate
a path from the imaginary axis that encircles the pole as shown. To avdidrolve have
shown only one of the paths that enclose one right half-plane.

disturbances at the input to the process dynamics (suchral will be amplified
by a factor of 175 in terms of their effect on the aircraft.

Another way to view these results is to compute the phaseimdrgt corre-
sponds to the given level of sensitivity. Since the peak seitginormally occurs
at or near the crossover frequency, we can compute the preageroorresponding
to Mg = 1.75. As shown in Exercisgl.14 the maximum achievable phase margin
for this system is approximately 35which is below the usual design limit of 45
in aerospace systems. The zers at 26 limits the maximum gain crossover that
can be achieved. \Y%

Derivation of Bode’s Formula @

We now derive Bode’s integral formula (Theordrh.1). This is a technical section
that requires some knowledge of the theory of complex viaglin particular
contour integration. Assume that the loop transfer fumctias distinct poles at
s = pk in the right half-plane and thait(s) goes to zero faster tharyd for large
values ofs.

Consider the integral of the logarithm of the sensitivitpétion S(s) = 1/(1+
L(s)) over the contour shown in FigurEl.16 The contour encloses the right
half-plane except for the poinss= px where the loop transfer function(s) =
P(s)C(s) has poles and the sensitivity functi®s) has zeros. The direction of the
contour is counterclockwise.

The integral of the log of the sensitivity function aroundsthbntour is given

by
—-iR
/F log(S(s)) ds = /iR log(S(s)) ds+ /R log(S(s)) ds+ Zk: /y log(S(s)) ds

=lhi+1lo+13=0,

where R is a large semicircle on the right and is the contour starting on the
imaginary axis as = Im px and a small circle enclosing the pgbg. The integral
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is zero because the function I18¢s) is analytic inside the contour. We have

R R
lp = —i /Rlog(S(i w))dw = —Zi/o log(|S(iw)|)dw

because the real part of I&ji w) is an even function and the imaginary part is an
odd function. Furthermore we have

Izz/RIog(S(s))ds:—/Rlog(1+ L(s))dsw—/RL(s)ds

SinceL (s) goes to zero faster thanfdfor larges, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integréd. For this purpose we split the contour into three
partsX,,y andX_, asindicated in Figur&1.16 We can then write the integral as

I3 = log S(s)ds+/ log S(s)ds+/ log S(s) ds.

Xy y -
The contoury is a small circle with radius around the polgy. The magnitude of
the integrand is of the order log and the length of the path ist2. The integral
thus goes to zero as the radiugoes to zero. Sinc8(s) ~ k/(s — pk) close to the
pole, the argument d8(s) decreases by2as the contour encircles the pole. On

the contoursX, and X_ we therefore have

ISx. | =1Sx_I,  argSx. =argSx, — 2x.
Hence _
log(Sx,) — l0g(Sx_) = 2xi,
and we get

log S(s)ds+ log S(s)ds= 2z i Repy.
Xy X_

Repeating the argument for all polgg in the right half plane, letting the small
circles go to zero and the large circle go to infinity gives

R
I1+I2+I3=—2i/ log|S(iw)|dw + i ZZn Repx = 0.
0 k

Since complex poles appear as complex conjugate gajyRe px = >, P«, which
gives Bode’s formulal1.19.

11.6 Design Example

In this section we present a detailed example that illussritie main design tech-
niques described in this chapter.

Example 11.12 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeoffddianding (VTOL)
aircraft was introduced in Examp&9and in Exampldl1.6 where we designed a
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Figure 11.17:Inner/outer control design for a vectored thrust aircraft. The innep le;
controls the roll angle of the aircraft using the vectored thrust. The ¢ndercontrollerC,
commands the roll angle to regulate the lateral position. The procesmibymare decom-
posed into inner loopR) and outer loop IP,) dynamics, which combine to form the full
dynamics for the aircraft.

controller for the roll dynamics. We now wish to control thesfiion of the aircraft,
a problem that requires stabilization of both the attitude #he position.

To control the lateral dynamics of the vectored thrust afitcive make use of a
“inner/outer” loop design methodology, as illustrated igutiel1.17 This diagram
shows the process dynamics and controller divided into woponents: aimner
loop consisting of the roll dynamics and control and@uter loopconsisting of
the lateral position dynamics and controller. This decoritjposfollows the block
diagram representation of the dynamics given in Exer@i%@

The approach that we take is to design a contrdllefor the inner loop so
that the resulting closed loop systefi provides fast and accurate control of the
roll angle for the aircraft. We then design a controller foe tateral position that
uses the approximation that we can directly control theaolile as an input to
the dynamics controlling the position. Under the assunmpt@t the dynamics of
the roll controller are fast relative to the desired bandkwiaf the lateral position
control, we can then combine the inner and outer loop cdetsto get a single
controller for the entire system. As a performance specifindbr the entire system,
we would like to have zero steady-state error in the lateysitipn, a bandwidth of
approximately 1 rad/s and a phase margin of 45

For the inner loop, we choose our design specification to geotrie outer loop
with accurate and fast control of the roll. The inner loop dyiws are given by

r
J +cs
We choose the desired bandwidth to be 10 rad/s (10 times thla¢ @uter loop)
and the low-frequency error to be no more than 5%. This spetidite satisfied
using the lead compensator of Example6designed previously, so we choose
s+a

Ci(s) =k—— a=2, b=50 k=1
I() S+b) s )

P| = H9U1 =
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Figure 11.18: Quter loop control design for a vectored thrust aircraft. (a) The dotgr
approximates the roll dynamics as a state gaimg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

The closed loop dynamics for the system satisfy
H = Gi ~mg C P =Ci(1_mgpl).
1+GP 1+CPR 1+GP
A plot of the magnitude of this transfer function is shown igutie11.18 and we
see thaH; ~ —mg= 39.2 is a good approximation up to 10 rad/s.
To design the outer loop controller, we assume the inner toicontrol is

perfect, so that we can takg as the input to our lateral dynamics. Following the
diagram shown in Exercisg 10, the outer loop dynamics can be written as
Hi (0)
me ’

where we replacél; (s) with H; (0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, thipr@ximation may not
be valid, and so we must verify this when we complete our aesig

Our control goal is now to design a controller that gives zeady-state error
in x and has a bandwidth of 1 rad/s. The outer loop process dynaneicgven by a
second-order integrator, and we can again use a simple ¢eaplensator to satisfy
the specifications. We also choose the design such that thdramasfer function
for the outer loop haH_,| < 0.1 forw > 10 rad/s, so that thel; dynamics can be
neglected. We choose the controller to be of the form

S+ &
Co(S) = —ko——,
o(S) kos b
with the negative sign to cancel the negative sign in theggedynamics. To find the
location of the poles, we note that the phase lead flatten$ appeoximatelyo,/10.
We desire phase lead at crossover, and we desire the croasaye= 1 rad/s, so
this givesb, = 10. To ensure that we have adequate phase lead, we must choose

P(s) = Hi(O)Po(s) =
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bodé @lp
and Nyquist plot (b) for the transfer function for the combined innet @uter loop transfer
functions are shown. The system has a phase margin°adré8a gain margin of 6.2.

a, such that,/10 < 10a, < by, which implies that, should be between 0.1 and
1. We choose, = 0.3. Finally, we need to set the gain of the system such that at
crossover the loop gain has magnitude 1. A simple calculatimws thak, = 2
satisfies this objective. Thus, the final outer loop controlesrdmes
s+ 0.3
s+10°

Finally, we can combine the inner and outer loop controllers gerify that
the system has the desired closed loop performance. The Baodsyajuist plots
corresponding to Figurgl.17with inner and outer loop controllers are shown in
Figure11.19 and we see that the specifications are satisfied. In addite®shaw
the Gang of Four in Figur#1.2Q and we see that the transfer functions between all
inputs and outputs are reasonable. The sensitivity to logtdntiances’ Sis large
at low frequency because the controller does not have mitegtion.

The approach of splitting the dynamics into an inner and agrdobp is common
in many control applications and can lead to simpler dedignsomplex systems.
Indeed, for the aircraft dynamics studied in this examjlis, very challenging to
directly design a controller from the lateral positioto the inputu;. The use of the
additional measurement @fgreatly simplifies the design because it can be broken
up into simpler pieces. \%

Co(s) = 0.8

11.7 Further Reading

Design by loop shaping was a key element in the early devedopof control, and
systematic design methods were developed; see James|$\iokd?hillips JNP47,
Chestnut and MayerdM51], Truxal [Tru55 and Thaler Tha89. Loop shap-
ing is also treated in standard textbooks such as FranklineP@and Emami-
Naeini [FPENOY, Dorf and Bishop DB04], Kuo and GolnaraghiKG02] and
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Figure 11.20:Gang of Four for vectored thrust aircraft system.

OgataPga0]l. Systems with two degrees of freedom were developed by Har for63,
who also discussed the limitations of poles and zeros ingihémalf-plane. Funda-
mental results on limitations are given in Bod®d45; more recent presentations
are found in Goodwin, Graebe and Salga@&S01. The treatment in Sectiahl.5

is based onAst00. Much of the early work was based on the loop transfer fmgti
the importance of the sensitivity functions appeared imeation with the devel-
opment in the 1980s that resultedhfy, design methods. A compact presentation
is given in the texts by Doyle, Francis and TannenbaDF192 and Zhou, Doyle
and Glover ZDG96. Loop shaping was integrated with the robust control theory
in McFarlane and GloveMIG90Q] and Vinnicombe Yin01]. Comprehensive treat-
ments of control system design are given in Maciejowba¢89 and Goodwin,
Graebe and SalgadG{5S01.

