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Preface

uman language is not the starting point for knowledge representation. Our
utterances or our symbols are not the basis for what we desire to convey;

they  are  only  representations.  Knowledge,  the  actionable  side  of  information,  is
rooted in something more fundamental than language. What that something may be
is what this book is about.

H
Competing factions have claimed truth since at least the beginning of communi-

cation. Who knows, maybe bees, whales, dingos, and apes also have communities be-
lieving different  things  as  true,  perhaps even leading to conflict.  As  humans,  we
know from wars, missed opportunities, and personal misunderstandings the tragedy
that different premises of truth may bring. We have to admit if we want to represent
human knowledge to computers that we humans have not done such a hot job repre-
senting knowledge to ourselves. Since we are starting out on a journey here to ex-
plore knowledge representation (KR) for knowledge management, artificial intelli-
gence, and other purposes, more than a bit of humility seems in order.

Information, by no means a uniformly understood concept, arises from a broader
context than gestures, symbols or sounds. For some, information is energy or when
missing is entropy, the nuts-and-bits of messages. For some, information is meaning.
That we continue to use ‘information’ in these senses and more, in fact, tells us these
senses are properly within the boundaries of the concept. Still, even if we can clear
the hurdle of grokking information, we have the next obstacle of deciphering what is
knowledge, that which next lies directly on our path. Further, of course, we then
need to record somehow and convey all of this if we are to represent the knowledge
we have gained to others. Like I say, if we have a hard time communicating all of this
to other humans, what can we say about our ability to do so to machines and AI?

But maybe I overthink this. Any tasks us humans do using information that we
can automate with acceptable performance may lead to more efficiency and perhaps
more job satisfaction for the workers involved. Maybe even more wealth. Conversely,
maybe this automation leads to loss of jobs for the workers. I do know, however, if
we are ever to rely upon machines to work on our behalf, requiring little or no over-
sight, then we need to figure out what this knowledge is and how to represent it to
the machine. Such is the task of KR. What I try to provide in this book is a way to
think and a practical guidebook of sorts for how to approach the questions of com-
puters and knowledge.
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The world  is  real.  It  exists  independent  of  us  or  how we may think about  it,
though our thoughts are also part of our reality. Human history fills  but a small
thimble yet through the application of reason and truth-testing, including, since the
Enlightenment,  the scientific  method,  we humans have increasingly  unveiled the
truths of Nature, in the process creating wealth and comfort never before seen. Arti-
ficial intelligence (AI) will undoubtedly accelerate this trend. How fast that accelera-
tion occurs is, in part, a function of how good we get at representing our knowledge.
These representations are the encodings by which intelligent machines will work on
our behalf. My quest in this treatise is to help promote this trend. I believe this quest
to be noble and, in any case, inevitable. I believe there is something in our nature
that compels us to pursue the path of useful information leading to knowledge.

The past decade was a golden one in advances in AI. We can now voice commands
and requests to our phones and devices acting as virtual assistants. We are on the
verge of self-driving vehicles and automation of routine knowledge worker tasks.
Still, the deep learning that underlies many of these advances is an opaque, black box
of indecipherable inferences. We don’t know why some of this magic works or what
the representations are upon which machines draw these inferences. For further ad-
vances to occur, for general AI or cognition to arise  in silico, I believe we will need
better ways to represent knowledge, reflective of the nature of information and its
integral role in the real world.

I have had a passion for the nature and role of information throughout my profes-
sional life. I originally trained as an evolutionary biologist and population geneticist.
Since my graduate days, I have replaced my focus on biological information with one
based on digital information and computers. My passion has been on the role of in-
formation — biological or cultural — to confer adaptive advantage to deal with an
uncertain future and as a means of generating economic wealth. My intuition — re-
ally, my underlying belief — is that there are commonalities between biological and
cultural information. I have been seeking insights into this intuition for decades.

One of my first forays into information technology was a data warehousing ven-
ture, where the idea was to find ways to connect structured databases that, in native
form, were standalone and unconnected. This venture coincided with the explosive
growth of the initial Internet. To support the exploding content we observed that
large content suppliers were populating their Web sites with searchable, dynamic
databases, hidden from the search engines of that time (before Google’s inception).
We named this phenomenon the ‘deep Web’ and did much to define its huge extent
and figure out ways to mine it. We saw that, in aggregate, the Web was becoming a
giant, global data warehouse, though largely populated by text content and less-so by
structured data. We shifted our venture emphasis to text and discovery. This shift
raised the perplexing question of how to place information in text on to a common,
equal basis to the information in a database, such as a structured record. (Yeah, I
know, kind of a weird question.)

Tim Berners-Lee, inventor of the World Wide Web, and colleagues put forward a
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vision of the semantic Web in a Scientific American article in 2000.1 The article painted
a picture of globally interconnected data leveraged by agents or bots designed to
make our lives easier and more automated. The late  Douglas Adams, of  Doctor Who
and A Hitchhiker’s Guide to the Galaxy fame, had presciently produced a fascinating and
entertaining TV program on the same topic for BBC2 about ten years earlier. Called
Hyperland,  you can see this self-labeled ‘fantasy documentary’ from 1990 in its en-
tirety on YouTube. The 50-min presentation, written by and starring Adams as the
protagonist having a fantasy dream, features Tom, the semantic simulacrum (actu-
ally,  Tom Baker from Doctor Who). Tom is the “obsequious, and fully customizable”
personal software agent who introduces, anticipates and guides Adams through what
is a semantic Web of interconnected information. Laptops (actually an early Apple),
pointing devices, icons, and avatars sprinkle this tour de force in an uncanny glimpse
into the (now) future.

One of the premises of the semantic Web is to place what we now call unstruc-
tured, semi-structured and structured information on to a common footing. The ap-
proach uses the RDF (Resource Description Framework) data model. RDF provided an
answer to my question of how to combine data with text. I am sure there were other
data models out there at the time that could have perhaps given me the way forward,
but I did not discover them.  It took RDF and its basic  subject-predicate-object (s-p-o)
‘triple’ assertion to show me the way ahead. It was not only a light going on once I
understood but the opening of a door to a whole new world of thinking about knowl-
edge representation. 

The usefulness of ideas behind the semantic Web and the semantic technologies
supporting it lured me to switch emphasis again.  I  founded a new company with
Frédérick Giasson  ,   and we proceeded to provide semantic technology solutions to en-
terprises over the next ten years. The Web today is almost unrecognizable from the
Web of 15 years ago. If one assumes that Web technologies tend to have a five year or
so period of turnover, we have gone through three to four generations of change on
the Web since the initial vision for the semantic Web.

Many of our engagements were proprietary, though we did provide three notable
open  source  projects.  We  developed  a  general  semantic  platform  for  ontology
(knowledge graph) and data management, the still-active Open Semantic Framework
project. To help information interoperate, we created UMBEL, a subset of Cyc and a
contributor to our current efforts, as a set of reference concepts that users can share
across different Web datasets. Based on that experience, we designed a successor ref-
erence knowledge structure, KBpedia, a combination of upper knowledge graph and
leading public knowledge bases. We talk much about KBpedia throughout since it is
this book’s reference knowledge structure.

The marrying of electronic Web knowledge bases — such as Wikipedia or internal
ones like the Google search index or its  Knowledge Graph — with improvements in
machine-learning algorithms is systematically mowing down what used to be called
the Grand Challenges of computing, such as machine translation or language under-
standing. Sensors are also now entering the picture, from our phones to our homes

1 Berners-Lee, T., Lassila, O., and Hendler, J., “The Semantic Web,” Scientific American Magazine, 2001.
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and our cars, that exposes the higher-order requirement for data integration com-
bined with semantics. Natural language processing (NLP) kits have improved in accu-
racy and execution speed; many semantic tasks such as tagging or categorizing or
questioning already perform at acceptable levels for most projects. We naturally call
the marriage of these knowledge sources with AI ‘knowledge-based artificial intelli-
gence.’ KBAI is one of the potential payoffs that would arise from better ways to rep-
resent knowledge, and thus is a common theme throughout the book. 

Combining information goes beyond the technical challenges of matching forms
and formats. We need to tackle the question of meaning, inextricably entwined with
context  and  perspective.  Cinemaphiles  will  readily  recognize  Akira  Kurosawa‘s
Rashomon film  of  1951.  In  the  1960s,  one  of  the  most  popular  book  series  was
Lawrence Durrell‘s  The Alexandria Quartet. Both, each in its way, tried to get at the
question of what is the truth by telling the same story from the perspective of differ-
ent protagonists. Whether you saw Kurosawa’s movie or read Durrell’s books, you
know the punchline: truth is very different depending on the point of view and expe-
rience — including self-interest and delusion — of each protagonist.

All of us recognize this phenomenon of the blind men’s view of the elephant. The
problem we are trying to solve is how to connect information meaningfully. For that,
we need to somehow capture the ideas of perspective and context, as well as the
usual  vagaries  of  imprecise  semantics.  Root  cause  analysis for  what  it  takes  to
achieve meaningful, interoperable information suggests one pivotal factor is to de-
scribe source content adequately in context to its use. Capturing and reflecting con-
text is essential if we are to get information sources to work together, a capability we
give the fancy label of ‘interoperability.’ We also need to assemble and represent this
information such that we can reason over it and test new knowledge against it, a
structural form we call a ‘knowledge graph.’ All of this requires a logical and coher-
ent theory — a grounding — for how to represent knowledge.

Our client efforts over the past decade were converging on design thoughts about
the nature of information and how to signify and communicate it. The bases of an
overall  philosophy regarding our work emerged around the teachings  of  Charles
S  anders   Peirce   and Claude Shannon, each explicating one of the boundary senses of
information. Shannon emphasized the message and mechanical aspects of informa-
tion; Peirce emphasized meaning in both breadth and depth. In the combination, we
see  semantics  and  groundings  as  essential  to  convey  accurate  messages.  Simple
forms, so long as they are correct, are always preferred over complex ones because
message transmittal is more efficient and less subject to losses (inaccuracies). How
we could represent these structures in graphs affirmed the structural correctness of
our design approach. The now visible re-awakening of artificial intelligence helps to
put the semantic Web in its proper place: a key subpart, but still a subset, of AI. 

I  first  encountered  Charles  S.  Peirce  from  the  writings  of  John Sowa about  a
decade ago. Sowa’s writings are an excellent starting point for learning about logic
and ontologies, especially his articles on Peirce and signs.1 Early on it was clear to me
that knowledge modeling needed to focus on the inherent meaning of things and

1 Use https://www.google.com/search?as_q="peirce"&as_sitesearch=jfsowa.com for a listing.
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concepts,  not their surface forms and labels. Sowa helped pique my interest that
Peirce’s theory of semiotics was perhaps the right basis for getting at these ideas.

