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ABSTRACT

This paper describes the design of NNSVS, an open-source soft-
ware for neural network-based singing voice synthesis research.
NNSVS is inspired by Sinsy, an open-source pioneer in singing
voice synthesis research, and provides many additional features
such as multi-stream models, autoregressive fundamental fre-
quency models, and neural vocoders. Furthermore, NNSVS
provides extensive documentation and numerous scripts to build
complete singing voice synthesis systems. Experimental results
demonstrate that our best system significantly outperforms our
reproduction of Sinsy and other baseline systems. The toolkit is
available at https://github.com/nnsvs/nnsvs.

Index Terms— singing voice synthesis, open source software,
PyTorch, multi-stream models, autoregressive models

1. INTRODUCTION

Open-source software has played a crucial role in advancing re-
search; for example, PyTorch [1] and TensorFlow [2] for deep
learning, HTK [3] and Kaldi [4] for speech recognition, and
HTS [5]] and Merlin [6] for speech synthesis, have been exten-
sively used by the research and industry communities.

Sinsy is an open-source pioneer in singing voice synthesis
(SVS) [7]-[9]. Sinsy has had more than 10 years of development
history since its first public release. Sinsy adopted statistical para-
metric SVS based on hidden Markov models (HMMs) in the first
version and switched to deep neural networks (DNNs) to improve
SVS quality. Although the SVS community greatly benefited from
their efforts, the functionality of its open-source version is lim-
ited to traditional HMM-based SVS and DNN-based SVS is not
publicly available.

Most recently, a new open-source toolkit for end-to-end SVS,
Muskits has been proposed [|10]. Although Muskits provides sev-
eral DNN-based SVS models [11]-[13] with a number of repro-
ducible recipes [4]], it does not support well-designed parametric
approaches that can achieve both good quality and pitch robust-
ness, as in the latest Sinsy [9].

In this paper, we propose NNSVS, a new open-source toolkit
for singing voice synthesis (SVS) written in Python and Py-
Torch [1]. In contrast to Muskits, NNSVS does not specialize
in end-to-end SVS. Instead, we aim to provide a modular and
extensible codebase that is easily applied to various SVS architec-
tures including parametric SVS [8]], [[11]l, [[14], modern SVS using
neural vocoders [[15], [[16]], and their hybrid methods [9], [[17]. The
important features are summarized as follows:

Modular design: Following Sinsy’s structure [9], NNSVS de-
composes an SVS system into four core modules: the time-lag

model, duration model, acoustic model, and vocoder.

Extensible design: Together with the modular design, every
module can be flexibly customized. For example, users can add
new acoustic model architectures without modifying the remaining
modules. Furthermore, our generic multi-stream implementation
of acoustic models gives users fine-grained control over the model
architecture for each feature stream separately.

Language-independent design: The above-mentioned four
core modules are language-independent by design. Therefore,
users can create SVS systems for custom languages by implement-
ing a language-dependent pre-processing (e.g., extracting phonetic
contexts from musical scores).

Everything is open-source: In contrast to the open-source ver-
sion of Sinsy, our code is fully open-sourced. We also provide an
implementation that resembles Sinsy as a baseline system to further
encourage reproducible research.

Complete recipes: Following the success of Kaldi [4], ESP-
net [ 18], and Muskits [[10]], we provide complete setups for building
SVS systems.

Documentation: NNSVS is extensively documented. Docu-
mentation is available onlineﬂ

Even though the modular and extensible design allows users
to implement their custom models and recipes, our toolkit pro-
vides several baseline implementations. In particular, we pro-
vide varieties of acoustic models such as those of Sinsy [S], [9],
multi-stream models [14f], [[19]], and autoregressive fundamental
frequency (Fp) models [17]. Furthermore, to obtain the best per-
formance possible of traditional parametric approaches and recent
neural vocoders, we incorporate the unified source-filter generative
adversarial networks (uSFGAN) [20] to achieve high-quality and
pitch-robust SVS systems.

To evaluate the quality of the SVS systems, we compare
NNSVS with some baseline systems including Muskits [10],
Sinsy [9]], and a recently proposed modern SVS system called
DiffSinger [16]. Experimental results demonstrate that our best
system archives a mean opinion score (MOS) of 3.86, significantly
outperforming the baseline systems.