Exercises

11.1 Consider the system in Figulel.1 Give all signal pairs that are related by
the transfer functions/{1+ PC), P/(1+ PC),C/(1+ PC)andPC/(1+ PC).

11.2 Consider the system in Exampléd.1l Choose the parametesis= —1 and
compute the time and frequency responses for all the trefusfetions in the Gang
of Four for controllers wittkk = 0.2 andk = 5.

11.3(Equivalence of Figurekl.1and11.2 Consider the system in Figutd.land
let the outputs of interest ke= (7, v) and the major disturbances be= (n, d).
Show that the system can be represented by Fitjluzand give the matrix transfer
functionsP andC. Verify that the elements of the closed loop transfer fuorckiy,
are the Gang of Four.
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11.4 Consider the spring—mass system given Byi4), which has the transfer
function 1

ms +cs+k’
Design a feedforward compensator that gives a responsecwiiital damping
¢=1).

11.5(Sensitivity of feedback and feedforward) Consider theesysh Figurell.l
and letGy, be the transfer function relating the measured sigrtalthe reference
r. Show that the sensitivities @by, with respect to the feedforward and feed-
back transfer functions andC are given bydGy,/dF = CP/(1 + PC) and
dGy,/dC = FP/(1+ PC)?> = Gy L/C.

11.6(Equivalence of controllers with two degrees of freedom) Stiatthe systems
in Figuresl1.1and11.3give the same responses to command sign&lg@+ F, =
CF.

11.7(Disturbance attenuation) Consider the feedback systemrsim Figurell.1
Assume that the reference signal is constant.yhebe the measured output when
there is no feedback ang, be the output with feedback. Show thé§(s) =
S(S) Y, (S), whereSis the sensitivity function.

P(s) =

11.8(Disturbance reduction through feedback) Consider a prokih which an
output variable has been measured to estimate the potmtéisturbance attenu-
ation by feedback. Suppose an analysis shows that it is pessibesign a closed
loop system with the sensitivity function

S
2+s+1
Estimate the possible disturbance reduction when the megslisturbance is

y(t) = 5sin(0.1t) + 3sin(0.17t) + 0.5co0s(0.9t) + 0.1t.

11.9 Show that the effect of high frequency measurement noise @rcahtrol
signal for the system in Examplel.4can be approximated by

kqs
(sT)2/2+sTy + 1’

and that the largest value (€ S(iw)| is kq/ Tt which occurs forw = +/2/T;.

S(s) =

CS~C=

11.10(Attenuation of low-frequency sinusoidal disturbanceg@gral action elim-
inates constant disturbances and reduces low-frequestyriddnces because the
controller gain is infinite at zero frequency. A similar ideade used to reduce the
effects of sinusoidal disturbances of known frequengyy using the controller

kss
2+ 20 woS + of
This controller has the gai@s(i wo) = kp + Ks/(2¢) for the frequencyog, which
can be large by choosing a small valug oAssume that the process has the transfer

C(s) =kp+
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function P(s) = 1/s. Determine the Bode plot of the loop transfer function and
simulate the system. Compare the results with PI control.

11.11 Consider a lead compensator with the transfer function

Cn(s) = (S\;/E_-;a)”’

which has zero frequency gat(0) = 1 and high-frequency gai(co) = k.
Show that the gain required to give a given phase {e&d

k:(1+2mﬁ@ﬂﬂ+2wd@m%kL+w#@ﬂny,

and that limk = e%.

n— o0

11.12 Consider a process with the loop transfer function

z—s

s—p’

with positivez and p. Show that the system is stablegfz <k <1orl<Kk <

p/z, and that the largest stability margingg = |p — z|/(p + 2) is obtained for
k = 2p/(p + 2). Determine the pole/zero ratios that gives the stabilitygima

Sm = 2/3.

11.13 Prove the inequalities given by equatidii(1§. (Hint: Use the maximun@
modulus theorem.)

L(s) =k

11.14(Phase margin formulas) Show that the relationship betwespttase margin
and the values of the sensitivity functions at gain crosssvgiven by

[S(iwge)| = [T (iwge)| = 2 SiNgm/2)’

11.15(Stabilization of an inverted pendulum with visual feedaCknsider sta-
bilization of an inverted pendulum based on visual feedhesikg a video camera
with a 50-Hz frame rate. Let the effective pendulum length.b&ssume that we
want the loop transfer function to have a slopengf = —1/2 at the crossover
frequency. Use the gain crossover frequency inequalitgterchine the minimum
length of the pendulum that can be stabilized if we desiressgmargin of 45

11.16 (Rear-steered bicycle) Consider the simple model of a Bciyt Equa-
tion (3.5), which has one pole in the right half-plane. The model is aédiml for a
bicycle with rear wheel steering, but the sign of the velpistthen reversed and
the system also has a zero in the right half-plane. Use tlhétses Exercisel1.12
to give a condition on the physical parameters that admitsraraller with the
stability marginsy,.

11.17Prove the formulaX1.20 for the complementary sensitivity. @



Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, sayedibels higher
than necessary (10000 fold excess on energy basis), and then féeeliogtput back on the
input in such a way as to throw away that excess gain, it has been fougsibpoto effect
extraordinary improvement in constancy of amplification and freedom fron-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1981434).

This chapter focuses on the analysis of robustness of fekdlyatems, a vast
topic for which we provide only an introduction to some of #&y concepts. We
consider the stability and performance of systems whoseegsodynamics are
uncertain and derive fundamental limits for robust stap#ind performance. To
do this we develop ways to describe uncertainty, both in ¢l fof parameter
variations and in the form of neglected dynamics. We alseflyrmention some
methods for designing controllers to achieve robust paréorce.

12.1 Modeling Uncertainty

Harold Black's quote above illustrates that one of the kegsusf feedback is to
provide robustness to uncertainty (“constancy of amplifce]. It is one of the
most useful properties of feedback and is what makes it plestsi design feedback
systems based on strongly simplified models.

One form of uncertainty in dynamical systemspigrametric uncertaintyin
which the parameters describing the system are unknowrpidalexample is the
variation of the mass of a car, which changes with the numbymissengers and the
weight of the baggage. When linearizing a nonlinear systeenparameters of the
linearized model also depend on the operating conditidisssiraightforward to in-
vestigate the effects of parametric uncertainty simplywaheating the performance
criteria for a range of parameters. Such a calculation rewbal consequences of
parameter variations. We illustrate by a simple example.

Example 12.1 Cruise control

The cruise control problem was described in Sec8dh and a PI controller was
designed in Exampl&0.3 To investigate the effect of parameter variations, we will
choose a controller designed for a nominal operating cmmddorresponding to
massm = 1600 kg, fourth gearo{ = 12) and speede = 25 m/s; the controller
gains arek, = 0.72 andk; = 0.18. Figurel2.1ashows the velocity and the
throttleu when encountering a hill with & 3lope with masses in the range 1600

m < 2000 kg, gear ratios 3—o:(= 10, 12 and 16) and velocity 18 » < 40 m/s.
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Figure 12.1: Responses of the cruise control system to a slope increase(aj and the
eigenvalues of the closed loop system (b). Model parameters ar¢ evez@a wide range.

The simulations were done using models that were linearizmeha the different
operating conditions. The figure shows that there are vaniatio the response
but that they are quite reasonable. The largest velocityr ésrin the range of
0.2-0.6 m/s, and the settling time is about 15 s. The contgolasiis marginally
larger than 1 in some cases, which implies that the thrattkelly open. A full
nonlinear simulation using a controller with windup prdten is required if we
want to explore these cases in more detail. Figidd bshows the eigenvalues of
the closed loop system for the different operating cond&id he figure shows that
the closed loop system is well damped in all cases. \%

This example indicates that at least as far as parametraticars are concerned,
the design based on a simple nominal model will give satisfgacontrol. The
example also indicates that a controller with fixed paramnsetan be used in all
cases. Notice that we have not considered operating conslitih low gear and at
low speed, but cruise controllers are not typically usedhése cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of paramefariations. However,
there are other uncertainties that also are important sasissed at the end of Sec-
tion 2.3 The simple model of the cruise control system captures telgynamics
of the forward motion of the vehicle and the torque charasties of the engine
and transmission. It does not, for example, include a aetariodel of the engine
dynamics (whose combustion processes are extremely cepaplide slight delays
that can occur in modern electronically controlled engif@ssa result of the pro-
cessing time of the embedded computers). These neglectdtnmisms are called
unmodeled dynamics
Unmodeled dynamics can be accounted for by developing a cmrglex

model. Such models are commonly used for controller devedoprbut substantial
effort is required to develop them. An alternative is to sigate if the closed loop
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Figure 12.2: Unmodeled dynamics in linear systems. Uncertainty can be represesited u
additive perturbations (left), multiplicative perturbations (middle) or etk perturbations
(right). The nominal system iB, andA, = A /P and Ay, represent unmodeled dynamics.

system is sensitive to generic forms of unmodeled dynarifies.basic idea is to
describe the unmodeled dynamics by including a transfectiom in the system
description whose frequency response is bounded but ogewmspecified. For
example, we might model the engine dynamics in the cruisér@oexample as
a system that quickly provides the torque that is requestemligh the throttle,
giving a small deviation from the simplified model, which assd the torque
response was instantaneous. This technique can also berusaghy instances
to model parameter variations, allowing a quite general@ggh to uncertainty
management.