In the decade since that first encounter, I have based some writings on Peirce’s
insights. I have developed a fascination with his life and teachings and thoughts on
many topics. I have become convinced that Peirce — an American philosopher, logi-
cian, scientist, and mathematician — was possibly one of the greatest thinkers ever.
While  the current  renaissance in  artificial  intelligence can certainly  point  to  the
seminal  contributions  of  George  Boole,  Shannon,  Alan  Turing,  and  John  von
Neumann in computing and information theory (among many others), my view, not
alone, is that C.S. Peirce belongs in those ranks from the perspective of  knowledge
representation, the meaning of information, and hewing to reality.

The importance of studying Peirce for me has been to tease out those principles,
design bases and mindsets that can apply Peircean thinking to the modern challenge
of knowledge representation. This knowledge representation is like Peirce’s catego-
rization of science or signs but is broader still in needing to capture the nature of re-
lations and attributes and how they become building blocks to predicates and asser-
tions. In turn, we need to subject these constructs to logical tests to provide a defen-
sible basis for what is knowledge and truth given current information. Then, all of
these representations need to be put forward in a manner (symbolic representation)
that is machine readable and computable.

In reading and studying Peirce for more than a decade, it has become clear that
he had insights and guidance on every single aspect of this broader KR problem. My
objective has been to take these piece parts (Peirce parts?) and recombine them into
a whole consistent with Peirce’s  architectonic. How can Peirce’s thinking be decom-
posed into its  most  primitive  assumptions to  build  up  a  new KR representation?
These are the points I argue in the book, while also sharing the experience of how we
may integrate these viewpoints into working knowledge management systems.

I have no intent for balance in this exposition. There are wonderful textbooks and
handbooks available if you are seeking a neutral presentation on knowledge repre-
sentation in  computer  and information science.  The lens  I  use  is  strictly  that  of
Peirce and his views that contribute to an understanding of knowledge representa-
tion, at least how I read and understand those views. Peirce further guides the scope
and organization of this book. One of Peirce’s signal contributions was the philoso-
phy of pragmatism, according to a specific maxim and a recommended methodology
to follow, what the Peirce scholar Kelly Parker calls a ‘practionary.’ To my knowledge,
this book employs this Peircean methodology for the first time. Given this emphasis,
we will by necessity need to tackle many Peircean concepts, some with arcane or
jaw-breaking labels. That is a small price to pay to gain entry into his brilliant in-
sights.

I also minimize math and equations in the book. I provide many salient references
for exploring topics further. I try to emphasize how to think and organize. I avoid
cookbook steps or prescriptive techniques or methods. I do not recommend specific
tools. Rather, because of the coherence of Peirce’s views, I use how I understand him
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and his writings, including interpretations by others, hopefully, to bring a consistent
approach, logic, and mindset to the question of knowledge representation. By strad-
dling today’s two separate worlds of Peirce scholarship and knowledge representa-
tion I perhaps risk disappointing both camps. One of my points, though, is that the
camps should be separate no longer.

I would first like to thank my colleague and partner, Frédérick Giasson, for his
creativity and effort in our commercial ventures over the past decade. He was not
only the implementer of the many systems we developed, and a constant fount of
ideas and innovation, but a great friend and a calm and cool influence during those
engagements. Though I am the recorder of the results in this book, he deserves co-
billing for why and how this book came into being.

I want to thank those who have encouraged me over many years to write this
book, including from many commenters on my AI3:::Adaptive Information blog. I espe-
cially thank Fred, Steve Ardire, Alianna Maren, Alan Morrison, Gary Richmond, Amit
Sheth, and Peter Yim for their encouragement. I further thank Amit for his kind ef-
forts to help me find and secure a publisher. 

I thank my former colleague, Jacquie Bokow, for early editorial assistance and ad-
vice. I much appreciate the complete and detailed reviews I got on the first draft
from Michael Buckland, Scott David, Rob Hillard, John Huntley, and Jack Park. I am
grateful for the commentary and errors found in my readings of Peirce from Jon Alan
Schmidt and Edwina Taborsky, as well as insights I have gained from the Peirce-L dis-
cussion group. I further thank William Anderson, Andreas Blumauer, Fred Giasson,
Alan  Morrison,  Gary  Richmond,  Amit  Sheth,  Aleksander  Smywiński-Pohl,  Bobbin
Teagarden, and Tom Tiahrt for their reviews and commentary. Despite their best ef-
forts to find and correct my errors and to make great suggestions, I am sure that er-
rors remain, which are entirely my responsibility. I ask your forbearance for any er-
rors or oversights. I lastly thank Susan Lagerstrom-Fife and Caroline Flanagan for
helping to shepherd the manuscript through the publication process.

I find it wondrous that the human species has come to learn and master symbols.
That mastery, in turn, has broken the shackles of organic evolution and has put into
our hands and minds the very means and structure of information itself. The lingua
franca for doing so is knowledge representation, best done, I believe, following the
guidelines of Charles Sanders Peirce.

Michael K. Bergman
Coralville, Iowa  USA

July 2018
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In-line Citations

Here are the conventions and sources used for quotations for Peirce’s writings as
used in the book. Items separated by a period or colon are page or clause number:

Abbrv. Example Source

CP CP 1.343 Peirce, C. S., The Collected Papers of Charles Sanders Peirce, 8 Volumes, Cam-
bridge, MA: Harvard University Press, 1931.

EP EP 2:43 Peirce, C. S., The Essential Peirce: Selected Philosophical Writings, Vol 1 (1867-
1893), Bloomington: Indiana University Press, 1992.
Peirce, C. S., The Essential Peirce: Selected Philosophical Writings, Vol 2 (1893-
1913), Bloomington: Indiana University Press, 1998.

MS MS 32 Robin, R. S., Annotated Catalogue of the Papers of Charles S. Peirce, Amherst, 
Massachusetts: The University of Massachusetts Press, 1967.
Robin, R. S., “The Peirce Papers: A Supplementary Catalogue,” Transac-
tions of the Charles S. Peirce Society, 1971, pp. 37–57.

NEM NEM 4:83 Peirce, C. S., The New Elements of Mathematics by Charles S. Peirce, Hague, 
Netherlands: The, Mouton Publishers, 1976. (four volumes)

W W 3:266 Peirce, C. S., The Writings of Charles S. Peirce — Chronological Editions Vo1 -8,
compiler, Peirce Edition Project, Bloomington: Indiana University Press,
1982-2009. (by volume)

I have attempted to date each Peirce quote, given the current tendency in scholar-
ship and its usefulness to place his views into a chronology. Unlike most practice, I
list year first, then citation.

Permission

Significant portions of the material in this book were first published on the au-
thor’s AI3:::Adaptive Information blog, at http://mkbergman.com. We thank the author
for permission to use this copyrighted material.
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INTRODUCTION

nowledge representation, of course, deals with knowledge, itself based on in-
formation. Knowledge representation is shorthand for how to represent hu-

man symbolic information and knowledge to computers, preferably in the most ef-
fective manner. Formally, and the working definition for this book, knowledge repre-
sentation1 is  a field of  artificial intelligence dedicated to representing information
about the world in a form that a computer system can utilize to solve complex tasks.
KR applications range from semantic technologies and machine learning and artifi-
cial intelligence to information integration, data interoperability, and natural lan-
guage understanding.

K

I am not even-handed in this book. My explicit purpose is to offer a fresh view -
point on knowledge representation and ontology engineering, informed by a variety
of projects over the past dozen years, and guided by the principles of Charles Sanders
Peirce, as I best understand them. Many others have different perspectives on knowl-
edge representation.  For more balance and to understand this diversity,  I  recom-
mend the excellent KR reference texts by van Harmelan1 or Brachman and Levesque.2

 C.S. Peirce (1839-1914), pronounced ‘purse,’ was an American logician, scientist,
mathematician, and philosopher of the first rank. His profound insights and writings
spanned a half-century, and cover topics ranging from the nature of knowledge and
epistemology to metaphysics and cosmology.2 His universal categories of Firstness,
Secondness, and Thirdness provide the mindset and theories that guide this book.
Peirce, along with Gottlob Frege, is acknowledged as a founder of predicate calculus,
to which Peirce provided a notation system, and which formed the basis of first-or-
der logic.  Peirce’s  theory of  signs and sign-making,  semiosis,  is  a  seminal under-
standing of icons, indexes, and symbols, and the way we perceive and understand ob-
jects. Peirce’s semiosis (semeiosis, his preferred spelling) and approach arguably pro-
vide the logical basis for description logics and other aspects underlying the seman-
tic Web building blocks of the  RDF data model and, eventually, the  OWL language.
Peirce is the acknowledged founder of  pragmatism, the philosophy of linking prac-

1 Many of the italicized terms in this book are defined when first used and listed in the Glossary.

2 Appendix A, from which I borrow these two sentences, is a summary biography and reading suggestions for 
Charles Sanders Peirce. He is also referenced in the literature as Peirce, Charles Peirce, C.S. Peirce, or CSP.

1
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A KNOWLEDGE REPRESENTATION PRACTIONARY

tice and theory in a process akin to the scientific method. He was also the first for-
mulator of existential graphs, a basis to the field now known as model theory,3 and
the basis for conceptual graphs, a KR formalism. No aspect of knowledge representa-
tion exceeded his grasp.

This book also weaves the open-source knowledge artifact, KBpedia, through its
later chapters and observations. KBpedia combines the information from multiple
public knowledge bases, prominently including Wikipedia and Wikidata, under the
conceptual structure of the KBpedia Knowledge Ontology (KKO), a  knowledge graph
organized according to the Peircean universal categories. KBpedia’s 55,000 reference
concepts, classified into 85 mostly separate typologies, and with access to millions of
notable entities and events, is a modular resource that may be leveraged or expanded
for particular domain purposes. However, the confederation between this book and
KBpedia is loose. Each stands on its own without reliance on the other.

We have witnessed enormous and mind-boggling strides over the past decade in
artificial intelligence. Machine learning has leveraged massive knowledge bases to deliver
breakthrough capabilities in automated question answering and intelligent  virtual
assistants. Deep learning, with its mostly indecipherable black-box layers, has en-
abled automatic recognition of voice, images, and patterns at speeds and accuracies
often exceeding that of humans. 

Still, we struggle to integrate information, get data to interoperate, or discover or
manage knowledge. Our current AI techniques appear close to reaching limits, in-
cluding  whether  we  even  understand what  those  techniques  are  doing.  Peircean
ideas hold the tantalizing prospect to unlock better ways to represent knowledge. KR
is  the foundation upon which,  I  believe,  next  breakthroughs  will  come.  I  believe
Peircean ideas provide the way to better represent human knowledge such that AI-
powered computers can organize, index, reference, and cross-check information in
any digital  form.  This  prospect  will  obliterate  current  boundaries  to  information
sharing. If the past is a guide, innovation, transformation, and wealth will follow.