2. DATA REPRESENTATION

To build SVS systems with NNSVS, the following data are re-
quired: 1) the waveform, 2) musical score, and 3) phone segmen-
tation. The latter two can be represented as an HTS label file [5]],
which includes timings (i.e., the start and end time of each phone)
and phonetic/musical contexts.
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Fig. 1. Block diagram of an NNSVS SVS system: (a) phonetic
timing prediction and (b) waveform synthesis.

2.1. Musical score features

Inspired by Sinsy [9], our toolkit uses HTS full-context labels as
the primary musical score representation. We provide tools to ob-
tain HT'S labels from MusicXML [21]] and UST[*|[24] files. We also
provide a set of context definitions (i.e., phonetic and musical con-
texts to be extracted from HTS labels) designed for Japanese SVS.
Note that they can be extended to other languages (e.g., UK, US,
or Australian English [25]]). Furthermore, to control the character-
istics of the synthetic voice, users can add custom contexts such as
falsetto flags, emotion flags, and strength of voice.

Given the context definitions, our toolkit converts HTS labels
to note-level and phone-level musical score features that consist of
categorical (e.g., phone identity) and numeric features (e.g., note
pitch and duration). Then, those extracted features are used as in-
puts for the neural networks.

2.2. Acoustic features

We use WORLD [26]] as the main acoustic feature extraction tool.
WORLD decomposes audio signals into Fp, the spectral envelope,
and band-aperiodicity (BAP). The spectral envelope is converted
to mel-generalized cepstral coefficients (MGCs) to reduce di-
mensionality without quality deterioration [27]]. Furthermore, Fy
is converted into a continuous log-scale Fy (log-Fp) (28] and
voiced/unvoiced flags (VUVs) for the ease of modeling.

The extracted acoustic features are used as the target fea-
tures of the acoustic models and conditioning features for the
neural vocoders. We also integrate mel-spectrogram feature ex-
traction to support recent SVS model architectures that predict
mel-spectrograms from the musical score. To support explicit vi-
brato modeling proposed in Sinsy [9], we provide optional vibrato
parameter extraction [29].

3. CORE MODULES

Figure [I] presents an overview of an SVS system built using
NNSVS. The phonetic timing prediction consists of time-lag and

ZFiles created by vocal synthesizer UTAU [22] and its open-source suc-
cessor OpenUTAU [23]].

duration models, whereas the waveform synthesis consists of an
acoustic model and a vocoder.

3.1. Time-lag model

Depending on the singing style, human vocals often deviate from
the start timings of musical notes. A time-lag model predicts
those note-level timing deviations given the note—leveﬂ musical
score features [30]. We provide the same functionality as the lat-
est Sinsy [9], which models the time-lags using mixture density
networks (MDNs) [31]].

3.2. Duration model

A duration model predicts phone durations given the phone-level
musical score features. As in the time-lag model, we employ an
MDN-based duration model [9]]. By combining the predicted time-
lags and phone durations, the post-processing module in Fig.[1|(a)
computes normalized phone durations so that the sum of the pre-
dicted durations equals to the note durations [9]]. After the post-
processing, phone-level score features are converted to frame-level
ones and used as the input of the acoustic models.

3.3. Acoustic model

An acoustic model predicts frame-level acoustic features from
frame-level score feature’] We describe the details of several
important implementations below.

3.3.1. Sinsy-based model

We provide an implementation that resembles Sinsy’s acoustic
model [9]. The architecture of Sinsy’s acoustic model consists of
three fully connected layers, three one-dimensional convolution
layers with batch normalization [32] and ReLU activations [33]],
followed by two bi-directional long short-term memory net-
works [34] and a projection layer. As the target acoustic features,
vocoder parameters (e.g., MGCs and Fp) and additional vibrato
parameters (i.e., binary vibrato flags, amplitude, and speed [29])
are used. For robust Fp prediction, Sinsy adopts a pitch normaliza-
tion technique: predicting the residual log-Fy based on the input
note pitch.

To avoid out-of-tune pitch issues, several pitch correction algo-
rithms have been proposed [9]]. Our toolkit provides one of Sinsy’s
pitch correction algorithms: a pitch correction method that imposes
a prior distribution of pitch based on the note pitch information.

3.3.2. Multi-stream models

DNN-based acoustic models such as the one in Sinsy jointly pre-
dict Fp and other spectral features. However, it has been found
that a DNN tends to prioritize higher dimensional spectral features
over Fy [35]. To address this problem, we provide multi-stream ar-
chitectures that model each feature stream separately. This multi-
stream design enables flexible and fine-grained control for mod-
eling different features. Furthermore, to encourage predictions of

31t is possible to use phone-level features, but we currently use note-level
features for simplicity.