In particular, we wish to explore if additional linear dyniasimay cause dif-
ficulties. A simple way is to assume that the transfer funcbbthe process is
P(s) + A, whereP(s) is the nominal simplified transfer function andrepresents
the unmodeled dynamics in termsaafditive uncertaintyDifferent representations
of uncertainty are shown in Figufe.2

When Are Two Systems Similar? The Vinnicombe Metric @

A fundamental issue in describing robustness is to determiren two systems are
close. Given such a characterization, we can then attengdoribe robustness
according to how close the actual system must be to the modwider to still
achieve the desired levels of performance. This seeminglgcaent problem is
not as simple as it may appear. A naive approach is to saywlmasystems are
close if their open loop responses are close. Even if thisapp®tural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed @p
The systems with the transfer functions
Py(s) = k k
1 - s+

v 9= GrneTr e
have very similar open loop responses for small valuds af illustrated in the top
plot in Figure12.3a which is plotted forT = 0.025 andk = 100. The differences
between the step responses are barely noticeable in the.fiheestep responses
with unit gain error feedback are shown in the bottom plot guFeé12.3a Notice
that one closed loop system is stable and the other one ighlest \Y%

(12.1)
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Figure 12.3:Determining when two systems are close. The plots in (a) show a situation whe
the open loop responses are almost identical, but the closed loop sesfoe very different.
The processes are given by equati@@.0) with k = 100 andT = 0.025. The plots in (b)
show the opposite situation: the systems are different in open loop butsimtlased loop.
The processes are given by equatid®.9) with k = 100.

Example 12.3 Different in open loop but similar in closed loop
Consider the systems
k k
Pi(s) = st 1 Py(s) = ST (12.2)
The open loop responses are very different bec®sestable andP, is unstable,
as shown in the top plot in FigurE2.3h Closing a feedback loop with unit gain
around the systems, we find that the closed loop transferiunscare

Ti(s) = Ta(s) =

s+k+1’ s+k-1
which are very close for large as shown in Figur&2.3h \%

These examples show that if our goal is to close a feedbackitoopy be very
misleading to compare the open loop responses of the system.

Inspired by these examples we introduce Yfienicombe metricwhich is a
distance measure that is appropriate for closed loop sgsteéansider two systems
with the transfer function®; and P,, and define

|Pi(io) — Pa(iw)]
d(Py, P,) = ;
(P, F2) Sffp\/(1+|F>1(ia))|2)(1+|Pz(iw)I2)

which is a metric with the property @ d(Py, P,) < 1. The numbed(Py, P,) can
be interpreted as the difference between the complemeséasitivity functions

(12.3)
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Figure 12.4: Geometric interpretation a(P;, P,). At each frequency, the points on the
Nyquist curve forP; (solid) andP, (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the poirtilis shown. The distance
between the two systems is defined as the maximum distance between ttotigmsjef
P.(iw) and P,(iw) over all frequencies. The figure is plotted for the transfer functions
Pi(s) = 2/(s+ 1) andPx(s) = 2/(s — 1). (Diagram courtesy G. Vinnicombe.)

for the closed loop systems that are obtained with unit faeklaroundP; and P,;
see Exercis&2.3 The metric also has a nice geometric interpretation, asshow
Figurel2.4 where the Nyquist plots d?; and P, are projected onto a sphere with
radius 1 at the origin of the complex plane (called Riemann sphejePoints in
the complex plane are projected onto the sphere by a lineighrthe point and
the north pole (Figuré&2.4). The distancel(Py, P,) is the longest chordal distance
between the projections & (i) and P,(i ). The distance is small whe?, and
P, are small or large, but it emphasizes the behavior aroundjaire crossover
frequency.

The distanced(Py, P,) has one drawback for the purpose of comparing the
behavior of systems under feedbackPfis perturbed continuously frorg, to P,
there can be intermediate transfer functiehshered (P, P) is 1 evenifd(Py, P,)
is small (see Exercisk2.4). To explore when this could happen, we observe that
1+ Plio)Pi(—iw)(1+ P(—iw)Pi(iw))

A+ Pio))(L+ [Pio)?)
The right-hand side is zero, and herai@;, P) = 1if 1 + P(iw)Pi(—iw) =0
for somew. To explore when this could occur, we investigate the belrasfi the
function 14- P (s) P.(—s) whenP is perturbed fronP; to P,. If the functionsf,(s) =
1+ Pi(s)Pi(—s) andfy(s) = 1+ P,(s) P (—s) do not have the same number of zeros
in the right half-plane, there is an intermedi&such that & P(iw) P1(—iw) = 0
for somew. To exclude this case we introduce the Gets all pairs(P;, P,) such
that the functiond; = 1+ P;(s)P1(—s) and f, = 1+ P,(s) P;(—s) have the same
number of zeros in the right half-plane.

The Vinnicombe metrior v-gap metricis defined as

d(P1, Po), if (P, P2)eC
1, otherwise

1-d*(P, P) =

0, (P1, P2) = [ (12.4)
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Vinnicombe Min01] showed thab, (P;, P,) is a metric, he gave strong robustness
results based on the metric and he developed the theory $terag with many
inputs and many outputs. We illustrate its use by computirggrhetric for the
systems in the previous examples.

Example 12.4 Vinnicombe metric for Examplesl2.2and 12.3
For the systems in Example.2we have

14+k?—¢8?

1-s2 °
14+ K>+ 28T+ (T? = 1)s?> — 28T — T2

(1—5?) (14 2sT + s?°T?) ’

The function f; has one zero in the right half-plane. A numerical calcufafiar
k = 100 andT = 0.025 shows that the functiof, has the roots 46.3, -86.3,
—20.0+60.0i. Both functions have one zero in the right half-plane, alfmwus to
compute the norml2.4). For T = 0.025 this gives, (P;, P>) = 0.98, which is a
quite large value. To have reasonable robustness Vinniegatommended values
less than 1/3.

For the system in ExamplE2.3we have

f1(s) = 1+ Pu(s)Pi(—s) =

fa(s) = 14+ Pa(s)Pu(—s) =

1+ k?2—¢g? 1—k?—2s+¢2
e 14 Py(s)Py(—5) =
1 + P2(s)Pi(—s) Y

These functions have the same number of zeros in the righplaie ifk > 1.
In this particular case the Vinnicombe metricdéPy;, P,) = 2k/(1 + k?) (Exer-
cise12.4 and withk = 100 we get, (P, P,) = 0.02. Figure12.4 shows the
Nyquist curves and their projections floe= 2. Notice thad(Py, P») is very small
for smallk even though the closed loop systems are very different.thtes=fore
essential to consider the conditiéB,, P,) € C, as discussed in Exerci§@.4 VvV

1+ Pi(S)Pi(—s) =

12.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the giyilaetween two sys-

tems, we now consider the problem of robust stability: Whan we show that

the stability of a system is robust with respect to procesgmtrans? This is an

important question since the potential for instability reeamf the main drawbacks
of feedback. Hence we want to ensure that even if we have smaalturacies in

our model, we can still guarantee stability and performance

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant wayttalg the effects
of uncertainty for linear systems. A simple criterion isttii@ Nyquist curve be
sufficiently far from the critical point-1. Recall that the shortest distance from
the Nyquist curve to the critical point &, = 1/Ms, whereM;s is the maximum
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Figure 12.5:Robust stability using the Nyquist criterion. (a) This plot shows that thete$to
distance to the critical poirs, is a robustness measure. (b) This plot shows the Nyquist curve
of a nominal loop transfer function and its uncertainty caused by adgitaeess variations

A.

of the sensitivity function ang,, is the stability margin introduced in Secti®B.
The maximum sensitivitiMs or the stability margirs,, is thus a good robustness
measure, as illustrated in Figut@.5a

We will now derive explicit conditions for permissible pexs uncertainties.
Consider a stable feedback system with a prod@snd a controlleiC. If the
process is changed frolto P + A, the loop transfer function changes fraaC
to PC 4+ CA, as illustrated in Figurd2.5h If we have a bound on the size of
A (represented by the dashed circle in the figure), then themsyistmains stable
as long as the process variations never overlap-thoint, since this leaves the
number of encirclements 6f1 unchanged.

Some additional assumptions are required for the analydislth Most im-
portantly, we require that the process perturbatianse stable so that we do not
introduce any new right half-plane poles that would reqad@itional encirclements
in the Nyquist criterion.