STRUCTURE OF THE BOOK

This book is structured into parts and chapters. The central portion of the book
(Part II through Part IV) reflects C.S. Peirce’s universal categories of Firstness, Second-
ness, and Thirdness. Across nearly five decades of writings, Peirce likens the univer-
sal categories to more than 60 different expressions (Table 6-2). The expression used
for this central portion of the book is Peirce’s logic triad of grammar (1ns), logics and
tools (or critic) (2ns), and methods (or methodeutic) (3ns).1 We use this triadic organi-
zation to explain the what and how for a working knowledge representation system,
with frequent reference to KBpedia. 

Parts I and V are bookends around this central portion. Part I, the opening book-
end, provides the context for why one should be interested in the topic of knowledge
representation and what kind of functions KR should fulfill. Part V, the closing book-

1 1ns, 2ns, and 3ns are shorthand for Firstness, Secondness, and Thirdness, respectively.
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end, provides practical speculation for what kinds of benefits and applications may
result from a working KR system built according to Peircean principles. A couple of
chapters tee-up this structure. 

The structural approach of this book is consistent with Peirce’s pragmatic maxim
to achieve the “third grade of clearness of apprehension” (W 3:266)1 covering “all of
the conceivable practical effects,” regarding an understanding of something. If a dic-
tionary is for the definition of terms, a practionary is for the definition of methods and
potential applications resulting from an explication of a domain. In the case of this
book, that domain is knowledge representation.2

To my knowledge, this is the only Peirce book dedicated solely to knowledge rep-
resentation, and the only KR book exclusively devoted to Peirce.4 Some reviewers of
drafts of  this book have suggested splitting the book into multiple parts.  I  admit
there is some logic to that suggestion. Early chapters discuss contexts of information
theory, economics, and social circumstances. Middle parts of the book are theoreti-
cal, even philosophical, that evolve into how-to and practice. The latter parts of the
book are speculative and span potential applications in breadth and depth. My an-
swer in keeping these parts together is to try to be faithful to this overall ideal of a
Peircean practionary. I welcome you to a  soup-to-nuts banquet of Peircean perspec-
tives on the challenge of knowledge representation.

OVERVIEW OF CONTENTS

Before we start the formal structure of the book, we begin with this chapter and
then Chapter 2 discussing the core concepts of information,  knowledge, and representa-
tion.  Gregory Bateson defined information as  the “difference that makes a differ-
ence.”  Claude Shannon,  the founder of  information theory,  emphasized the engi-
neering aspect of information, defining it as a message or sequence of messages com-
municated  over  a  channel;  he  specifically  excluded  meaning.  Peirce  emphasized
meaning and related it to the triadic relationship between immediate object, repre-
sentation, and interpretation. We associate knowledge and its discovery with terms
such as open, dynamic, belief, judgment, interpretation, logic, coherence, context,
reality, and truth. Peirce’s pragmatic view is that knowledge is fallible information
that we believe sufficiently upon which to act. I argue in this book, consistent with
Peirce, that knowledge representation is a complete triadic sign, with the meaning of
the information conveyed by its symbolic representation and context, as understood
and acted upon by the interpreting agent. A challenge of knowledge representation
is to find structured representations of information — including meaning — that can
be simply expressed and efficiently conveyed.

We then begin the structural portions of the book. Part I and its three chapters at-
tempt to place knowledge representation, as practiced today, in context.  Chapter 3

1 See the note on Abbreviations after the Preface for the citations format for the Peirce quotations used 
throughout.

2 The term of practionary comes from Kelly Parker based on his study of Peirce3; I thank him for graciously al-
lowing me to use the term.
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describes the situation and importance of information to enterprises and society.
Knowledge representation is a primary driver for using computers as a means to im-
prove the economic well-being of all peoples. Solow, a student of Schumpeter, had
the insight in two papers in the 1950s, for which he won a Nobel prize, that techno-
logical change is the ‘residual’ left over from empirical growth once we remove the
traditional inputs of labor and capital. This residual is what we now call total-factor
productivity. Romer’s subsequent work internalized this factor as a function of infor-
mation and knowledge, what in contrast became the endogenous growth model. In-
novation and its grounding in knowledge had finally assumed its central, internal
role in economists’ understanding of economic growth. Unlike the historical and tra-
ditional ways of measuring assets — based on the tangible factors of labor, capital,
land, and equipment — information is an intangible asset. If we are to improve our
management and use of information, we need to understand how much value we
routinely throw away.

Once we understand the situation, Chapter 4 begins to surface some of the oppor-
tunities. The path to knowledge-based artificial intelligence (KBAI) directly coincides
with a framework to aid data interoperability and responsive knowledge manage-
ment (KM). A knowledge graph (or ontology) provides the overall schema, and se-
mantic technologies give us a basis to make logical inferences across the knowledge
structure and to enable tie-ins to new information sources. We support this graph
structure with a platform of search, disambiguation, mapping, and transformation
functions, all of which work together to help achieve data interoperability. KBAI is
the use of large statistical or knowledge bases to inform feature selection for ma-
chine-based learning algorithms. We can apply these same techniques to the infras-
tructural foundations of KBAI systems in such areas as data integration, mapping to
new external structure and information, hypothesis testing, diagnostics and predic-
tions, and the myriad other uses to which researchers for decades hoped AI would
contribute. We apply natural language processing to these knowledge bases informed
by semantic technologies. 

To complete the context, we discuss other vital precepts (or premises) in Chapter
5. Knowledge should express a coherent reality, to reflect a logical consistency and
structure that comports with our observations about the world. How we represent
reality has syntactic variation and ambiguities of a semantic nature that can only be
resolved by context. A hub-and-spoke design with a canonical data model is a supe-
rior way to organize, manipulate, and manage input information. By understanding
the sources of semantic heterogeneity, we set the basis for extracting meaning and
resolving ambiguities. Once we resolve (‘disambiguate’) the source information, we
need to organize it into ‘natural’ classes and relate those classes coherently and con-
sistently to one another. This organization takes the form of a knowledge graph. Tra-
ditional relational databases do not; they are inflexible and fragile when the nature
(schema) of the world changes, and require expensive re-architecting in the face of
new knowledge or new relationships.

We next embark on the central portion of our thesis, Part II to Part IV. Part II cov-
ers the grammar of knowledge representation. I discuss in detail Peirce’s universal
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categories  of  Firstness,  Secondness,  and Thirdness  in  Chapter  6.  The ideas behind
Peircean pragmatism are how to: think about signs and representations (semiosis);
logically reason and handle new knowledge (abduction) and probabilities (induction);
make economic research choices (pragmatic maxim); categorize; and let the scientific
method inform our inquiry. The connections of Peirce’s sign theory, his three-fold
logic of deduction-induction-abduction, the importance of the scientific method, and
his understanding about a community of inquiry have all fed my intuition that Peirce
was on to some fundamental insights suitable to knowledge representation. We can
summarize Firstness as unexpressed possibilities; Secondness as the particular in-
stances that may populate our information space; and Thirdness as general types
based on logical, shared attributes. Scholars of Peirce acknowledge how infused his
writings on logic, semiosis, philosophy, and knowledge are with the idea of ‘threes.’
Understanding, inquiry, and knowledge require this irreducible structure; connec-
tions, meaning, and communication depend on all three components, standing in re-
lation to one another and subject to interpretation by multiple agents in multiple
ways.

We next add to our speculative grammar of the KR space in Chapter 7 covering basic
terminology. We begin our analysis with the relevant ‘things’ (nouns, which are enti-
ties, events, types, or concepts) that populate our world and how we organize them. We
pair these things with three kinds of internal and external relations to other things.
Attributes are the intensional characteristics of an object, event, entity, type (when
viewed as an  instance), or  concept. External relations are actions or assertions be-
tween an event, entity, type, or concept and another particular or general. Represen-
tations are signs and the means by which we point to, draw attention to, or desig-
nate, denote or describe a specific  object,  entity, event, type or general.  We now
know that attributes are a Firstness in the universal categories, that Secondness cap-
tures all events, entities, and relations, and that Thirdness provides the types, con-
text, meaning, and ways to indicate what we refer to in the world. 

Chapter 8 presents the logic basis and introduces the actual vocabularies and lan-
guages to express this grammar. Knowledge graphs and knowledge bases need to be
comprehensive  for  their  applicable  domains  of  use,  populated  with  ‘vivid’
knowledge. We use deductive logic to infer hierarchical relationships, create forward
and backward chains, check if domains and ranges are consistent for assertions, as-
semble attributes applicable to classes based on member attributes, conform with
transitivity and cardinality assertions, and test virtually all statements of fact within
a  knowledge  base.  We  want  a  knowledge  representation  (KR)  language  that  can
model and capture intensional and extensional relations; one that potentially em-
braces all three kinds of inferential logic; that is decidable; one that is compatible
with a design reflective of particulars and generals; and one that is open world in
keeping with the nature of knowledge. Our choice for the knowledge graph is the
W3C standard of OWL 2 (the Web Ontology Language), though others may be just as
valid. 

With this grammatical and language foundation in place,  Part III transitions to
discuss the working components of a KR system. In Chapter 9, I argue the importance
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of openness and keeping an open design. Open content works to promote derivative
and reinforcing factors in open knowledge, education, and government. Open stan-
dards encourage collaboration and make it easier for data and programs to interop-
erate. Open data in public knowledge bases are a driver of recent AI advances in
knowledge.  Open  also  means  we  can  obtain  our  knowledge  from  anywhere.  Our
knowledge graphs useful to a range of actors must reflect the languages and labels
meaningful to those actors. We use reference concepts (RCs) to provide fixed points
in the information space for linking with external content. We now introduce KBpe-
dia to the remainder of the discussion. We use RDF as a kind of ‘universal solvent’ to
model most any data form. We match this flexible representation with the ability to
handle semantic differences using OWL 2, providing an open standard to interoper-
ate with open (or proprietary) content. 

In Chapter 10, we shift the emphasis to modular, expandable typologies. The idea
of a SuperType is equivalent to the root node of a typology, wherein we relate multi-
ple entity types with similar essences and characteristics to one another via a natural
classification. Our typology design has arisen from the intersection of: 1) our efforts
with SuperTypes to create a computable structure that uses powerful disjoint asser-
tions; 2) an appreciation of the importance of entity types as a focus of knowledge
base terminology; and 3) our efforts to segregate entities from other constructs of
knowledge bases, including attributes, relations, and annotations. Unlike more inter-
connected knowledge graphs (which can have many network linkages),  typologies
are organized strictly along these lines of shared attributes, which is both simpler
and also provides an orthogonal means for investigating type-class membership. The
idea of nested, hierarchical types organized into broad branches of different entity
typologies also offers a flexible design for interoperating with a diversity of world-
views and degrees of specificity. 