4We could support phone-level features as input for joint optimization of
the duration and acoustic models, but we have not implemented it yet.



multiple networks to be coherent, we implemented functionality
that conditions the predictions of one network to the input of an-
other, similar to the neural parametric singing synthesizer [14]. In
particular, we found that conditioning log- F{, to the spectral feature
prediction models was beneficial.

Our toolkit provides several generic implementations that can
be used with the multi-stream architecture: convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and ad-
vanced architectures such as that of Sinsy and a duration-informed
autoregressive model based on the Tacotron [36]]. Furthermore, we
provide implementations specifically designed for Fy prediction.

3.3.3. Autoregresssive Fy models

Modeling Fj is the key to achieving expressive and natural SVS.
Although Sinsy models the dynamic characteristics of the F con-
tour by an explicit vibrato modeling, we provide alternative imple-
mentations based on autoregressive models, of which the effective-
ness has been confirmed in text-to-speech [37]] and SVS [[14]], [[17]].
As demonstrated in Section4.3] autoregressive Fy models can gen-
erate a more natural voice without explicitly modeling vibrato.

Inspired by Sinsy [9] and XiaoiceSing [11], we incorporate
residual log-F modeling within the autoregressive models. The
choice of detailed architecture may be arbitrary, but we found that
a Tacotron-based RNN works well [36].

3.4. Vocoder

NNSVS supports WORLD [26] as a signal processing-based
vocoder and uSFGAN [20] as a neural vocoder. WORLD can
be used to achieve reasonably good-quality SVS, whereas neural
vocoders are generally preferred to achieve better sound quality.

Note that we also support various neural vocoders based on
generative adversarial networks (GANs) [38|] such as Parallel
WaveGAN [39]] and HiFi-GAN [40]. However, we found that
uSFGAN archived a better tradeoff between quality and pitch
robustness.

4. EXPERIMENTAL EVALUATIONS

4.1. Database

To evaluate the performance of NNSVS, we used Namine Ritsu’s
publicly available database [41]]. The database contains 110 songs
recorded by a single Japanese singer. Specifically, it includes 4.35
hours of singing data with timings, phonetic, and musical context
annotations. We split the 110 songs using a ratio of 100/5/5 for the
training, validation, and test sets. respectively. We also split each
song into small segments based on the rest notes in the musical
scores. Note that we selected test songs to cover a wide range of
note pitches: the lowerest and highest notes of the test songs were
D#4 (155.6 Hz) and AS (880 Hz), whereas those of the training
data were D#3 (146.8 Hz) and B5 (987.8 Hz). The audio signals
were sampled at 44.1 kHz and downsampled to 24 kHz. Each audio
was normalized to -26 dB.

At the pre-processing stage, we extracted 82-dimensional score
features (e.g., phone identity, note pitch, and note duration) for
the time-lag and duration models. Additional four-dimensional
coarsely coded positional features [42] were used for the acoustic
models.

4.2. Model details
4.2.1. Baselines

As baseline systems, we used our implementations of Sinsy [9],
Muskits’s RNN-based SVS [13]], and the recently proposed Diff-
Singer [[16]. We used the same MDN-based time-lag and dura-
tion models in all systems except for Muskits and DiffSinger. In
Muskits and DiffSinger, time-lag models were not used, and the
duration models were jointly trained with the acoustic models.

We implemented three variants of Sinsy’s acoustic model: 1) a
simplified version of Sinsy without vibrato modeling, 2) Sinsy with
a pitch correction algorithm, and 3) Sinsy with pitch correction
and vibrato modeling. The detailed model architecture follows that
of Sinsy [9]. As the acoustic features, the systems use WORLD-
based 65-dimensional acoustic features containing 60-dimensional
MGCs, continuous log-Fy (LFO), VUVs, and three-dimensional
BAP. The frame shift was set to 5 ms. For explicit vibrato mod-
eling, three-dimensional vibrato parameters (i.e., binary flags, am-
plitude, and speed; denoted as VIB) were additionally used. We
did not use dynamic features as we found them to be less useful.
During synthesis, a global variance-based post-filter was applied to
the MGC:s to alleviate over-smoothing issues [43].