We will now compute an analytical bound on the allowable pesdisturbances.
The distance from the critical poirtl to the loop transfer functioh is |1 + L|.
This means that the perturbed Nyquist curve will not reachctitecal point —1
provided tha{CA| < |1+ L|, which implies

1+PC‘
C

IA] < ) 16| = ’%‘ < % (12.5)

This condition must be valid for all points on the Nyquist agirize, pointwise
for all frequencies. The condition for robust stability cAng be written as
. A(iw)
ol = ‘ - -
N =150 | = TG0
Notice that the condition is conservative because it fofldk@em Figurel2.5that

the critical perturbation is in the direction toward thetical point —1. Larger
perturbations can be permitted in the other directions.

forallw > 0. (12.6)
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The condition in equationl@.6) allows us to reason about uncertainty without
exact knowledge of the process perturbations. Namely, wevesfy stability for
anyuncertaintyA that satisfies the given bound. From an analysis perspedtige, t
gives us a measure of the robustness for a given design. Gehydf we require
robustness of a given level, we can attempt to choose ouratlemiC such that the
desired level of robustness is available (by askingTha¢ small) in the appropriate
frequency bands.

Equation (2.6 is one of the reasons why feedback systems work so well in
practice. The mathematical models used to design contr@msgsare often simpli-
fied, and the properties of a process may change during oper&ijuation 2.6
implies that the closed loop system will at least be stahlsdbstantial variations
in the process dynamics.

It follows from equation 12.6) that the variations can be large for those fre-
guencies wher& is small and that smaller variations are allowed for fregues
whereT is large. A conservative estimate of permissible procesatians that
will not cause instability is given by

(iw)

o) =| 5| < o1

whereM; is the largest value of the complementary sensitivity

My = SUpIT ()] = H (12.7)

el
The value ofM; is influenced by the design of the controller. For example, it
is shown in Exercisd2.5that if M; = 2 then pure gain variations of 50% or
pure phase variations of 3@re permitted without making the closed loop system
unstable.

Example 12.5 Cruise control
Consider the cruise control system discussed in Se8tibrThe model of the car
in fourth gear at speed 25 m/s is

1.38

P = sroo0142
and the controller is a PI controller with gaikg = 0.72 andk; = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertainty usiregbibund in
equation 12.6). At low frequenciesT (0) = 1 and so the perturbations can be as
large as the original procesp|= |A/P| < 1). The complementary sensitivity
has its maximumM; = 1.14 atwy,: = 0.35, and hence this gives the minimum
allowable process uncertainty, with| < 0.87 or |A| < 3.47. Finally, at high
frequenciesT — 0 and hence the relative error can get very large. For example
atow = 5 we have T (iw)| = 0.195, which means that the stability requirement is
|6] < 5.1. The analysis clearly indicates that the system has goagtobss and
that the high-frequency properties of the transmissiotesysre not important for
the design of the cruise controller.
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Figure 12.6:Robustness for a cruise controller. On the left the maximum relative 10|
(solid) and the absolute errpP|/|T| (dashed) for the process uncertairity The Nyquist
curve is shown on the right as a solid line. The dashed circles show péshaiperturbations
in the process dynamicgA| = |P|/|T]|, at the frequencies = 0, 0.0142 and 0.05.

Another illustration of the robustness of the system isginehe right diagram
in Figure 12.6 which shows the Nyquist curve of the transfer function & th
process and the uncertainty bountls= |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertaintysitl maintain stability
of the closed loop. \%

The situation illustrated in the previous example is typmfainany processes:
moderately small uncertainties are required only arouag#in crossover frequen-
cies, but large uncertainties can be permitted at highell@mer frequencies. A
consequence of this is that a simple model that describgsdcess dynamics well
around the crossover frequency is often sufficient for dessystems with many
resonant peaks are an exception to this rule because thesgrsansfer function
for such systems may have large gains for higher frequeat$es as shown for
instance in Exampl@.9.

The robustness condition given by equati@@.¢ can be given another inter-
pretation by using the small gain theorem (Theo@#d). To apply the theorem
we start with block diagrams of a closed loop system with #&pleed process and
make a sequence of transformations of the block diagramighkdte the block
representing the uncertainty, as shown in Figl2€7. The result is the two-block
interconnection shown in Figud.7c, which has the loop transfer function

PC A
1+PCP
Equation (2.6 implies that the largestloop gain is less than 1 and herecgytstem
is stable via the small gain theorem.

The small gain theorem can be used to check robust stabitityrfcertainty in
a variety of other situations. Tabl.1summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as eseti

The following example illustrates that it is possible to dessystems that are

T4.
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Figure 12.7: lllustration of robustness to process perturbations. A system with additive
certainty (left) can be manipulated via block diagram algebra to one with mudtijiéc
uncertaintyy = A /P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

®

robust to parameter variations.

Example 12.6 Bode’s ideal loop transfer function

A major problem in the design of electronic amplifiers is toanivta closed loop
system that is insensitive to changes in the gain of the releict components.
Bode found that the loop transfer functiaris) = ks™", with 1 < n < 5/3, was
an ideal loop transfer function. The gain curve of the Bodé igla straight line
with slope—n and the phase is constant &rfw) = —nz /2. The phase margin
is thusgm = 90(2 — n)° for all values of the gairk and the stability margin is
Ssnm = sinz (1 — n/2). This exact transfer function cannot be realized with ptaisic
components, butit can be approximated over a given frequange with a rational
function (Exercisdl2.7). An operational amplifier circuit that has the approximate
transfer functiorG(s) = k/(s+a) is a realization of Bode's ideal transfer function
with n = 1, as described in Examp83. Designers of operational amplifiers go to
great efforts to make the approximation valid over a widgdency range. V

Youla Parameterization @

Since stability is such an essential property, it is usefahtracterize all controllers
that stabilize a given process. Such a representation, vidicélled aYoula pa-
rameterizationis very useful when solving design problems because it méke
possible to search over all stabilizing controllers withthe need to test stability
explicitly.

We will first derive Youla’s parameterization for a stablegass with a rational

Table 12.1:Conditions for robust stability for different types of uncertainty

Process Uncertainty Type  Robust Stability
P+A Additive ICSA|le < 1
P(1+9) Multiplicative (Tl < 1

P/(1+ Ag-P) Feedback [PSAmlle <1
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Figure 12.8: Youla parameterization. Block diagrams of Youla parameterizationsdiatde
system (a) and an unstable system (b). Notice that the sigaaero in steady state.

transfer functionP. A system with the complementary sensitivity functidrcan
be obtained by feedforward control with the stable tranfsfiectionQif T = P Q.

Notice thatT must have the same right half-plane zerosPasince Q is stable.
Now assume that we want to implement the complementaryfeafusictionT by

using unit feedback with the controll€. SinceT = PC/(1+ PC) = PQ, it

follows that the controller transfer function is

C= (12.8)

1-PQ
A straightforward calculation gives
S=1-PQ, PS=P1-PQ), CS=Q, T=PQ

These transfer functions are all stabl®ifindQ are stable and the controller given
by equation 12.8) is thus stabilizing. Indeed, it can be shown that all sizibidy
controllers are in the form given by equatiot2(8 for some choice ofQ. The
parameterization is illustrated by the block diagrams irukéd.2.8a

A similar characterization can be obtained for unstabldéesys. Consider a
process with a rational transfer functié(s) = a(s)/b(s), wherea(s) andb(s)
are polynomials. By introducing a stable polynontéd), we can write

_bs) _ B
"O=30 " Ae
whereA(s) = a(s)/c(s) andB(s) = b(s)/c(s) are stable rational functions. Simi-

larly we introduce the controlléZy(s) = Go(S)/Fo(S), whereFy(s) andGgy(s) are
stable rational functions. We have

AF B
$=-—"""2 PS = —FO,
ARy + BGp ARy + BGp
AG BG
CoSp= ——2 V= —— 2
ARy + BGy ARy + BGo

The controllelCy is stabilizing if and only if the rational functioAFRy, + BGg does
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Figure 12.9:Block diagram of a basic feedback loop. The external signals areférenee
signalr, the load disturbanceé and the measurement noiseThe process output i, and

the control signal is1. The process$® may include unmodeled dynamics, such as additive
perturbations.

not have any zeros in the right half plane. I@tbe a stable rational function and
consider the controller
. Go+ QA

C=——1-.
Fo— QB

(12.9)

The Gang of Four foP andC is
_A(F-QB) . B(FR—QB)

- AR + BGO’ a ARy + BGO’
cs_ AGo+ QA +_ BGo+QA
~ AR+ BGy’ AR +BGy’

All these transfer functions are stable if the rational fimt AR + BGg does
not have any zeros in the right half plane and the contr@legjiven by (2.9 is
therefore stabilizing for any stabf@. A block diagram of the closed loop system
with the controllerC is shown in Figurel2.8b Notice that the transfer functio
appears affinely in the expressions for the Gang of Four, wkiecary useful if we
want to determine the transfer functi@hto obtain specific properties.

12.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and rabess to process un-
certainty. We will now explore how responses to load disindes, measurement
noise and reference signals are influenced by process wasaiio do this we will
analyze the system in Figude.9 which is identical to the basic feedback loop
analyzed in Chapterl.

Disturbance Attenuation

The sensitivity functiorss gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Sedtio8 A more detailed characterization
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is given by the transfer function from load disturbancesrtxpss output:
=]
G = — =
T 1Y PC
Load disturbances typically have low frequencies, and ftésgfore important that
the transfer function be small for low frequencies. For pases with constant
low-frequency gain and a controller with integral actioneeGyq ~ s/k. The
integral gairk; is thus a simple measure of the attenuation of load distadzmn
To find out how the transfer functio@q is influenced by small variations in
the process transfer function we differentiat@.(LQ with respect tdP yielding
dP ~ (1+PC2 PA+PC) ~ P’
and it follows that

PS (12.10)

dGya _ (4P (12.11)

Gy P

The response to load disturbances is thus insensitive tegso@riations for fre-
qguencies wher¢S(iw)| is small, i.e., for frequencies where load disturbances are
important.