Typologies are one component of our knowledge graphs and knowledge bases, to
which we shift our attention in  Chapter 11. Relations between nodes, different than
those of a hierarchical or subsumptive nature, provide still different structural con-
nections across the knowledge graph. Besides graph theory, the field draws on meth-
ods including statistical mechanics from physics, data mining and information visu-
alization  from  computer  science,  inferential  modeling  from  statistics,  and  social
structure from sociology. Graph theory and network science are the suitable disci-
plines for a variety of information structures and many additional classes of prob-
lems. We see the usefulness of graph theory to linguistics by the various knowledge
bases such as WordNet (in multiple languages) and VerbNet. Domain ontologies em-
phasize conceptual relationships over lexicographic ones for a given knowledge do-
main. Furthermore, if we sufficiently populate a knowledge graph with accurate in-
stance data, often from various knowledge bases, then ontologies can also be the
guiding structures for efficient machine learning and artificial intelligence. We want
knowledge sources,  preferably knowledge bases,  to contribute the actual instance
data to populate our ontology graph structures. 

We have now discussed all of the conceptual underpinnings to a knowledge repre-
sentation system. Part IV, also spread over three chapters, presents how these compo-
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nents are now combined to build a working platform. In Chapter 12, we outline the ba-
sic KR platform and the accompanying knowledge management (KM) capabilities it
should support. The platform should perform these tasks: insert and update concepts
in the upper ontology; update and manage attributes and track specific entities as
new sources of data are entered into the system; establish coherent linkages and re-
lations between things; ensure these updates and changes are done wholly and con-
sistently, while satisfying the logic already in place; update how we name and refer
to things as we encounter variants; understand and tag our content workflows such
that we can determine provenance and authority and track our content; and do these
tasks using knowledge workers, who already have current duties and responsibili-
ties. These requirements mean that use and updates of the semantic technologies
portion, the organizing basis for the knowledge in the first place, must be part of
daily routines and work tasking, subject to management and incentives. 

Once a platform is available, it is time to build out the system, the topic of Chapter
13. Critical work tasks of any new domain installation are the creation of the domain
knowledge graph and its population with relevant instance data. Most of the imple-
mentation effort is to conceptualize (in a knowledge graph) the structure of the new
domain and to populate it  with instances (data).  In a proof-of-concept phase,  the
least-effort path is to leverage KBpedia or portions of it as is, make few changes to
the knowledge graph, and populate and test local instance data. You may proceed to
create the domain knowledge graph from prunings and additions to the base KBpe-
dia structure, or from a more customized format. If KBpedia is the starting basis for
the modified domain ontology, and if we test for logic and consistency as we make
incremental changes, then we are able to evolve the domain knowledge graph in a
cost-effective and coherent manner.

Before releasing for formal use, the system and its build-outs should be tested in
various ways and developed using best practices.  Chapter 14 addresses these needs.
The problems we are dealing with in information retrieval (IR), natural language un-
derstanding or processing (NLP), and machine learning (ML) are all statistical classi-
fication problems,  specifically  in  binary  classification.  The  most  common scoring
method to gauge the ‘accuracy’ of these classification problems uses statistical tests
based on two metrics: negatives or positives, true or false. We discuss a variety of sta-
tistical tests using the four possible results from these two metrics (e.g., false posi-
tive). We offer best practices learned from client deployments in areas such as data
treatment and dataset management, creating and using knowledge structures, and in
testing, analysis and documentation. Modularity in knowledge graphs, or consistent
attention to UTF-8 encoding in data structures, or the emphasis on ‘semi-automatic’
approaches, or the use of literate programming and notebooks to record tests and
procedures, are just a few of the examples where lines blur between standard and
best practices.

In the concluding  Part  V, the last  bookend in our structured organization,  we
tackle the “conceivable practical effects” that may result from following these prag-
matic Peircean approaches. As before, three chapters comprise this part. The first
two chapters present what kind of benefits and practical effects can result from fol-
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lowing these guidelines to KR. I offer each potential use as a ‘mini-story’ following
the same structure as the book.1 Chapter 15 speculates on 12 potential applications in
breadth. Four of these are near-term applications in word sense disambiguation, rela-
tions extraction, reciprocal mapping, and extreme knowledge supervision. Four are
logic and representation applications in automatic hypothesis generation, encapsu-
lating KBpedia for deep learning, measuring classifier performance, and the thermo-
dynamics of representation itself. The last four areas in Chapter 15 include new appli-
cations and uses for knowledge graphs. Two of these, self-service business intelli-
gence and semantic learning, have been on wish lists for years. The last two apply
Peirce’s ideas and guidance to nature and questions of the natural world. These ex-
amples show the benefits of organizing our knowledge structures using Peirce’s uni-
versal categories and typologies. Further, with its graph structures and inherent con-
nectedness, we also have some exciting graph-learning methods that we can apply to
KBpedia and its knowledge bases. 

Chapter 16 discusses three potential uses in depth. The three application areas are
workflows and business process management (BPM), semantic parsing, and robotics.
Workflows are a visible gap in most knowledge management. One reason for the gap
is that workflows and business processes intimately involve people. Shared commu-
nication is at the heart of workflow management, a reason why semantic technolo-
gies are essential to the task. In semantic parsing, a lexical theory needs to handle
word senses, sentences and semantics, cross-language meanings, common-sense rea-
soning, and learning algorithms. We can map the compositional and semantic as-
pects of our language to the categorial perspectives of Peirce’s logic and semiosis,
and then convert those formalisms to distributions over broad examples provided by
KBpedia’s knowledge. Cognitive robots embrace the ideas of learning and planning
and interacting with a dynamic world. Kinesthetic robots may also be helpful to our
attempts to refine natural language understanding.

In our last  Chapter 17, we are now able to draw some conclusions looking across
the broad sweep of our completed practionary. Peirce posited a “third-grade of clear-
ness of apprehension” to better understand a topic at hand, a part of his pragmatic
maxim. As was first stated, knowledge representation is a field of artificial intelli-
gence dedicated to representing information about the world in a form that a com-
puter system can utilize to solve complex tasks. Peirce (at least how I interpret him)
offers a fresh and realistic take on the question of KR. The foundation of the univer-
sal categories and other Peircean ideas offer unique and valuable insights to seman-
tic  technologies,  knowledge  representation,  and information  science.  We need to
better understand the nature of signs and representation in the use of semantic tech-
nologies. More minds and more scrutiny will improve our understanding and will in-
crease the knowledge we may derive from Peirce’s ideas. 

I provide supplementary material in three appendices. Appendix A is a short bio of
Charles S. Peirce, a most accomplished and fascinating person. Most Peircean schol-
ars acknowledge changes in Peirce’s views over time, from his early writings in the

1 Namely, that structure is parts organized as context and practical outcomes that are the bookends sur-
rounding the logic triad of grammar (1ns), modes of logic (2ns), and methods (3ns).

8



INTRODUCTION

1860s to those at the turn of the century and up until his death in 1914. In Peirce’s
cosmogony, the primitives of chance (Firstness), law (Secondness) and habit (Third-
ness) can explain everything from the emergence of time and space to the emer-
gence of matter, life and then cognition. Synechism, which Peirce equated with con-
tinuity,5 is the notion that space, time, and law are continuous and form an essential
Thirdness of reality in contrast to existing things and possibilities. Peirce made a
profound contribution to mathematical logic, where he pioneered many new areas.
We can also point to a second area in probability theory, then known as the Doctrine
of Chances. Peirce’s universal categories of Firstness, Secondness, and Thirdness pro-
vide the mindset for how to think about and organize knowledge. The appendix con-
cludes with an annotated list of resources for learning more about Peirce.

Appendix B provides overview information on the KBpedia knowledge artifact. KB-
pedia is structured to enable useful splits across a myriad of dimensions from entities
to relations to types that can all be selected to create positive and negative training
sets, across multiple perspectives. The disjointedness of the SuperTypes that orga-
nize the 55,000 entity types in KBpedia provides a robust selection and testing mech-
anism. We organize KBpedia using a knowledge graph, KKO, the KBpedia Knowledge
Ontology, with an upper structure based on Peircean logic. KKO sets the umbrella
structure for how we relate KBpedia’s six constituent knowledge bases to the system.
We split the KBpedia knowledge graph into concepts and topics, entities, events, at-
tributes,  annotations,  and relations and their  associated natural  classifications or
types. 

Appendix C discusses the KBpedia features suitable for use by machine learners.
This  systematic  view,  coupled  with  the  large-scale  knowledge  bases  such  as
Wikipedia and Wikidata in KBpedia, provide a basis for faster and cheaper learners
across a comprehensive range of NLP tasks. For natural language, a feature may be a
surface form, like terms or syntax or structure (such as hierarchy or connections); it
may be derived (such as statistical, frequency, weighted or based on the ML model
used); it may be semantic (in terms of meanings or relations); or it may be latent, as
either something hidden or abstracted from feature layers below it. I present and or-
ganize an inventory of more than 200 feature types applicable to natural language.
They include lexical, syntactical, structural and other items that reflect how we ex-
press the content in the surface forms of various human languages. 

Throughout the book, I try to stick with more timeless concepts and guidelines,
rather than current tools or specific methods. Tools and methods change rapidly,
with current ones rather easily identified at implementation time.6 I also try to limit
mathematical notations or overly technical discussions. The abundance of references
and endnotes provided at the conclusion of each chapter or appendix offers further
entry points into these topics. A glossary of technical and Peircean terms and an in-
dex conclude the book.

KEY THEMES

 Some themes recur throughout this book. Sometimes how I discuss these con-
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cepts may differ by context. To help reduce confusion, let’s tackle some of these con-
cepts early.

The first theme is the concept of Peirce’s universal categories of Firstness, Sec-
ondness, and Thirdness. I devote Chapter 6 to this concept due to its importance and
prominence. Peirce’s penchant for threes and his belief in the universal categories
perfuse his writings across all eras. Peirce’s terminology for these ‘threes’ differs in
the contexts of sign-making (semiosis),  logic, thought,  phenomenology, evolution,
protoplasm, information, and on. As I have tallied across his writings to date, Peirce
employs the idea of the universal categories across more than 60 different contexts
(see Table 6-2). OK, then, so what is an absolute universal category?

The answer, I think, is it still depends. As I suggest in Chapter 6, perhaps the base
definition comes  from  hypostatic  abstraction applied  to  the ideas  of  First,  Second,
Third.  Still,  all  my suggestion does is  to substitute one abstract  First  for another
slightly different abstract Firstness. Labels seem to twist us up into literalness and
miss the broader point, the one I often harken to in this book about mindset. If we
look to the most grounded primitives from which all things, ideas, and concepts are
built, according to Peirce, nothing seems as irreducible as one, two, three. If we fur-
ther take the understanding of our signs as built from more primitive signs, which
combine into more complicated statements and arguments, we can bring Peirce’s
conception of the universal categories into clear focus. They are meant to inform a
process of investigation, refinement, and community, each new concept and term
building upon others that came before it. If we reduce that process to its most reduc-
tive level,  it  is  pretty hard to get more primitive than Firstness, Secondness, and
Thirdness. In other words, we can represent anything that we can describe, perceive,
or understand using the universal categories for a given context. Our, and Peirce’s
different ways to describe these categories, depend on where we are in the represen-
tational hierarchy, which is just another way of saying context.