For Muskits, we used the officially provided recipe to train the
RNN-based SVS [13]. The system uses syllable-level score fea-
tures and predicts durations together with an 80-dimensional mel-
spectrogram. A HiFi-GAN vocoder was used to generate wave-
forms from the mel-spectrogram [40].

As for DiftSinger, we used the MIDI B-version of the offi-
cial source code [44]. The system consists of three components:
1) a mel-spectrogram prediction based on a denoising diffusion
probabilistic model [45], 2) Fo/VUV prediction from the mel-
spectrogram, and 3) a HiFi-GAN vocoder with harmonic-plus-
noise mechanism [46] (referred to as hn-HiFi-GAN). We trained
each model on Namine Ritsu’s database for a fair comparison with
other SVS systems.

4.2.2. NNSVS

For the NNSVS systems, we used two types of SVS systems
that use mel-spectrogram and WORLD-based features, respec-
tively. The WORLD and mel-spectrogram features contain four
(i.e., [MGC, LFO, VUV, BAP]) and three (i.e., [Mel-spectrogram,
LFO, VUV]) feature streams, respectively. Note that the details
of WORLD features, time-lag model, and duration model are
the same as those described in Section £.2.11 We trained several
multi-stream acoustic models with non-autoregressive and autore-
gressive models for each feature type, as listed in Table For
the architecture of the multi-stream models, we adopted the Sinsy
architecture for non-autoregressive modeling and the duration-
informed Tacotron [36] for autoregressive modeling. We modeled
the VUV feature stream by the Sinsy’s non-autoregressive archi-
tecture in all systems. For the multi-stream models, LFO was
conditioned on the input to the spectral feature prediction models
(i.e., models for predicting the MGCs, BAP, and mel-spectrogram)
and the VUV prediction model. In addition, NNSVS-WORLD v4
used MGCs as conditioning for predicting VUV. Note that we
did not use pitch correction methods for NNSVS. During syn-
thesis, global variance post-filters were used for the MGCs and
mel-spectrogram. For the neural vocoder architecture, we used



Table 1. Naturalness MOS test results with 95% confidence intervals. MEL denotes mel-spectrogram. A/S in the system column
represents that the speech samples were generated by the extracted acoustic features. Otherwise, samples were generated by the input
musical score. Bold font represents the best score in all SVS systems.

System Acoustic Mult-'stream Autoregressive Vocoder MOSt
Features Architecture  Streams

Sinsy [9] MGC, LF0, VUV, BAP No - hn-uSFGAN 2.64+0.12
Sinsy (w/ pitch correction) [9] MGC, LF0, VUV, BAP No - hn-uSFGAN 2.84 £0.11
Sinsy (w/ vibrato modeling) [9] MGC, LFO, VUV, BAP, VIB  No - hn-uSFGAN 2.99 £0.11
Muskits RNN [10] MEL No - HiFi-GAN 2.22 +£0.11
DiffSinger [|16] MEL, LF0, VUV Yes - hn-HiFi-GAN  2.90 + 0.11
NNSVS-Mel vl MEL, LF0, VUV Yes - hn-uSFGAN 3.51+0.11
NNSVS-Mel v2 MEL, LF0, VUV Yes LFO hn-uSFGAN 3.58+0.11
NNSVS-Mel v3 MEL, LF0, VUV Yes MEL, LFO hn-uSFGAN 2.58 +0.11
NNSVS-WORLD vO0 [41] MGC, LF0, VUV, BAP No - WORLD 3.28 +0.10
NNSVS-WORLD vl MGC, LF0, VUV, BAP Yes - hn-uSFGAN 3.21+0.12
NNSVS-WORLD v2 MGC, LF0, VUV, BAP Yes LFO hn-uSFGAN 3.35+0.11
NNSVS-WORLD v3 MGC, LF0, VUV, BAP Yes MGC, LFO hn-uSFGAN 3.60+0.11
NNSVS-WORLD v4 MGC, LF0, VUV, BAP Yes MGC, LFO, BAP  hn-uSFGAN 3.86 = 0.10
hn-HiFi-GAN (A/S) MEL, LF0, VUV - - hn-HiFi-GAN  3.72 +£0.11
hn-uSFGAN-Mel (A/S) MEL, LF0, VUV - - hn-uSFGAN 4.19+0.09
hn-uSFGAN-WORLD (A/S) MGC, LF0, VUV, BAP - hn-uSFGAN 4.19+0.09
Recordings - - - 4.39 £ 0.08

the harmonic-plus-noise uSFGAN (hn-uSFGAN) [20]. We trained
two hn-uSFGAN vocoders for the mel-spectrogram and WORLD
features. Then, the vocoders were used for NNSVS and Sinsy. All
the acoustic models and vocoders of NNSVS were trained for 100
epochs and 600 K steps, respectively. More details of the model
architecture, training setups, and hyperparameters can be found in
our GitHub repositor