A drawback with feedback is that the controller feeds measent noise into
the system. In addition to the load disturbance rejecttasthus also important that
the control actions generated by measurement noise a@xlatge. It follows from
Figure 12.9that the transfer functio,, from measurement noise to controller
output is given by

C T
- =——. (12.12)
1+PC_ P

Since measurement noise typically has high frequenciesighsfer functiorG,,
should not be too large for high frequencies. The loop trarfsiection PC is
typically small for high frequencies, which implies that,, ~ C for large s. To
avoid injecting too much measurement noise it is therefongoirtant thatC(s)
be small for larges. This property is calledhigh-frequency roll-off An example
is filtering of the measured signal in a PID controller to redtre injection of
measurement noise; see Sectldns

To determine how the transfer functi@,, is influenced by small variations in
the process transfer, we differentiate equatitia12:

C':‘un =

dG,, d C B C co TG””
dP dP\ 1+PC/) (1+PC2 P
Rearranging the terms gives
o ’ Gun _ 9P (12.13)
Gun P’ '

Since the complementary sensitivity function is also snualhigh frequencies, we
find that process uncertainty has little influence on the tearfsinctionG,, for
frequencies where measurements are important.



12.3. PERFORMANCE IN THE PRESENCE OF UNCERTAINTY 365

O—MW A
Ry Ry d

4 01 R2 e Rl v G S V2
v e [— I -
: Ry Ri+ R )
R V2
O

(e}

Figure 12.10:Operational amplifier with uncertain dynamics. The circuit on the left is-mod
eled using the transfer functidd(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relaticnshie load is
represented as a disturbarttapplied at the output d&(s).

Reference Signal Tracking

The transfer function from reference to output is given by
PCF

~1+pPC

which contains the complementary sensitivity functions&e how variations iR

affect the performance of the system, we differentiate eou#él2.14 with respect

to the process transfer function:
dGy  CF PCFC CF <Gyr

dP ~ 1+PC (1+PC2 (1+PCZ ~ P’
and it follows that

Gyr

(12.14)

dSyr _ sd—P. (12.15)
Gyr P
The relative error in the closed loop transfer function thgsads the product of
the sensitivity function and the relative error in the pisgdn particular, it follows
from equation 12.15 that the relative error in the closed loop transfer funti®
small when the sensitivity is small. This is one of the usefaperties of feedback.
As in the last section, there are some mathematical assomsptihat are re-
quired for the analysis presented here to hold. As alreatgdt we require that
the perturbationa be small (as indicated by writing)P). Second, we require that
the perturbations be stable, so that we do not introduce awyright half-plane
poles that would require additional encirclements in theiNgt criterion. Also, as
before, this condition is conservative: it allows for anytpebation that satisfies
the given bounds, while in practice the perturbations mambee restricted.

Example 12.7 Operational amplifier circuit
To illustrate the use of these tools, consider the perfoomari an op amp-based
amplifier, as shown in Figur#2.1Q We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic respaf the op amp and
changes in the loading on the output. We model the systerg tisrblock diagram
in Figure12.10h which is based on the derivation in Exampld

Consider first the effect of unknown dynamics for the operati@mplifier. If
we model the dynamics of the op ampuas= —G(S)v, then the transfer function
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for the overall circuit is given by
. __R G(s)
T RIG(S)+ Ro/Ri+ 1

We see that if5(s) is large over the desired frequency range, then the closgd lo
system is very close to the ideal response R,/ R;. AssumingG(s) = b/(s+a),
wherebis the gain-bandwidth product of the amplifier, as discussékamples.3,
the sensitivity function and the complementary sensitiftinction become
s+a ob
= T=—.
s+a+ab s+a+ab
The sensitivity function around the nominal values tellsamg the tracking response
response varies as a function of process perturbations:
dGy _ (dP
Gyr P

We see that for low frequencies, whe3és small, variations in the bandwidéor
the gain-bandwidth produdt will have relatively little effect on the performance
of the amplifier (under the assumption thas sufficiently large).

To model the effects of an unknown load, we consider the moddf a dis-
turbance at the output of the system, as shown in Fig@r&0b This disturbance
represents changes in the output voltage due to loadingteffEhe transfer func-
tion Gyg = Sgives the response of the output to the load disturbancewarske
thatif Sis small, then we are able to reject such disturbances. Tiséiséy of Gyq
to perturbations in the process dynamics can be computeakingtthe derivative
of Gyq4 with respect toP:

dGyq —C T dGyqg dP
= =—-—=G —= =-T—.
P~ (@+PCR P T Gy P
Thus we see that the relative changes in the disturbanceiogiece roughly the
same as the process perturbations at low frequency (Whisrapproximately 1)
and drop off at higher frequencies. However, it is importanmemember thaBGq

itself is small at low frequency, and so these variationgiative performance may
not be an issue in many applications. \Y%

12.4 Robust Pole Placement

In Chapterss and7 we saw how to design controllers by setting the locations of
the eigenvalues of the closed loop system. If we analyzeethdting system in the
frequency domain, the closed loop eigenvalues corresuathé poles of the closed
loop transfer function and hence these methods are ofterreefto as design by
pole placement

State space design methods, like many methods developedrfopksystem
design, do not explicitly take robustness into accountutthsases it is essential to
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always investigate the robustness because there are ggn@iasonable designs
that give controllers with poor robustness. We illustrate by analyzing controllers
designed by state feedback and observers. The closed loep ganh be assigned
to arbitrary locations if the system is observable and relhleh However, if we
want to have a robust closed loop system, the poles and zetusgrocess impose
severe restrictions on the location of the closed loop p8eme examples are first
given; based on the analysis of these examples we then préssign rules for
robust pole (eigenvalue) placement.

Slow Stable Process Zeros

We will first explore the effects of slow stable zeros, and wgimevith a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Exa8p, which has the
transfer function

A controller based on state feedback was designed in Exadrgland state feed-
back was combined with an observer in Examplé The system simulated in
Figure7.8 has closed loop poles specified by = 0.3, (¢ = 0.707,w, = 7 and
o = 9. Assume that we want a faster closed loop system and chqose 10,
e = 0.707,0, = 20 and’, = 0.707. Using the state representation in Exanipse
a pole placement design gives state feedback ¢airs100 andk, = —35.86 and
observer gaink, = 28.28 and, = 400. The controller transfer function is

—11516 + 40000
s2 + 42.4s + 66579°

Figure 12.11 shows Nyquist and Bode plots of the loop transfer functione Th
Nyquist plot indicates that the robustness is poor sincéiyetransfer function is
very close to the critical point1. The phase margin is And the stability margin

is sy = 0.077. The poor robustness shows up in the Bode plot, where the ga
curve hovers around the value 1 and the phase curve is cles&8@ for a wide
frequency range. More insight is obtained by analyzing #essivity functions,
shown by solid lines in Figur#2.12 The maximum sensitivities atds = 13 and

M; = 12, indicating that the system has poor robustness.

At first sight it is surprising that a controller where the naaliclosed system
has well damped poles and zeros is so sensitive to procdativas. \We have an
indication that something is unusual because the controtle a zero a$ = 3.5
in the right half-plane. To understand what happens, weimiéstigate the reason
for the peaks of the sensitivity functions.

Let the transfer functions of the process and the controller b

) e
PO=46" O 4

C(s) =
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Figure 12.11:0Observer-based control of steering. The Nyquist plot (left) anceBdat (right)
of the loop transfer function for vehicle steering with a controller basedtate feedback
and an observer. The controller provides stable operation, but wighmergain and phase
margin.

whereny(s), n¢(s), dp(s) andd.(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

PC Np(S)nc(s)
1+ PC  dp(S)de(s) + Np(S)Ne(s)”

The poles ofT (s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching theayaire of the comple-
mentary sensitivity function we find thdt(s) = 1 for low frequencies and that
|T (iw)| starts to increase at its first zero, which is the process zesc=a—2. It
increases further at the controller zersat 3.5, and it does not start to decrease
until the closed loop poles appeara@at= 10 andw, = 20. We can thus conclude
that there will be a peak in the complementary sensitivitction. The magnitude
of the peak depends on the ratio of the zeros and the poles tfahsfer function.
The peak of the complementary sensitivity function can bédebby assigning
a closed loop pole close to the slow process zero. We canvadhiis by choosing
wc = 10 and;. = 2.6, which gives closed loop polessi= —2 ands = —50. The
controller transfer function then becomes
3628 + 40000 5 s+11.02
s? 4+ 80.28s + 15656 (s+2)(s+ 7828

The sensitivity functions are shown by dashed lines in Fig2r&2 The controller

gives the maximum sensitivitieBls = 1.34 andM; = 1.41, which give much

better robustness. Notice that the controller has a pale=at-2 that cancels the
slow process zero. The design can also be done simply by dagte slow stable
process zero and designing the controller for the simplifyestiesn. \%

T(s) =

C(s) =

One lesson from the example is that it is necessary to chdosectloop poles
that are equal to or close to slow stable process zeros. Antgsson is that slow
unstable process zeros impose limitations on the achievebidwidth, as already
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Figure 12.12:Sensitivity functions for observer-based control of vehicle steeflihg.com-
plementary sensitivity function (left) and the sensitivity function (right)tfa original con-
troller with w; = 10, ¢, = 0.707,w, = 20, ¢, = 0.707 (solid) and the improved controller
with @, = 10, = 2.6 (dashed).

noted in Sectioril.5

Fast Stable Process Poles
The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a Pl controller for afirst-order system, where theggsand the controller
have the transfer functionB(s) = b/(s + a) andC(s) = k, + ki /s. The loop
transfer function is Lo b(kes + ki)
~ s(s+a) ’

and the closed loop characteristic polynomial is.

s(s+a) + b(kps + ki) = s? + (a+ bky)s + kib
If we specify the desired closed loop poles shouldd® and— p,, we find that
the controller parameters are given by

P+ pP2—a P1p2
kp — T’ ki = b .
The sensitivity functions are then
59 s(s+a) T(s) = (PL+ P2 —)s+ p1p2

(S+ pO(s+ p2)’ (s+ p)(S+ p2)

Assume that the process pela is much more negative than the closed loop poles
—p1and—py, say,p; < p2 < a. Notice that the proportional gain is negative and
that the controller has a zero in the right half-plana i p; + p,, an indication
that the system has bad properties.