Given the context of knowledge representation, then, what might be the best way
to label these categories of Firstness, Secondness, and Thirdness? Many of the op-
tional expressions shown in Table 6-2 approximate this answer. Since the context of
knowledge representation is the real world and what we can know and verify, let’s
take that perspective.

Figure 1-1 is a working conception for what the base context may be for the knowl-
edge representation domain. The unexpressed possibilities or building blocks that
might contribute to a given knowledge category I term Potentialities, a Firstness.1

(One could argue that Peirce preferred the idea of Possibilities as a Firstness over po-
tential, and good scholarly bases exist to support that contention, However, in this
context, it makes sense to limit our possible building blocks to those likely for the
category at hand. I think potential better conveys this restriction that some possibli-
ties are more likely for a given topic category than others.) Potentialities include any
unexpressed attribute, such as shape, color, age, location, or any characterization
that may apply to something in our current category.

1 In the KBpedia Knowedge Ontology, we term the Firstness (1ns) branch as Monads. Also, recall the earlier 
shorthand of 1ns, 2ns, and 3ns for the three universal categories.
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Potentialities, when expressed, are done so by the Actualities of the world, a Sec-
ondness in the universal categories.1 Actualities are the real, actual things that popu-
late our domain, specifically including entities and events. These actual things may
not have a corporal or physical existence (for example,  Caspar the friendly ghost,
with ‘fiction’ being a legitimate attribute), but they can be pointed to, referred to, or
described or characterized. What we find as commonalities or regularities across ac-
tual things we can call Generalities,2 a Thirdness in the universal categories. General-
ities include types, laws, methods, and concepts that cut across many actuals or gen-
erals. Given a different context, the labeling of these universal categories may differ
quite substantially. However, virtually any context invoking the universal categories
would still retain some sense of these distinctions of potentiality, actuality, and gen-
erality.

(Another aspect to note in Figure 1-1 is its central, heavier-lined image, which we
can describe as a three-pronged spoke or three-pointed star. Many Peirce scholars
prefer this image. It is the form used by Peirce in his writings.7 We can ascribe the
lighter-lined equilateral image in Figure 1-1 to the ‘meaning triangle’ approach of Og-
den and Richards in 1923 (also apparently informed by Peirce’s writings). 8 Most cur-
rent Peircean practice favors the equilateral image, which I also tend to use. Though
perhaps deep implications reside in the choice of image, I find either image accept-
able.9)

Given the variety of expressions for the universal categories, always ask yourself
what the context is for a particular reference. As I state multiple times in the book,
the universal categories are a mindset of how to decompose the signs of the world,
and plumbing the use and application of the categories in different contexts is one
way to better apprehend that mindset.

1 In the KBpedia Knowedge Ontology, we term the Secondess branch as Particulars.

2 In the KBpedia Knowedge Ontology, we term the Thirdness branch as Generals.
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Another area of ‘threes’ in this book, but not directly related to the universal cat-
egories, is the idea of a triple. A triple — so named because it triply combines a subject
to a predicate and to an object (s-p-o) is the basic statement or assertion in the RDF and
OWL languages that we use in this practionary. The triple is equivalent to what Peirce
called a proposition. We often represent triples as barbells, with the subject and ob-
jects being the bubbles (or nodes), and the connecting predicate being the bar (or
edge). Figure 1-2 is such a representation of a basic triple.

The triple statements are basic assertions such as ‘ball is round’ or ‘Mary sister of
John.’ Sometimes an assertion may point to a value, such as ‘Mary age 8,’ but it also
may be a true object, such as ‘John citizen of Sweden.’ Objects, then, in one triple
statement might be the subject of a different one, such as ‘Sweden located Northern
Hemisphere.’

Note in talking about the barbells that we likened the subject and object to nodes
and predicates to edges. This terminology is the language of graphs. As one accumu-
lates statements, where subjects of one statement may be an object in another or
vice versa, we can see how these barbells grow linked together. When these accrete
or accumulate as encountered, we have a bottom-up image of how graphs grow, as il-
lustrated in Figure 1-3, wherein a single statement grows to become a longer story:

Of course, we can also create graphs in a top-down manner. An upper ontology is
one example. We often intend top-down graphs to be a sort of coherent scaffolding of
vetted (coherent) relationships upon which we can hang the statements for new in-
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stances. Graphs are a constant theme in this book.  Chapter 11 is largely devoted to
graphs and their uses. The specific kind of graph our knowledge structures assume is
a DAG, a directed acyclic graph. This fancy term means that the edge relationships in
the graph are not all transitive (both directions); one or more exhibit directionality,
such as ‘George father of Mary.’

Last, let me raise a crucial theme, fallibility. Our knowledge of the world is contin-
ually changing, and our understanding of what we believe and what we believe justi -
fies that belief may still be in error — both central tenets of Peirce. I believe arming
ourselves with how to think — and with logical methods to discover, test, select, and
relate information — is the right adaptable and sustainable response to a changing
world.

Chapter Notes
1. van Harmelen, F., Lifschitz, V., and Porter, B., eds., The Handbook of Knowledge Representation, Amsterdam, 

Netherlands: Elsevier, 2008.

2. Brachman, R. J., and Levesque, H. J., Knowledge Representation and Reasoning, Morgan Kaufmann, 2004.

3. Parker, K. A., The Continuity of Peirce’s Thought, Nashville: Vanderbilt University Press, 1998.

4. John Sowa’s 1999 book, Knowledge Representation: Logical, Philosophical, and Computational Foundations (Brooks 
Cole Publishing Co., Pacific Grove, CA, 2000), was much influenced by Peirce. Sowa and his work on concep-
tual graphs builds directly from Peirce’s existential graphs. However, Sowa’s book is not based exclusively 
on Peirce, nor is his ontology (see http://www.jfsowa.com/ontology/toplevel.htm). Still, Sowa’s is the clos-
est Peirce-KR treatment to my knowledge without being solely based on him.

5. Peirce states, “I have proposed to make synechism mean the tendency to regard everything as continuous.” 
(1893, CP 7.565). He goes on to say, “I carry the doctrine so far as to maintain that continuity governs the 
whole domain of experience in every element of it. Accordingly, every proposition, except so far as it re-
lates to an unattainable limit of experience (which I call the Absolute,) is to be taken with an indefinite 
qualification; for a proposition which has no relation whatever to experience is devoid of all meaning.” (CP 
7.566).

6. For example, for nearly a decade I started and maintained a listing of semantic technology tools that even-
tually grew to more than 1000 tools, called Sweet Tools. I ultimately gave up on trying to maintain the list-
ing because of the rapid creating and abandonment of tools. Only a small percentage of these tools lasted 
for more than a few years.

7. Edwina Taborsky is one vocal advocate for using the “umbrella spoke triad” image as she calls it, noting it is
open and not closed (equilateral triangle), and is the form used by Peirce.

8. Ogden, C. K., and Richards, I. A., The Meaning of Meaning, New York: Harcourt, Brace, and World, 1923.

9. I skewed Figure 1-1 10 degrees just to be ornery.
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ractitioners of knowledge representation (KR) should have a shared working
understanding of what the concepts of information, knowledge, and knowl-

edge representation mean. That is the main thrust of this chapter.1 As a symbolic
species,2 we first used symbols as a way to convey the ideas of things. Simple mark-
ings, drawings, and ideograms grew into more complicated structures such as alpha-
bets and languages. The languages came to embrace still further structure via sen-
tences, documents, and ways to organize and categorize multiple documents, includ-
ing ordered alphabets and categorization systems. 

P

Grammar is the rules or structure that govern language. It is composed of syntax,
including  punctuation,  traditionally  understood as  the  sentence structure  of  lan-
guages, and morphology, which is the structural understanding of a language’s lin-
guistic units, such as words, affixes, parts of speech, intonation or context. The field
of  linguistic typology studies and classifies languages according to their structural
features.  However, grammar is hardly the limit to language structure. In the past,
s  emantics  , the meaning of language, was held separate from grammar or structure.
Via the advent of the thesaurus, and then linguistic databases such as WordNet and
more recently concept graphs or knowledge graphs that relate words and terms into
connected understandings, we have now come to understand that semantics also has
structure. It is the marriage of the computer with language that is illuminating these
understandings,  enabling  us  to  capture,  characterize,  codify,  share,  and  analyze.
From its roots in symbols, we are now able to extract and understand those very
same symbols to derive information and knowledge from our daily discourse. We are
doing this by gleaning the structure of language, which in turn enables us to relate it
to all other forms of structured information.

WHAT IS INFORMATION?

Many definitions of  information may be found across the ages, often at variance
because of what sense is primary. Some definitions are technical or engineering in
nature;  others  emphasize intention,  context or meaning.  Gregory Bateson offered
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one of the more famous definitions of information, claiming it the “difference that
makes a difference.”3 Claude Shannon, the founder of information theory, empha-
sized a different aspect of information, defining it as a message or sequence of mes-
sages communicated over a channel; he specifically segregated the meaning of infor-
mation from this engineering aspect.4 For Charles S. Peirce, information is equivalent
to meaning, which is measurable as the breadth times the depth of the object. Despite
this difference, I see both Shannon and Peirce talking broadly about the same under-
lying thing, though from different aspects of the universal categories. Shannon is ad-
dressing a Firstness of information, Peirce a Thirdness, as I will explain.5

Some Basics of Information

The idea of information has an ethereal quality. It is something conveyed that re-
flects a ‘difference,’ to use Bateson’s phrase, from some state that preceded it. In-
deed, Norbert Wiener, of cybernetics fame, stated in 1961 that “Information is infor-
mation, not matter nor energy.”6 By coincidence, that was also the same year that
Rolf Landauer of IBM posited the physical law that all computing machines have irre-
versible logic, which implies physical irreversibility that generates heat. This princi-
ple sets theoretical limits to the number of computations per joule of energy dissi-
pated. By 1991 Landauer was explicit that information was physical.8 Physicists con-
firmed that data erasure is a dissipative heat process in 2012.8 The emerging consen-
sus is that information processing does indeed generate heat.9 By these measures, in-
formation looks to have a physical aspect.