To evaluate the recent improvements of NNSVS, we included
a publicly available pre-trained SVS model (NNSVS-WORLD v0)
that was created with an earlier version of NNSVS (November
2021) [41]. The acoustic model was based on the single-stream ar-
chitecture, and it consisted of stacks of six one-dimensional CNNs
with residual connections, followed by an MDN layer. The time-
lag and duration models were also based on MDNS.

4.3. Subjective evaluation

We performed MOS tests using a five-point scale for evaluation.
Eighteen native Japanese speakers were asked to judge the quality
of the singing voice samples. For the tests, five short segments of
3 to 20 seconds were randomly selected for each of the five test
songs. In total, 25 samples for each SVS system were evaluated.
We also evaluated the synthesized samples generated by the ex-
tracted acoustic features using the hn-HiFi-GAN and hn-uSFGAN
vocoders.

Table E] shows the MOS test results, of which the trends can
be summarized as follows: (1) Sinsy with explicit vibrato model-
ing achieved the best score among the three Sinsy variants, which
confirms the importance of modeling the dynamic characteristics
of Fy. (2) All NNSVS systems except for the NNSVS-Mel v3
outperformed the Sinsy, Muskits, and DiffSinger baseline systems.
(3) The source-filter-based hn-uSFGAN performed significantlly
better than hn-HiFi-GAN. (4) The autoregressive architecture for
the WORLD-based multi-stream models improved the naturalness

Shttps://github.com/nnsvs/nnsvs

of the SVS. In particular, NNSVS-WORLD v4 achieved the best
score of all the SVS systems (3.86), demonstrating the effective-
ness of multi-stream and autoregressive architectures for modeling
Fp and spectral features. (5) Comparing NNSVS-WORLD v4 and
NNSVS-WORLD v0, we confirmed that we have obtained substan-
tial performance improvements over the earlier version of NNSVS.
We observed that NNSVS-Mel v3 tended to generate unsta-
ble output for low- and high-pitched voices. We hypothesize that
NNSVS-Mel v3 obtained a lower score than the other NNSVS sys-
tems, such as NNSVS-WORLD v3, because of the exposure bias
issues. In particular, the mel-spectrogram was more challenging to
model than the MGC and BAP since the mel-spectrogram is more
complex and entangled representation (i.e., it contains FO and har-
monic/aperiodicity envelopes), while MGC and BAP are disentan-
gled [[14]], [[19]. We also note that even though DiffSinger gener-
ated a singing voice with higher fidelity than other systems, it often
generated unnatural pitches such as discontinuous FO and unstable
vibrato, especially for dynamic voices. We encourage readers to
listen to the singing voice samples provided on our demo pag

5. CONCLUSION

This paper described the design of NNSVS, an open-source toolkit
for SVS research. Our toolkit provides implementations of Sinsy
and many new features such as multi-stream models, autoregres-
sive Fp models, and neural vocoders based on uSFGAN. Experi-
mental results demonstrated that our best system significantlly out-
performed the Sinsy, Muskits, and DiffSinger baseline systems.
Future work includes adding more advanced architectures based
on variational auto-encoders, diffusion models, and GANs. We
also plan to work on end-to-end models.

Acknowledgments: This work was partly supported by JST
CREST Grant Number JPMJCR19A3.

Shttps://r9y9.github.io/projects/nnsvs/


https://github.com/nnsvs/nnsvs
https://r9y9.github.io/projects/nnsvs/

(1]

[2]

(3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

(22]

(23]

6. REFERENCES

A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An imperative style,
high-performance deep learning library,” in Proc. NeurIPS, vol. 32,
2019.

Martin Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow:
Large-scale machine learning on heterogeneous systems, Software
available from tensorflow.org, 2015.

S. Young, G. Evermann, M. Gales, et al., “The HTK book,” Cam-
bridge university engineering department, vol. 3, no. 175, p. 12, 2002.

D. Povey, A. Ghoshal, G. Boulianne, et al., “The Kaldi speech recog-
nition toolkit,” in Proc. ASRU, IEEE Signal Processing Society, 2011.