Next consider the sensitivity function, which is 1 for higeduencies. Moving
from high to low frequencies, we find that the sensitivity geses at the process pole
s = —a. The sensitivity does not decrease until the closed loopsparie reached,
resulting in a large sensitivity peak that is approximately,. The magnitude of
the sensitivity function is shown in Figud.13fora = b = 1, p; = 0.05 and
p2 = 0.2. Notice the high-sensitivity peak. For comparison we atsow the gain
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Figure 12.13: Gain curves for Bode plots of the sensitivity functi@for designs with
p1 < p2 < a(leftyanda < p; < py (right). The solid lines are the true sensitivities, and the
dashed lines are the asymptotes.

curve for the case when the closed loop polas=£ 5, p, = 20) are faster than the
process poleg( = 1).

The problem with poor robustness can be avoided by choosieglosed loop
pole equal to the process pole, i.p2,= a. The controller gains then become

P1 ap.
kp=—, k=—,

" b T
which means that the fast process pole is canceled by a tlentzero. The loop
transfer function and the sensitivity functions are

bk S bk
L(s)= —, S(8§)=——, T(S)= P
(8 =~ © = STk ® = bk,
The maximum sensitivities are now less than 1 for all freqiesndNotice that this
is possible because the process transfer function goesda@gs . \%

Design Rules for Pole Placement

Based on the insight gained from the examples, it is now plesgd obtain design
rules that give designs with good robustness. Considerxpeession {2.7) for
maximum complementary sensitivity, repeated here:

PC H
1+ PCllw

Let wyc be the desired gain crossover frequency. Assume that teegsdas zeros
that are slower thamy.. The complementary sensitivity function is 1 for low fre-
guencies, and itincreases for frequencies close to thegsa@eros unless there is a
closed loop pole in the neighborhood. To avoid large valtdigiseocomplementary
sensitivity function we find that the closed loop system stidlrefore have poles
close to or equal to the slow stable zeros. This means thatssédsle zeros should
be canceled by controller poles. Since unstable zeros caeraatnceled, the pres-
ence of slow unstable zeros means that achievable gairogerssequency must
be smaller than the slowest unstable process zero.

M = sct:pIT(iw)I = H
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Now consider process poles that are faster than the desaieagpssover fre-
guency. Consider the expression for the maximum of the té@tsfunction:

el
1+ PClieo’

The sensitivity function is 1 for high frequencies. Movingtn high to low fre-
guencies, the sensitivity function increases at the fastgss poles. Large peaks
can result unless there are closed loop poles close to tharéaess poles. To avoid
large peaks in the sensitivity the closed loop system shitndcefore have poles
that match the fast process poles. This means that the denshbuld cancel the
fast process poles by controller zeros. Since unstable neaie®t be canceled,
the presence of a fast unstable pole implies that the gagsover frequency must
be sufficiently large.

To summarize, we obtain the following simple rule for chogsclosed loop
poles: slow stable process zeros should be matched by steedloop poles, and
fast stable process poles should be matched by fast clogeg@ddes. Slow unstable
process zeros and fast unstable process poles impose Bentrons.

Ms = sup|S(i )] = H

Example 12.10 Nanopositioning system for an atomic force microspe
A simple nanopositioner was explored in ExampI8, where it was shown that
the system could be controlled using an integral controllee performance of
the closed loop was poor because the gain crossover freguweas limited to
wge = 2 wo(1 — Sy). It can be shown that little improvement is obtained by using
a PI controller. To achieve improved performance, we willréiere apply PID
control. For a modest performance increase, we will useélseyd rule derived in
Examplel2.9that fast stable process poles should be canceled by denuzetos.
The controller transfer function should thus be chosen as
kas? + kps+ ki ki 2+ 2ras+ a?
s s a2

wherea = wo, which givesk, = 2:ki /a andky = ki /a2.

Figurel12.14shows the gain curves for the Gang of Four for a system designe
with k; = 0.5. A comparison with Figur@.12shows that the bandwidth isincreased
significantly fromwge = 0.01 towy. = ki = 0.5. Since the process pole is canceled,
the systemwill, however, still be very sensitive to loadulisances with frequencies
close to the resonant frequency. The gain curv€ 8tas a dip or a notch at the
resonant frequency, which implies thatthe controller ggiery low for frequencies
around the resonance. The gain curve also shows that thersigstery sensitive
to high-frequency noise. The system will likely be unusal@deduse the gain goes
to infinity for high frequencies.

The sensitivity to high frequency noise can be remedied byifyiad the con-
troller to be

C(s) = (12.16)

_k s? + 2ras+ a?
cE = sa2(l+sT; + (sT1)%/2)’ (12.17)

which has high-frequency roll-off. Selection of the constan for the filter is a
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Figure 12.14: Nanopositioning system control via cancellation of the fast process pole.
Gain plots for the Gang of Four for PID control with second-order filger{h2.17 are
shown by solid lines, and the dashed lines show results for an ideal Ritolter without
filtering (12.16.

compromise between attenuation of high-frequency measmenoise and ro-
bustness. A large value @% reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crogsfregquency without
filtering isk;, a reasonable choiceTs = 0.2/ T;, as shown by the solid curves in
Figure12.14 The plots oflC S(iw)| and|S(i w)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically atdbeof a marginal
increase of sensitivity. Notice that the poor attenuatibdisturbances with fre-
guencies close to the resonance is not visible in the seihsitinction because of
the exact cancellation of poles and zeros.

The designs thus far have the drawback that load disturbavitefequencies
closetothe resonance are not attenuated. We will now cersidiesign that actively
attenuates the poorly damped modes. We start with an ideat&iboller where
the design can be done analytically, and we add high-frexyueil-off. The loop
transfer function obtained with this controller is

_a?(kgS? + kps+ ki)

L(s) = S+ 2astad) | (12.18)
The closed loop system is of third order, and its charactepsitynomial is
$® + (kg@® + 2ra)s? + (kp + 1)a’s + k;a. (12.19)
A general third-order polynomial can be parameterized as
S + (aop + 20)wos? + (1 + Zaog)wgs + aoa)g’. (12.20)

The parametera and¢ give the relative configuration of the poles, and the pa-
rameteiwg gives their magnitudes, and therefore also the bandwidtinecfystem.
The identification of coefficients of equal powersswith equation 12.19
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Figure 12.15: Nanopositioner control using active damping. Gain curves for the @ang
Four for PID control of the nanopositioner designeddgr= a (dash-dotted), 2 (dashed),
and 4 (solid). The controller has high-frequency roll-off and has beerigdes to give
active damping of the oscillatory mode. The different curves coardpo different choices
of magnitudes of the poles, parameterizeddgyn equation 12.19.

gives a linear equation for the controller parameters, whis the solution

_ k2o gy o0y (@t 2o 2 g, o
a a a a

To obtain a design with active damping, it is necessary tiattosed loop band-

width be at least as fast as the oscillatory modes. Adding-frigquency roll-off,

the controller becomes

Kp

kys? + kps + k
S(1+sTi + (sT)?/2)°

The valueT; = T4/10= 0.1Kky/K is a good value for the filtering time constant.

Figure12.15shows the gain curves of the Gang of Four for designs wita
0.707,a0 = 1 andwg = a, 2a and 4. The figure shows that the largest values of
the sensitivity function and the complementary sensitiftinction are small. The
gain curve forP S shows that the load disturbances are now well attenuatad ove
the whole frequency range, and attenuation increases matbasingog. The gain
curve forC Sshows that large control signals are required to provideadamping.
The high gain ofC Sfor high frequencies also shows that low-noise sensors and
actuators with a wide range are required. The largest gan€ fbare 19, 103
and 434 forwg = a, 2a and 4, respectively. There is clearly a trade-off between
disturbance attenuation and controller gain. A comparisioRigures12.14and
12.15illustrates the trade-offs between control action andudigtnce attenuation
for the designs with cancellation of the fast process potkaative damping. V

C(s) = (12.22)
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12.5 Design for Robust Performance @

Control design is a rich problem where many factors have taken into account.
Typical requirements are that load disturbances shoulttéewmated, the controller
should inject only a moderate amount of measurement ndisegutput should
follow variations in the command signal well and the clossapl system should be
insensitive to process variations. For the system in Figdr@these requirements
can be captured by specifications on the sensitivity funst®mand T and the
transfer functionsGyq4, Gun, Gyr andGy,. Notice that it is necessary to consider
at least six transfer functions, as discussed Sedtibd The requirements are
mutually conflicting, and it is necessary to make trade-dffe attenuation of load
disturbances will be improved if the bandwidth is increased so will the noise
injection.