The motivation of Shannon’s 1948 paper on information theory was to under-
stand information losses in communication systems or networks.4 Much of the impe-
tus for this came about because of issues in wartime communications and early ci-
phers and cryptography and the emerging advent of digital computers. The insights
from Shannon’s paper also relate closely to the issues of data patterns and data com-
pression.  In a strict sense, Shannon’s paper was about the amount of information
that could be theoretically and predictably communicated between a sender and a re-
ceiver in a message. The message communication implies no context or semantics,
only the amount of information (for which Shannon introduced the term ‘bits’10) and
what might be subject to losses (or uncertainty in the accurate communication of the
message). (Weaver, Shannon’s later co-author of a popular version of the original pa-
per, stated explicitly that use of the word “information must not be confused with
meaning.”11)  What  Shannon called  ‘information’  is  perhaps  better  understood  by
what we now call ‘data.’ (Of course, data has its own multiple interpretations. Bob
Losee  defines  data  as  the  product  of  a  process.12 Jonathan Furner  likens  data  to
datasets and then documents.13)

Shannon  labeled  his  measure  of  unpredictability,  information  entropy,  as  H.
Shannon  called  H entropy because  it  resembled  the  mathematical  form  for
Boltzmann‘s original definition of 2nd law entropy (as elaborated by Gibbs, denoted as
S, for Gibb’s entropy).14 The 2nd law of thermodynamics expresses the tendency that,
over time, differences in temperature, pressure, or chemical potential equilibrate in
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a closed (isolated)  physical  system.  Thermodynamic  e  ntropy   is  a  measure of  this
equilibration: for a given physical system, the highest entropy state is one at equilib-
rium. Fluxes or gradients arise when differences in state potentials occur. (In physi-
cal systems, these are sources and sinks; in information theory, they are sender and re-
ceiver.) Fluxes go from low to high entropy and are non-reversible — the ‘arrow of
time’ — without the addition of external energy. Heat, for example, is a by-product of
fluxes in thermal energy. In a closed system (namely, the entire cosmos), one can see
this gradient as spanning from order to disorder, with the equilibrium state being
the random distribution of all things. This perspective, and much schooling regard-
ing these concepts, tends to present the idea of entropy as a ‘disordered’ state. Be-
cause these fluxes are directional in isolation, we see a perpetual motion machine as
impossible.

Shannon’s H is expressed as the average number of bits needed to store or com-
municate one symbol in a message. Shannon entropy thus measures the change in
uncertainty transmitted and predictably received between the sender and receiver.
The actual information that gets transmitted and received was formulated by Shan-
non as R, which he called rate, and expressed as:

R, then, becomes a proxy for the amount of information accurately communicated. R
can never be zero because all communication systems have losses.  Hbefore and Hafter
are both state functions for the message, so this also makes  R a function of state.
While Shannon entropy (unpredictability) exists for any given sending or receiving
state, the actual amount of ‘information’ (that is, data) that is transmitted is a change
in state measured by a change in uncertainty between the sender (Hbefore) and the re-

ceiver (Hafter). In the words of Thomas Schneider, who provides a clear discussion of

this distinction,  “[Shannon] Information is always a measure of the decrease of un-
certainty at a receiver.”15 

Shannon’s idea of information entropy has come to inform entropy in physics and
the 2nd Law of Thermodynamics.16 According to Koelman, “the entropy of a physical
system is the minimum number of bits you need to describe the detailed state of the
system fully.” Very random (uncertain) states have high entropy, patterned  states
have low entropy. Work by individuals such as Jaynes suggested a reinterpretation of
statistical mechanics to equate the concept of thermodynamic entropy with informa-
tion entropy.17 How others interpreted Jayne’s work helped add to the confusion that
somehow Shannon entropy is related to the ‘disorder’ of thermodynamic entropy. To
unpack this confusion we need to introduce the ideas of scale and open systems with
external inputs of energy.

At cosmic scales — that is, a closed system — we see the tendency to dispersal and
disorder.  However, at our local scale, we see order and life and the development of
complex  biological  systems18 and  self-replication.19 Erwin Schrödinger,  of  the  cat
thought-experiment, in his famous 1943 lectures on “What is Life?”,20 tried to square
life with what he knew then about the physical and chemical world. One insight he
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had was to introduce the idea of genetic material carried in an ‘aperiodic crystal ’
(DNA as eventually discovered). Another assertion was that living matter evades the
decay  to  thermodynamic  equilibrium by  feeding  on  what  he  called  ‘negative
entropy,’ a sort of reverse entropy toward order. Brillouin extended the idea to in-
formation and shortened the name to ‘negentropy.’21 Prigogine tried to get at the
same  questions  with  his  minimum  entropy  dissipative  structures.22 Over  time,
Schrödinger and others  changed from an entropy basis  to  the related  Gibbs  free
energy basis, which is the maximum work potential of a system at constant pressure
and temperature. What researchers have been trying to do is to take a static view of
thermodynamics under ideal and closed conditions and relate it to the dynamic no-
tions of life and information. Through the more recent work of Annila,23 Crooks,24

England,25 Karnani,9 Salthe,26 and many others, the starting assumptions of static and
closed conditions have been re-assessed under local and dynamic ones. We have seen
a shift to questions of non-equilibrium thermodynamic conditions, such as life, and
how maximum entropy production may be favored to dissipate high influxes of ex-
ternal energy. We now understand that open systems receiving fluxes of outside en-
ergy, such as Earth, favor order and structures that dissipate these external fluxes
faster. Some, such as Annila and England,27 relate these forces to evolution.

What appears as fundamental truths relating to information, entropy, dissipation,
and structure in dynamic environments underlie these current strains of research.
Some have “hinted at a possible deep connection between intelligence and entropy
maximization.”28 What we can say so far is that information is physical and perhaps
energetic, with strong conceptual and deeper ties to the ideas of thermodynamic en-
tropy. Messages are the ways information is conveyed, and always incur losses. Order
and structure seem to play a role here, perhaps in providing faster ways to dissipate
energy toward equilibrium in high-energy local conditions. Still, we have yet to dis-
cuss meaning, and senses like information having economic value.29

The Structure of Information

Structure is  something,  of  tangible  or  intangible  character,  that  refers  to  the
recognition,  observation,  nature,  or  permanence of  patterns  and relationships  of
things. The concept may refer to an object, such as a built structure, or an attribute,
such as the structure of society, or something abstract, like a data structure or lan-
guage. Structure may thus be abstract, or it may be concrete. Its realm ranges from
the physical to ideas and concepts. As a term, ‘structure’  is ubiquitous to every do-
main. We may find structure across every conceivable scale, from the most minute
and minuscule to the cosmic. Even realms without any physical aspect at all — such
as ideas and beliefs — are perceived by many to have structure. We apply the term to
any circumstance in which things are arranged or connected to one another, as a
means  to  describe the organization or relationships of  things.  We seem to  know
structure when we see it and to discern structure of very many kinds in contrast to
unstructured or random backgrounds.

In  this  way,  structure  resembles  patterns,  perhaps  even  is  a  synonym.  Bates
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closely relates information to patterns, as well as providing a broad listing of other
information aspects.30 The structure of Peirce’s universal  categories  implies,  I  be-
lieve, likely patterns in our information.  Using thermodynamic insights, Bejan has
devoted his career to outlining how the ‘constructal law’ of flows and related con-
cepts such as order, organization, design or form, contribute to the structures we see
in nature.31 Information in relation to structure raises questions such as, which struc-
tures are preferred? Why do some of them perpetuate under the conditions of na-
ture? An aspect of structure, which provides insight into its roles and importance, is
we can express it in shortened form as a mathematical statement. One could even be
so bold as to say that mathematics is the language of structure. 

Forms of Structure

The natural world is replete with structure. Patterns in nature are regularities of
visual form found in the natural world. We may model such patterns mathematically.
Typical mathematical forms in nature include fractals, spirals, flows, waves, lattices,
arrays, Golden ratio, tilings, Fibonacci sequences, and power laws. We can see natural
forms in  clouds, trees, leaves, river networks, fault lines, mountain ranges, craters,
animal spots and stripes, shells, lightning bolts, coastlines, flowers, fruits, skeletons,
cracks, growth rings, heartbeats and rates, earthquakes, veining,  snowflakes, crys-
tals,  blood and pulmonary vessels,  ocean waves,  turbulence,  beehives,  dunes,  and
DNA. The mathematical expression of structures in nature is frequently repeated or
recursive in nature, often in a self-organizing manner. The swirls of a snail’s shell re-
flect a Fibonacci sequence, while natural landscapes or lifeforms often have a fractal
aspect.32 Fractals are typically  self-similar patterns, generally involving some frac-
tional or ratioed formula that is recursively applied. Another way to define it is a de-
tailed pattern repeating itself.

Even though we can often express these patterns mathematically, and they often
repeat themselves, their starting conditions can lead to tremendous variability and a
lack of predictability. This lack makes them chaotic, as studied under chaos theory,
though their patterns are often discernible. While we certainly see randomness in
statistics, quantum physics, and Brownian motion, it is also striking how what gives
nature its beauty is structure. As a force separate and apart from the random, there
appears something within structure that guides the expression of what is natural and
what is so pleasing to behold. Self-similar and repeated structures across a variety of
spatial scales  are an abiding aspect of nature. Such forms of repeated patterns or
structure are also inherent in that  unique human capability, language, a topic on
which Warner has written extensively.33

Some Structures are More Efficient

The continuation of structure from nature to language extends across all aspects
of human endeavor. I remember once excitedly describing to a colleague what likely
is a pedestrian observation: pattern matching is a common task in many fields. (I had
observed that pattern matching in very different forms was standard practice in
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most areas of industry and commerce.) My ‘insight’ was that this commonality was
not widely understood, which meant that widely divergent pattern matching tech-
niques in one field were not often exploited or seen as transferable to other domains.

In computer science, pattern matching is the act of checking some sequence of to-
kens for the presence of the constituents of some pattern. It is closely related to the
idea of pattern recognition, which is the characterization of some discernible and re-
peated  sequence.  These  techniques,  as  noted,  are  widely  applied,  with  each field
tending to have favorite algorithms. Typical applications that one sees for such pat-
tern-based calculations include: communications,34 encoding and coding theory, file
compression, data compression, machine learning, video compression, mathematics
(including  engineering  and  signal  processing  via  such  techniques  as  statistics or
Fourier  transforms),  cryptography,  NLP,35 speech  recognition,  image  recognition,
OCR, image analysis, search, sound cleaning (that is, error detection, such as Dolby),
and gene sequence searching and alignment, among many others.

To better understand what is happening here and the commonalities, let’s look at
the idea of compression. Data compression is valuable for transmitting any form of
content in wired or wireless manners because we can transmit the same (or closely
similar) message faster and with less bandwidth.36 Compression uses both lossless (no
loss  of  information)  and lossy methods.  Algorithms for  l  ossless  data compression  
usually exploit statistical redundancy — that is, a pattern match — to transmit data
more concisely without losing information. Lossless compression is possible because
most real-world data has statistical redundancy. In lossy data compression, some loss
of information is acceptable by dropping detail from the data to save space. For in-
stance, some frequencies are inaudible to people. A lossy audio recording may drop
these frequencies without being noticed.

A close connection relates machine learning and compression. A system that pre-
dicts the posterior probabilities of a sequence given its entire history can be used for
optimal data compression (by using arithmetic coding on the output distribution),
while an optimal compressor can be used for prediction (by finding the symbol that
compresses best, given the previous history). In contrast, cryptography seeks to con-
struct messages that pattern matching is too time-consuming to analyze.