H. Zen, T. Nose, J. Yamagishi, et al., “The HMM-based speech syn-
thesis system (HTS) version 2.0,” in Proc. SSW, vol. 6, 2007, pp. 294—
299.

Z. Wu, O. Watts, and S. King, “Merlin: An open source neural net-
work speech synthesis system.,” in Proc. SSW, 2016, pp. 202-207.

K. Oura, A. Mase, T. Yamada, et al., “Recent development of the
HMM-based singing voice synthesis system—Sinsy,” in Seventh
ISCA Workshop on Speech Synthesis, 2010.

Y. Hono, S. Murata, K. Nakamura, et al., “Recent development of
the DNN-based singing voice synthesis system—sinsy,” in Proc. AP-
SIPA, 2018, pp. 1003-1009.

Y. Hono, K. Hashimoto, K. Oura, et al., “Sinsy: A deep neural
network-based singing voice synthesis system,” IEEE/ACM Trans. on
Audio, Speech, and Lang. Process., vol. 29, pp. 2803-2815, 2021.

J. Shi, S. Guo, T. Qian, et al., “Muskits: an End-to-end Music Process-
ing Toolkit for Singing Voice Synthesis,” in Proc. Interspeech, 2022,
pp. 4277-4281.

P. Lu, J. Wu, J. Luan, et al., “XiaoiceSing: A High-Quality and Inte-
grated Singing Voice Synthesis System,” in Proc. Interspeech, 2020,
pp. 1306-1310.

M. Blaauw and J. Bonada, “Sequence-to-sequence singing synthe-
sis using the feed-forward transformer,” in Proc. ICASSP, 2020,
pp. 7229-7233.

J. Shi, S. Guo, N. Huo, et al., “Sequence-to-sequence singing voice
synthesis with perceptual entropy loss,” in Proc. ICASSP, 2021,
pp- 76-80.

M. Blaauw and J. Bonada, “A neural parametric singing synthesizer
modeling timbre and expression from natural songs,” Applied Sci-
ences, vol. 7, no. 12, p. 1313, 2017.

Y. Gu, X. Yin, Y. Rao, et al., “ByteSing: A chinese singing voice
synthesis system using duration allocated encoder-decoder acoustic
models and WaveRNN vocoders,” in Proc. ISCSLP, 2021, pp. 1-5.

J. Liu, C. Li, Y. Ren, et al., “DiffSinger: Singing voice synthesis via
shallow diffusion mechanism,” AAAI, vol. 36, no. 10, pp. 11020—
11028, 2022.

Y.-H. Yi, Y. Ai, Z.-H. Ling, et al., “Singing Voice Synthesis Using
Deep Autoregressive Neural Networks for Acoustic Modeling,” in
Proc. Interspeech, 2019, pp. 2593-2597.

S. Watanabe, T. Hori, S. Karita, et al., “ESPnet: End-to-end speech
processing toolkit,” in Proc. Interspeech, 2018, pp. 2207-2211.

J. Kim, H. Choi, J. Park, e al., “Korean singing voice synthesis sys-
tem based on an Istm recurrent neural network,” in Proc. Interspeech,
2018, pp. 1551-1555.

R. Yoneyama, Y.-C. Wu, and T. Toda, “Unified Source-Filter GAN
with Harmonic-plus-Noise Source Excitation Generation,” in Proc.
Interspeech, 2022, pp. 848-852.

M. Good, “MusicXML for notation and analysis,” The virtual score:
representation, retrieval, restoration, vol. 12, no. 113-124, p. 160,
2001.

Ameya/Ayame, UTAU, http : / /utau2008 . xrea . jp/, Ac-
cessed: 2022.10.06.

StTakira, Open singing synthesis platform / open source UTAU suc-
cessor,https://github.com/stakira/OpenUtaul

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

H.-C. Shen, “Linguistic Extension of UTAU Singing Voice Synthesis
and Its Application from Japanese to Mandarin,” in Proc. ECEI, 2022,
pp. 189-192.

Intunist, The original support for English NNSVS dataset creation,
https://github.com/intunist /nnsvs—-english—
supporth

M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-based
high-quality speech synthesis system for real-time applications,” /E-
ICE Trans. on Information and Systems, vol. 99, no. 7, pp. 1877-1884,
2016.