It is highly desirable to have design methods that can gteeaiobust perfor-
mance. Such design methods did not appear until the late 1880%/ of these
design methods result in controllers having the same strei@s the controller
based on state feedback and an observer. In this sectionowiel@ia brief review
of some of the techniques as a preview for those interestedoie specialized
study.

Quantitative Feedback Theory

Quantitative feedback theo(FT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitidr91]. The idea is to first determine
acontrollerthat gives a complementary sensitivity thailgist to process variations
and then to shape the response to reference signals by fieadfio The idea is
illustrated in Figurel2.16a which shows the level curves of the complementary
sensitivity functioril on a Nyquist plot. The complementary sensitivity functioa ha
unit gain on the line Ré (iw) = —0.5. In the neighborhood of this line, significant
variations in process dynamics only give moderate chamgtisicomplementary
transfer function. The shaded part of the figure correspondsetoegion ® <
IT({w)| < 1.1. To use the design method, we represent the uncertaingafur
frequency by a region and attempt to shape the loop transfietibn so that the
variation inT is as small as possible. The design is often performed usimg th
Nichols chart shown in Figur#2.16b

Linear Quadratic Control

One way to make the trade-off between the attenuation of distdrbances and
the injection of measurement noise is to design a contrilrminimizes the loss
function

1 T
I== /0 (V) + pu(t)) dt,

wherep is a weighting parameter as discussed in Sedi@nThis loss function
gives a compromise between load disturbance attenuatmligturbance injec-
tion because it balances control actions against devitiothe output. If all state
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Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity fund@tiofihe Nichols chart

is the conformal map of the Hall chart under the transformahios: log L (with the scale
flipped). The dashed curve isthe line whiréi )| = 1, and the shaded region corresponding
to loop transfer functions whose complementary sensitivity changes byone thant10%

is shaded.

variables are measured, the controller is a state feedback-K x and it has the
same form as the controller obtained by eigenvalue assigh(pele placement)

in Section6.2 However, the controller gain is obtained by solving an ropta-

tion problem. It has been shown that this controller is vetyust. It has a phase
margin of at least 60and an infinite gain margin. The controller is callelinear
quadratic controbr LQ controlbecause the process model is linear and the criterion
is quadratic.

When all state variables are not measured, the state cacdiesteucted using
an observer, as discussed in Secffod It is also possible to introduce process
disturbances and measurement noise explicitly in the madeélto reconstruct
the states using a Kalman filter, as discussed briefly in Se€tbriThe Kalman
filter has the same structure as the observer designed byalgerassignment in
Section7.3, but the observer gairls are now obtained by solving an optimization
problem. The control law obtained by combining linear quadreontrol with a
Kalman filter is calledinear quadratic Gaussian contradr LQG control The
Kalman filter is optimal when the models for load disturbareed measurement
noise are Gaussian.

Itis interesting that the solution to the optimization piesh leads to a controller
having the structure of a state feedback and an observer.tatesfsedback gains
depend on the parameter and the filter gains depend on the parameters in the
model that characterize process noise and measuremeat (seis Sectio7.4).
There are efficient programs to compute these feedback andsebgains.

The nice robustness properties of state feedback are un&bely lost when the
observer is added. It is possible to choose parametersitieatigsed loop systems
with poor robustness, similar to Examgdl2.8 We can thus conclude that there is a
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C = -C

Figure 12.17:H,, robust control formulation. The left figure shows a general remiegion

of a control problem used in robust control. The inpuépresents the control signal, the input
w represents the external influences on the system, the aigthe generalized error and the
outputy is the measured signal. The right figure shows the special case ofdieddrdback
loop in Figurel2.9where the reference signal is zero. In this case we have (n, d) and
z=(y,—u).

fundamental difference between using sensors for allstatd reconstructing the
states using an observer.

H., Control @

Robust control design is often callétl, control for reasons that will be explained
shortly. The basic ideas are simple, but the details are doatptl and we will
therefore just give the flavor of the results. A key idea isstitated in Figurd.2.17,
where the closed loop system is represented by two blockspithcessP? and
the controllerC as discussed in Sectidrl.1 The proces$ has two inputs, the
control signalu, which can be manipulated by the controller, and the gelzexhl
disturbanceo, which represents all external influences, e.g., commaméaks@nd
disturbances. The process has two outputs, the generatiped,avhich is a vector
of error signals representing the deviation of signals ftbeir desired values, and
the measured signal, which can be used by the controller to computd~or a
linear system and a linear controller the closed loop systmbe represented by

the linear system
z=H(P(s),C(s))w, (12.23)

which tells how the generalized errardepends on the generalized disturbances
w. The control design problem is to find a control@rsuch that the gain of the
transfer functiorH is small even when the process has uncertainties. There age ma
different ways to specify uncertainty and gain, giving tiselifferent designs. The
namesH, andH,, control correspond to the norni$i || and||H || .

To illustrate the ideas we will consider a regulation protbfer a system where
the reference signal is assumed to be zero and the extegmalsiare the load
disturbanceal and the measurement noiseas shown in Figur&2.17(right). The
generalized input is» = (—n, d). (The negative sign afi is not essential but is
chosen to obtain somewhat nicer equations.) The generadized is chosen as
z = (n,v), wherey is the process output andis the part of the load disturbance
that is not compensated by the controller. The closed loogesyss thus modeled
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by
1 =
[y) _|1+PC 1+PC]| [n] _ n
o= [2] - [FC R 3] -meo[5]. azes

1+PC 1+ PC
which is the same as equatial?(23. A straightforward calculation shows that

A+ P01+ ICMw)?)
IH(P, Cllee = s 11+ P(iw)C(iw)] :

(12.25)

There are numerical methods for finding a controller such|thiatP, C)|l» <
y, if such a controller exists. The best controller can therob@d by iterating on
y . The calculations can be made by solviedgebraic Riccatiequations, e.g., by
using the commanti nf syn in MATLAB. The controller has the same order as
the process and the same structure as the controller bastaterfieedback and an
observer; see Figura7and Theoren7.3.

Notice that if we minimizg|H (P, C)|l«, we make sure that the transfer func-
tionsGyq = P/(1+4 PC), representing the transmission of load disturbances to the
output, andG,, = —C/(1 + PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensjtaitd the complementary
sensitivity functions are also elementstdf P, C), we have also guaranteed that
the sensitivities are less than The design methods thus balance performance and
robustness.

There are strong robustness results associated witHtheontroller. It follows
from equations12.4) and (2.29 that

H(P, C)llos = (12.26)

6,(P,—1/C)’
Theinverseof H (P, C)| « isthus equalto the Vinnicombe distance betwBemd
—1/C and can therefore be interpreted ageaeralized stability margirCompare
this with s, which we defined as the shortest distance between the Nyyurigt
of the loop transfer function and the critical poiatl. It also follows that if we
find a controllerC with ||H(P, C)|l« < y, then this controller will stabilize any
processP, such thav, (P, P,) < 1/y.

Disturbance Weighting

Minimizing the gain||H (P, C)||.» means that the gains of all individual signal
transmissions from disturbances to outputs are lessthim all frequencies of
the input signals. The assumption that the disturbancesgaralg important and
that all frequencies are also equally important is not venistic; recall that load
disturbances typically have low frequencies and measuren@se is typically
dominated by high frequencies. It is straightforward to ifothe problem so that
disturbances of different frequencies are given diffemmphasis, by introducing



12.5. DESIGN FOR ROBUST PERFORMANCE 378

Figure 12.18:Block diagrams of a system with disturbance weighting. The left figundges
a frequency weight on processes disturbances. Through blodladhaganipulation, this can
be converted to the standard problem on the right.

a weighting filter on the load disturbance as shown in Figixd.8 For example,
low-frequency load disturbances will be enhanced by cgpdi as a low-pass
filter because the actual load disturbance/id.

By using block diagram manipulation as shown in Figli2e18 we find that
the system with frequency weighting is equivalent to theesyswith no frequency
weighting in Figurel2.18and the signals are related through

1 P
7= [y] l+PC 1+4PC [”] — H(P,O)a, (12.27)
u C PC d
1+PC 1+PC

whereP = PW andC = W~IC. The problem of finding a controlleC that
minimizes the gain oH (P, C) is thus equivalent to the problem without distur-
bance weighting; having obtain€] the controller for the original system is then
C = WC. Notice that if we introduce the frequency weightiwg= k/s, we will
automatically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. Ite gifi the nice
properties of feedback, there are situations where theepsovariations are so
large that it is not possible to find a linear controller thategi a robust system
with good performance. It is then necessary to use othewstgpeontrollers. In
some cases it is possible to measure a variable that is weblated with the
process variations. Controllers for different paramegdu®s can then be designed
and the corresponding controller can be chosen based on e¢hsumed signal.
This type of control design is calleghin schedulingThe cruise controller is a
typical example where the measured signal could be gedigroand velocity. Gain
scheduling is the common solution for high-performancerait where scheduling
is done based on Mach number and dynamic pressure. Whergasingcheduling,
it is important to make sure that switches between the clatsodo not create
undesirable transients (often referred tdampless transfer

If it is not possible to measure variables related to the rpatars,automatic
tuningandadaptive controtan be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controlleeisdbsigned automat-
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ically. Automatic tuning requires that parameters remainstant, and it has been
widely applied for PID control. It is a reasonable guess thahe future many
controllers will have features for automatic tuning. If panreters are changing, it
is possible to use adaptive methods where process dynareioseasured online.