Evolution Favors Efficient Structures

An example shows how Shannon entropy relates to patterns or data compression.
Let’s take a message of entirely random digits. To accurately communicate that mes-
sage, we would need to transmit all digits (bits) in their original state and form. Ab-
solutely  no  compression of  this  message  is  possible.  If,  however,  patterns  reside
within the message (which, of course, now ceases to make the message random), we
can express them algorithmically in a shortened form so that we only need commu-
nicate the algorithm and not the full bits of the original message. If this ‘compres-
sion’ algorithm can then be used to reconstruct the bit stream of the original mes-
sage, the data compression method is deemed lossless. The algorithm so derived is
also the expression of the pattern that enabled us to compress the message in the
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first place. We can apply this same type of intuition to human language.
In open systems, structures (patterns) are a means to speed the tendency to equi-

librate across energy gradients. This observation helps provide insight into structure
in natural systems, and why life and human communications tend toward more or-
der (less randomness). Structure will always continue to emerge because it is adap-
tive to speed the deltas across these gradients; structure provides the fundamental
commonality  between  biological  information  (life)  and  human  information.  Of
course, in Shannon’s context, what we measure here is data (or bits), not information
embodying any semantic meaning or context. However, it does show that ‘structure’
— that is, the basis for shortening the length of a message while still retaining its ac -
curacy — is information in the Shannon context. This structure arises from order or
patterns, often of a hierarchical or fractal or graph nature. Emergent structure that
can reduce the energy gradient faster is favored.

These processes are probabilistic and statistical. Uncertainties in state may favor
one structure at one time versus another at a different time. The types of chemical
compounds favored in the primordial soup were likely greatly influenced by thermal
and light cycles and drying and wet conditions. In biological ecosystems, huge differ-
ences occur in seed or offspring production or overall species diversity and ecologi-
cal complexity based on the stability (say, tropics) or instability (say, disturbance) of
local environments. These processes are inherently non-deterministic. As we climb
up the chain from the primordial ooze to life and then to humans and our many in -
formation mechanisms and technology artifacts (which are themselves embodiments
of information), we see increasing complexity using different structural mechanisms.

The mechanisms of information transfer in living organisms occur (generally) via
DNA in genes, mediated by sex in higher organisms, subject to random mutations,
and then kept or lost entirely as their host organisms survive to procreate or not.
Those are harsh conditions: the information survives or not (on a population basis)
with high concentrations of information in DNA and with a priority placed on remix-
ing for new combinations via sex. Information exchange (generally) only occurs at
each generational event. Human cultural information, however, is of an entirely dif-
ferent mediation. We can record our information and share it across individuals or
generations, extended with innovations like written language or digital computers.

Common to all of these perspectives — from patterns in nature and on to life and
then animal and human communications — we see that structure is information. Hu-
man artifacts and technology, though not ‘messages’ in a conventional sense,  em-
body information within their structures.37 We also see the interplay of patterns and
information in many processes of the natural  world.41 Examples include complexity
theory,  emergence,  autopoiesis, autocatalysis,  self-organization,  stratification and
cellular automata.38 

We, beings who can symbolically record our perceptions, seem to recognize pat-
terns innately.  We see beauty in symmetry.  Bilateral  symmetry seems deeply in-
grained in the perception by humans of the possible health or fitness of other living
creatures. We also seem to recognize beauty in the simple. Seemingly complex bit
streams reduced to a shorter algorithmic expression are always viewed as more ele-
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gant  than  lengthier,  more  complex  alternatives.  The  simple  laws  of  motion  and
Newtonian physics fit this pattern, as does Einstein’s E=mc  2  . This preference for the
simple is a preference for the greater adaptiveness of the shorter, more universal
pattern of messages, a lesson from Shannon’s information theory.

These insights point to the importance of finding and deriving structured repre-
sentations of information — including meaning — that can be simply expressed and
efficiently conveyed. Building upon the accretions of structure in human and com-
puter  languages,  the  semantic  Web  and  semantic  technologies  offer  just  such  a
prospect. These insights provide a guidepost for how and where to look for the next
structural innovations. We find them in the algorithms of nature and language, and
in making connections that provide the basis for still more structure and patterned
commonalities.

The Meaning of Information

For Charles S. Peirce, signs convey all information. All signs are a triadic whole of
the object, how it is perceived or signaled (representamen), and how it is understood or
interpreted (interpretant), including meaning. Signs might be iconic, such as physical
road signs or brand logos. Signs might be indexical, such as seeing the weather vane
pointing the direction of the wind or hearing the whistle signaling the approaching
train.  Alternatively,  the sign might  be one of  convention or  patterns (‘habits’  or
‘laws’ in Peircean terms), as embodied in symbols. Examples of symbols include the
stylus impression on clay, the crystalline structures of RNA and DNA,39 the printed
letters and words on the page, or the ordered magnetic charges on a hard drive. 

No matter the medium or form, information is a physical sign that indicates some
change in state, the ‘difference’ in Bateson’s term. Because information is real, it can
be theorized over and investigated empirically. In a letter to Lady Welby in 1902
Peirce says:40 

“As for the ‘meaning,’ logicians have recognized since Abélard's day and earlier that
there is one thing which any sign, external or internal, stands for, and another thing
which it signifies; its denoted breadth, its ‘connoted’ depth. They have further gener-
ally held, in regard to the most important signs, that the depth, or signification, is in-
trinsic, the breadth extrinsic.”(CP 8.119) 

Peirce specifically defined information as the breadth x depth of a concept (1867, CP
2.407-8) or what he also called the area. (CP 2.419)  He affirmed the same view more
than 35 years later. (1903, EP 2:305) The breadth refers to all of the external things re-
garding the concept, spanning its extensions or denotations, the things to which it
connects. The depth applies to the intensions or comprehension about the concept,
what it is, including internal properties or qualities. Peirce preferred extension v com-
prehension when referring to these two respective ideas.  Peirce uses these terms in
their absolute senses. That is, for a given thought or concept at hand, complete infor-
mation would mean correctly comprehending all of the context and aspects of that
given thing. This complete understanding is the ‘truth’ about the subject, in all of its
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absolute, dynamic elements. In fact, for signs, Peirce is repeatedly clear about distin-
guishing what the sign is about, what he calls the immediate object, which is what the
sign conveys, and the actual  dynamic object, the real thing that is the (inadequately
signified) object of the sign:

“We must distinguish between the Immediate Object, — i.e. the Object as represented
in the sign, -- and the Real (no, because perhaps the Object is altogether fictive, I must
choose a different term, therefore), say rather the Dynamical Object, which, from the
nature of things, the Sign cannot express, which it can only indicate and leave the in-
terpreter to find out by collateral experience.” (1909, CP 8.314). 

For example, no matter how cleverly or comprehensively we try to convey the idea
of a general type called diamonds (the dynamic object), the object we signify to con-
vey this reality (immediate object) can never be complete. There is  never enough
breadth, depth, perspective, and completeness to capture the dynamic diamond, simi-
lar to the territory map in Jorge Luis Borges’s “On Exactitude of Science.” These con-
cepts are no different from the Shannon idea that losses always occur between what
is sent and what is received.

If one applies these breadth and depth measures to a domain, we begin to get into
massively scaled senses of information. All objects and their connections, no matter
how tenuous, and their characteristics, no matter how subtle, constitute the entirety
of the possible information space. This expansion is not tractable, which means we
must find pragmatic ways to handle the combinatorial challenge, as well as to filter
what is useful based on context and relevance. 

Information is thus a very lossy concept. We have the real world, and all that it is.
We represent what is in this world, imperfectly and incompletely. The messages we
convey are subject to loss. We perceive or try to signify what we understand from
these messages. Our representations are understood or not, and interpreted via cir-
cumstance and context. Higher losses across this circuit lower trust in the informa-
tion and decrease our ability to act.

We can, however, take Peirce’s views on sign-making (semiosis) and information
and derive a somewhat integrative picture of how all of these piece parts may fit to-
gether. Figure 2-1 is not a standard presentation because, first, I merge Shannon in-
formation constructs into the standard Peircean interpretation. Second, also in keep-
ing with Shannon, I show arrows indicating information loss.1 In  Figure 2-1 we first
stipulate a given domain and scope of inquiry (not shown). Real things occupy this
space, never, unfortunately,  wholly understandable nor transmittable as fully cor-
rect messages. The dynamic object represents the total information theoretic poten-
tial. It is all that one might say about the real object. The dynamic object may be a
singular thing or collections of ideas or things. In representing our dynamic objects,
we can only convey them as somewhat incomplete immediate objects, which are in
Secondness based on Peirce’s universal categories (see Chapter 6).

1 These arrows should not be confused with diagrams from other authors that depict the flows of under-
standing or meaning in Peircean semiosis.
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How these objects are pointed to or signified is also an abstraction. Maybe we
convey something iconic like an image, or  perhaps we describe it in words. In all
cases, our signification is imperfect. In Shannon terms, this is a message, which we
can see as an analog of what Peirce called the representamen.2 This message is a First-
ness  regarding the universal categories.3 Structure affects how the message is ini-
tially encoded for transmittal and then decoded at the receiver (that is, the response
level).

Then, as interpretants — that is, the Response level for those who receive the mes-
sages and respond to them — we also understand the object based on our perspec-
tives and contexts. We may grasp and perceive many aspects of the signified object,
or we may not. As the representation of the object by the sign, loss also arises from
the interpretation of the sign by the responder to the object. Some of that loss, of
course, may also be due to a loss of clarity from the sign to the interpretant, or what

2 Not all Peirce scholars agree with this view. A key passage is CP 8.332 (1904), one of Peirce’s letters to Lady 
Welby.

3 Note this is ‘message’ in the sense of Shannon, not the ‘meaning’ of the transmission, which is in Thirdness.
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the interpretant can perceive and process, all subject to circumstance or context. 
Peirce posed three different kinds of interpretants:

“It is likewise requisite to distinguish the Immediate Interpretant, i.e. the Interpretant
represented or signified in the Sign, from the Dynamic Interpretant, or effect actually
produced on the mind by the Sign; and both of these from the Normal Interpretant, or
effect that would be produced on the mind by the Sign after sufficient development of
thought.” (1908, CP 8.343)

The immediate interpretant is the sense, or quality of the impression, invoked by the
sign; Peirce also likened it to a schema. The immediate interpretant is a kind of First -
ness.  The  dynamic interpretant is  the meaning of the sign for a given concrete in-
stance, an “act of the Mind.” (1909, CP 8.315) It is a kind of Secondness. The normal
interpretant, also called the final or ultimate, is the full significance of the sign, what it
‘means’ in all of its various aspects. The normal interpretant is a kind of Thirdness. It
is the ‘sum of lessons’ learned from the sign and is a basis for action. I understand the
normal interpretant to embrace all of the breadth and depth of information knowable
to the interpreting agent. Though never expressed as such, I interpret Peirce to liken
the immediate interpretant as the sense of something or its impression; the dynamic
interpretant as taking note of something, recognizing it as information; and the nor-
mal interpretant as something we know and are willing to act upon with all that that
means. 