M. Morise, G. Miyashita, and K. Ozawa, “Low-Dimensional Repre-
sentation of Spectral Envelope Without Deterioration for Full-Band
Speech Analysis/Synthesis System,” in Proc. Interspeech, 2017,
pp. 409-413.

K. Yu and S. Young, “Continuous FO modeling for HMM based sta-
tistical parametric speech synthesis,” IEEE Trans. on Audio, Speech,
and Lang. Process., vol. 19, no. 5, pp. 1071-1079, 2010.

T. Nakano, M. Goto, and Y. Hiraga, “An automatic singing skill eval-
uation method for unknown melodies using pitch interval accuracy
and vibrato features,” in Proc. Interspeech, 2006, pp. 1706-1709.

K. Saino, H. Zen, Y. Nankaku, et al., “An HMM-based singing voice
synthesis system,” in Ninth International Conference on Spoken Lan-
guage Processing, 2006.

C. M. Bishop, “Mixture density networks,” Tech. Rep., 1994.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. ICML,
2015, pp. 448-456.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. ICML, 2010, pp. 807-814.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

X. Wang, S. Takaki, and J. Yamagishi, “Investigating very deep high-
way networks for parametric speech synthesis,” Speech Communica-
tion, vol. 96, pp. 1-9, 2018.

T. Okamoto, T. Toda, Y. Shiga, et al., “Tacotron-based acoustic
model using phoneme alignment for practical neural text-to-speech
systems,” in Proc. ASRU, 2019, pp. 214-221.

X. Wang, S. Takaki, and J. Yamagishi, “Autoregressive neural FO
model for statistical parametric speech synthesis,” IEEE/ACM Trans.
on Audio, Speech, and Lang. Process., vol. 26, no. 8, pp. 1406-1419,
2018.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adver-
sarial nets,” in Proc. NeurIPS, vol. 27, 2014, pp. 2672-2680.

R. Yamamoto, E. Song, and J.-M. Kim, “Parallel WaveGAN: A fast
waveform generation model based on generative adversarial net-
works with multi-resolution spectrogram,” in Proc. ICASSP, 2020,
pp. 6199-6203.

J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative adversarial
networks for efficient and high fidelity speech synthesis,” in Proc.
NeurIPS, vol. 33, 2020, pp. 17 022-17 033.

Canon, [NamineRitsu] Blue (YOASOBI) [ENUNU model Ver.2,
Singing DBVer.2 release], https : / / www . youtube . com /
watch?v=pKeo9IE_L1I, Accessed: 2022.10.06.

H. Zen and H. Sak, “Unidirectional long short-term memory recur-
rent neural network with recurrent output layer for low-latency speech
synthesis,” in Proc. ICASSP, 2015, pp. 4470-4474.

T. Toda and K. Tokuda, “A speech parameter generation algorithm
considering global variance for HMM-based speech synthesis,” /E-
ICE Trans. on Information and Systems, vol. 90, no. 5, pp. 816-824,
2007.

L. Jinglin, DiffSinger: Singing voice synthesis via shallow diffusion
mechanism, https : / / github . com / MoonInTheRiver /
DiffSinger,

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic mod-
els,” Proc. NeurlPS, vol. 33, pp. 6840-6851, 2020.

X. Wang, S. Takaki, and J. Yamagishi, “Neural source-filter waveform

models for statistical parametric speech synthesis,” IEEE/ACM Trans.
on Audio, Speech, and Lang. Process., vol. 28, pp. 402-415, 2019.


http://utau2008.xrea.jp/
https://github.com/stakira/OpenUtau
https://github.com/intunist/nnsvs-english-support
https://github.com/intunist/nnsvs-english-support
https://www.youtube.com/watch?v=pKeo9IE_L1I
https://www.youtube.com/watch?v=pKeo9IE_L1I
https://github.com/MoonInTheRiver/DiffSinger
https://github.com/MoonInTheRiver/DiffSinger

	1  Introduction
	2  Data representation
	2.1  Musical score features
	2.2  Acoustic features

	3  Core modules
	3.1  Time-lag model
	3.2  Duration model
	3.3  Acoustic model
	3.3.1  Sinsy-based model
	3.3.2  Multi-stream models
	3.3.3  Autoregresssive F0 models

	3.4  Vocoder

	4  Experimental evaluations
	4.1  Database
	4.2  Model details
	4.2.1  Baselines
	4.2.2  NNSVS

	4.3  Subjective evaluation

	5  Conclusion
	6  References