12.6 Further Reading

The topic of robust control is a large one, with many articles #xtbooks devoted
to the subject. Robustness was a central issue in classicbt as described in
Bode’s classical bookHod45. Robustness was deemphasized in the euphoria of
the development of desigh methods based on optimizationsffbeg robustness
of controllers based on state feedback, shown by Andersdriverore JAM90Q],
contributed to the optimism. The poor robustness of outpedifeck was pointed
out by RosenbrockRM71], Horowitz [Hor79 and Doyle Poy7§ and resulted
in a renewed interest in robustness. A major step forwardthesgevelopment of
design methods where robustness was explicitly taken ictount, such as the
seminal work of ZamesZam81. Robust control was originally developed using
powerful results from the theory of complex variables, whgave controllers of
high order. A major breakthrough was made by Doyle, Glovérai§gonekar and
Francis PGKF89, who showed that the solution to the problem could be okthin
using Riccati equations and that a controller of low ordeddbe found. This paper
led to an extensive treatment bif,, control, including books by Francigfa87,
McFarlane and GloveMiG9(], Doyle, Francis and TannenbaulHfT9Z, Green
and LimebeerGL95], Zhou, Doyle and GlovelZDG96, Skogestand and Postleth-
waite [SP0J and Vinnicombe Yin01]. A major advantage of the theory is that it
combines much of the intuition from servomechanism theatly sound numerical
algorithms based on numerical linear algebra and optimiza®T he results have
been extended to nonlinear systems by treating the de<itphepn as a game where
the disturbances are generated by an adversary, as delsicrile book by Basar
and BernhardBB91]. Gain scheduling and adaptation are discussed in the book
by Astrom and WittenmarkdwWo08].

Exercises

12.1 Consider systems with the transfer functiods = 1/(s+ 1) and P, =
1/(s+ a). Show thatP; can be changed continuously® with bounded additive
and multiplicative uncertainty d& > 0 butnotifa < 0. Also show that ho restriction
ona s required for feedback uncertainty.

12.2 Consider systems with the transfer functioks = (s + 1)/(s + 1)? and
P, = (s+ a)/(s + 1)2. Show thatP; can be changed continuously B with
bounded feedback uncertaintyaf > 0 but not ifa < 0. Also show that no
restriction oma is required for additive and multiplicative uncertainties
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12.3(Difference in sensitivity functions) L€k (P, C) be the complementary sen-
sitivity function for a system with proced$3 and controlleiC. Show that

(PL—P)C
1+ P.C)(1+ PC)Y’
and derive a similar formula for the sensitivity function.

12.4(The Riemann sphere) Consider systems with the transfetifunsdP; = @
k/(s+ 1) andP, = k/(s — 1). Show that

T(P,C) —=T(P,C) =

1, if k<1
oy(Pr, P) =1 2Kk

1+ k2

Use the Riemann sphere to show geometricallydh@®,, P,) = 1if k < 1. (Hint:
It is sufficient to evaluate the transfer function fo= 0.)

2
d(Py, Po) = ——, )
(P1, P2) 1+ k2 otherwise

12.5(Stability margins) Consider a feedback loop with a processaacontroller
having transfer function® andC. Assume that the maximum sensitivityNg = 2.
Show that the phase margin is at least 8Ad that the closed loop system will be
stable if the gain is changed by 50%.

12.6(Bode’s ideal loop transfer function) Make Bode and Nyqplsts of Bode’s
ideal loop transfer function. Show that the phase margip,is=180—-90°’n and
that the stability margin isy = arcsinz (1 — n/2).

12.7 Consider a process with the transfer funct®(s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that is rolmustese gain variations
can be obtained by finding a controller that gives the loopstiearfunctionL (s) =
1/(s/s). Suggest how the transfer function can be implemented byappating
it by a rational function.

12.8 (Smith predictor) TheSmith predictoy a controller for systems with time
delays, is a special version of Figut@.8awith P(s) = €3 Py(s) andC(s) =
Co(8)/(1L+Co(s)P(s)). The controllelCy(s) is designed to give good performance
for the proces$,(s). Show that the sensitivity functions are

14+ (1—e*)Po(s)Co(s) Po(s)Co(S)

S(s) = 1+ Py(S)Co(S) - T =7 + Po(s)Co(S)

—ST

12.9 (Ideal delay compensator) Consider a process whose dysaamica pure
time delay with transfer functio®(s) = e~3. The ideal delay compensator is a
controller with the transfer functio@ (s) = 1/(1 — e~%). Show that the sensitivity
functions areT (s) = €% andS(s) = 1 — e~® and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.10(Vehicle steering) Consider the Nyquist curve in Figligell Explain why
part of the curve is approximately a circle. Derive a formfolathe center and the
radius and compare with the actual Nyquist curve.
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12.11 Consider a process with the transfer function
P(s) = (s+ 3)(s+ 200
"~ (s+ 1)(s? + 10s + 40)(s + 40)

Discuss suitable choices of closed loop poles for a desggrgities dominant poles
with undamped natural frequency 1 and 10.

12.12(AFM nanopositioning system) Consider the design in Exanigld 0and
explore the effects of changing parameiggand(o.

12.13(Hs control) Consider the matrik (P, C) in equation 12.24. Show that
it has the singular values

_ VA4 [Piw)P) A+ [Cio)?)
-0 — & =su =H(P,C))llco-
01=0, o2=0 wp 1+ P(io)Cliw)| H(P,C)
Also show that = 1/d, (P, —1/C), which implies that 15 is a generalization of
the closest distance of the Nyquist plot to the critical poin

12.14 Show that

| Piw) +1/Clio)| 1
0,(P,—=1/C) =inf = .
O = T PtwPaT UCioP  IHP, Ol

12.15 Consider the system

dx — —
a=Ax+ Bu= [ 11 8] X+ [al 1] u, y=Cx= [0 1] y.
Design a state feedback that givesdét- BK) = s?+2.w.S+®?2, and an observer
with det(s| — LC) = s? + 2¢,m,S + »2 and combine them using the separation
principle to get an output feedback. Choose the numeridaéga = 1.5, w; = 5,

e = 0.6 andw, = 10,¢, = 0.6. Compute the eigenvalues of the perturbed system
when the process gain is increased by 2%. Also compute tipetilansfer function
and the sensitivity functions. Is there a way to know befarghthat the system
will be highly sensitive?

12.16(Robustness using the Nyquist criterion) Another view oiust performance
can be obtained through appeal to the Nyquist criterion.3g4(i w) represent a
desired upper bound on our sensitivity function. Show thasifstem provides this
level of performance subject to additive uncertaintyf the following inequality
is satisfied:

- 1
[1+L|=]14+4L+CA|> ——— forallw>0. (12.28)
| Sax(i )]

Describe how to check this condition using a Nyquist plot.
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bifurcations of 122
discrete timeg2

for closed loop systeni,77,
196
for planar systemd,04
region of attraction,
120-122 129
stability, 103
error feedbacks, 296, 297,
312 321
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240 251
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324
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feedback uncertaint353 360
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377
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human-machine interfacés,
70
hysteresis23, 291, 292

identification,seesystem
identification
impedance237, 313
implementation, controllers,
seeanalog
implementation; computer
implementation
impulse function 147, 165,
170
impulse responsd,36, 147,
148 262
inductor, transfer function for,
237
inertia matrix,36, 164
infinity norm, 289, 376
information systemsl2,
54-58, see also
congestion control; web
server control
initial condition, 97, 100, 103
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variation of the argument,
principle of
process controb, 10, 13, 45
proportional control24, 296,
see alsdPID control
proportional, integral,
derivative controlseePID
control
protocol,seecongestion
control; consensus

pulse signall47, 148 188 see
alsoimpulse function

pupil response259, 300

pure exponential responsz33

Q-value,63, 187, 255

quantitative feedback theory
(QFT),373

quarter car modeR66, 267

queuing system$4-56, 64

random proces$5, 216, 229
reachability,32, 168-176, 198
223
rank condition,171
tests for,170
unreachable systemk72,
200 223-224, 266
reachability matrix170, 174
reachable canonical form5,
173-176,179 181, 199
reachable sef,68
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Schitter, G.84, 85
second-order systenia3, 165
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(SISO) systems96, 133
134, 160, 205, 288
singular values288 289, 380
sink (equilibrium point), 104
small gain theoren289-290,
359
Smith predictor379
software tools for controly
solution (ODE) see
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258

tapping modeseeatomic
force microscope

TCP/IP,seelnternet;
congestion control

Teorell, T.,86, 90

thermostat5, 6

three-term controller296, see
alsoPID control

thrust vectored aircrafsee
vectored thrust aircraft

time constant, first-order
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