I discuss more the transition from information to knowledge in the next section.
With  Shannon’s  information theory, we have  a  technical  way to  understand and
quantify information concerning entropy and its potential. That theory also gives us
a robust framework for understanding and evaluating information losses, and how it
is that we lose fidelity and truth as we move from the real to the perceived and com-
municated. As information theory gets better understood from the standpoints of
the statistical mechanics of dynamic, non-equilibrium systems — that is, the circum-
stances of life and humans — I think we will begin to further understand the role of
structures and patterns as favored dissipation systems. We are still building aware-
ness that information is a rich environment, one which we may use Peirce’s universal
categories and semiosis to represent. We are still at the cusp of unpeeling these per-
spectives into an integrated information whole. 

WHAT IS KNOWLEDGE?

As a book about knowledge representation, we have been sneaking up on what
this concept of knowledge means. We see that it is grounded in information somehow,
but it is also different. Significant terms we associate with knowledge and its discov-
ery include open, dynamic, belief, judgment, observation, process, representation, significa-
tion,  interpretation,  logic,  coherence,  context,  reality, and truth. These were all topics of
Peirce’s deep inquiry and explicated by him via his triadic worldview. To get at the
question, I begin with some of our common sense understandings of ‘knowledge.’ I
then supplement these notions with what Peirce himself had to say about the nature
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of knowledge. We conclude this section by looking at the critical question of  doubt,
and why that is the basis for stimulating inquiry and our search for new knowledge.

The Nature of Knowledge

Let’s take the statement: the sky is blue. We can accept this as a factual statement.
However, if we know the sky is dark or black, we know it is the night. Alternatively,
the sky may be gray if it is cloudy. When we hear the statement that the sky is blue, if
we believe the source or can see the sky for ourselves, then we can readily infer
whether the observation is correct, occurring during daylight, under a clear sky. Our
acceptance of an assertion as factual or being true carries with it the implications of
its related contexts. On the other hand, were we simply to state le ciel est bleu, and if
we did not know French, we would not know what to make of the statement, true or
false, with context or not, even if all of the assertions were still correct.

This  simple  example carries  with  it  two profound observations.  First,  context
helps to determine whether we believe or not a given statement, and if we believe it,
what the related context implied by the statement might be. Second, we convey this
information via symbols — in this case, the English language, but applicable to all hu-
man and artificial and formal notations like mathematics as well — which we may or
may not  be able  to  interpret  correctly.  If  I  am monolingual  in  English and I  see
French statements, I do not know what the symbols mean.

Knowledge may reside solely in our minds, and not be part of ‘common knowl-
edge.’ However, ultimately, even personal beliefs not held by others only become
‘knowledge’ that we can rely upon in our discourse once others have ‘acknowledged’
the truth. Forward-looking thinkers like Copernicus or Galileo or Einstein may have
understood something in their minds not yet shared by others, but we do not ‘ac-
knowledge’ those understandings as knowledge until we can share and discuss the
insight. (That is, what scientists would call independent verification.) In this manner,
knowledge, like language and symbol-creation, is inherently a social phenomena. If I
coin a new word, but no one else understands what I am saying, that is not part of
knowledge; that is gibberish.

None of this denies that individuals may ‘know’ things or have insights not shared
with others. Perhaps we could call this ‘personal knowledge.’ My larger point, as it
was for Peirce, is to advocate a more elevated understanding of knowledge that has
the essences of being shared, valid to some degree, and supported by a community
one respects. Indeed, the process of sharing knowledge with communities is to test
and reflect on the shared understanding, thereby honing and improving our knowl-
edge of the subject. 

Peirce maintained, in part, we have to believe information for it to become knowl-
edge. Put another way; we need to believe information to act upon it.1 As our prior
discussion also showed, we also see that the information upon which our judgments
may depend may differ at all levels of human experience, perceptions, and language.

1 Actions, of course, are not all premised on belief. Actions might be coerced or unconsciously reflexive. 
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We have a variety of viewpoints on any topic of ordinary human discourse. One crite-
rion we apply when evaluating a viewpoint is whether it is  coherent. Coherence is a
state of logical,  consistent connections, a logical  framework for  intelligently  inte-
grating diverse elements. Another criterion for evaluating information is whether it
is ambiguous.  Ambiguity is a frequent source of error, as when we wrongly identify
the object, then connections can get drawn that are in glaring error. This potential
error is why disambiguation is such a big deal in semantic systems. Context is thus an
essential basis for resolving disambiguities.  The same information may be used dif-
ferently or given different importance depending on circumstance. One immediate
implication of these italicized points is that we need to embed our information in a
pragmatic semantics that reflects these realities.

Besides semantics, let’s also look at some of the other common sense characteris-
tics we associated with knowledge, and how these senses may affect what we need in
a knowledge management systems:

 Knowledge is never complete — gaining and using knowledge is a process, and is
never complete. A completeness assumption around knowledge is by definition
inappropriate; 

 Knowledge may  reside in multiple forms — structured databases represent only a
portion of structured information (spreadsheets and other non-relational  data
stores are other structured forms). Further, general estimates are that 80% of
information available resides in documents, with growing importance to meta-
data,  Web  pages,  markup  documents  and  other  semi-structured  sources.  A
proper system for  knowledge representation should be equally  applicable  to
these various information forms;

 Knowledge  occurs anywhere — relevant information about customers, products,
competitors, the environment or virtually any knowledge-based topic may arise
from internal and external information. The emergence of the Internet and the
universal availability and access to mountains of public and shared information
demands its thoughtful incorporation into knowledge management systems; 

 Knowledge is about connections — the epistemological nature of knowledge can be
argued endlessly, but I submit much of what distinguishes knowledge from in-
formation is that knowledge makes the connections — that is, asserts relations
— between disparate pieces of relevant information, and it does so truly and be-
lievably.  As  these relationships accrete,  the knowledge base grows.  We need
knowledge systems that enable us to add new connections as discovered with-
out adversely impacting our existing knowledge characterizations;

 Knowledge structures evolve with the incorporation of more information — our ability
to describe and understand the world or our problems at hand requires inspec-
tion, description, and definition. Birdwatchers, botanists, and experts in all do-
mains know well how investigation and study of specific domains lead to more
discerning understanding and ‘seeing’ of that domain. Before learning, every-
thing is just a shade of green or a herb, shrub or tree to the incipient botanist;
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eventually,  she  learns  how  to  discern  entire  families  and  individual  plant
species, all accompanied by a rich domain language. We need to explicitly rec-
ognize in our KM systems how increased knowledge leads to more structure and
more vocabulary; and 

 Knowledge is about what is agreed upon1 — since knowledge is a state of under-
standing by practitioners and experts in a given domain,  it  is  also  vital that
those very same users be active in its gathering, organization (structure), use,
and consensus of what it is and what it means. The adjudication of knowledge is
ultimately a social and community phenomenon. We should build KM systems
around and for its users.

Of course, we may ascribe other senses to knowledge. Peirce, for example, notes
that all knowledge comes to us via observation. (1897, CP 2.444) He notes that differ-
ent knowledge may have different economic value. (1902, CP 7.158) He also separates
out ‘acquaintance’ knowledge in his discussion of how to evaluate signs. ‘Acquain-
tance’ knowledge comes from ‘collateral observation,’ which goes beyond mere con-
text to also include the meaning of the background knowledge applied to recognizing
and interpreting the sign:

“Now let us pass to the Interpretant. I am far from having fully explained what the
Object of a Sign is; but I have reached the point where further explanation must sup-
pose some understanding of what the Interpretant is. The Sign creates something in
the Mind of the Interpreter, which something, in that it has been so created by the
sign, has been, in a mediate and relative way, also created by the Object of the Sign, al-
though the Object is essentially other than the Sign. And this creature of the sign is
called the Interpretant. It is created by the Sign; but not by the Sign quâ member of
whichever of the Universes it belongs to; but it has been created by the Sign in its ca-
pacity of bearing the determination by the Object. It is created in a Mind (how far this
mind must be real we shall see). All that part of the understanding of the Sign which
the Interpreting Mind has needed collateral observation for is outside the Interpre-
tant. I do not mean by ‘collateral observation’ acquaintance with the system of signs.
What is so gathered is not COLLATERAL. It is on the contrary the prerequisite for get-
ting any idea signified by the sign. But by collateral observation, I mean previous ac-
quaintance with what the sign denotes.” (1909, CP 8.179)

We communicate shared knowledge via symbols. That means we communicate these
assertions as arguments, which require judgment as to whether and how to act:

“That is the first point of this argument; namely, that the judgment, which is the sole
vehicle in which a concept can be conveyed to a person's cognizance or acquaintance,
is not a purely representitious event, but involves an act, an exertion of energy, and is
liable to real consequences, or effects.” (1908, CP 5.547)

Prior knowledge, or ‘collateral observation,’ helps inform the judgment. The role of
prior  knowledge  suggests  that  local  context,  broadly  defined as  the  locality in  a
knowledge graph, needs to play a role in the characterization of knowledge. 

1 Per the more expansive definition used above, which reduces the role of ‘personal knowledge.’
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In another vein, Joel Mokyr, whom we will have a chance to discuss in Chapter 3,
proposes  a  useful  split  between  propositional  knowledge  (descriptive  knowledge)
from the know-how of procedural language.41 A search will turn up many other as-
sertions in the literature across  disciplines about the nature and classification of
knowledge.

Knowledge as Belief

Information is  a proposition or assertion conveyed to us via signs,  most often
symbols, about objects in our domain (or world). The breakpoint from information to
knowledge, based on our evaluation so far, occurs when we believe the information,
and are willing to act upon it. We observe and evaluate the sign; if our response is ac-
tion or a willingness to act, we can consider the sign as knowledge. I suspect under
this interpretation that the act of merely recording the assertion, storing it for later
use or inspection, does not qualify as an act of belief. This interpretation seems to
conform with Peirce’s idea of the dynamic interpretant. 

The centrality of the idea of belief to knowledge goes back to at least Plato and
then the Enlightenment in a formulation known as ‘justified, true belief (JTB).’42 The
proposition  must  be  believed  as  true  with  justification  to  qualify  as  knowledge.
Peirce essentially endorsed this notion (though with some caveats and expansions as
I suggest below):

“Plato is quite right in saying that a true belief is not necessarily knowledge. A man
may be willing to stake his life upon the truth of a doctrine which was instilled into
his mind before his earliest memories without knowing at all why it is worthy of cre-
dence; and while such a faith might just as easily be attached to a gross superstition as
to a noble truth, it may, by good luck, happen to be perfectly true. But can he be said
to  know it? By no means: to render the word knowledge applicable to his belief, he
must not only believe it, but must know, -- I will not say, with the ancients, the ratio-
nale of the real fact, as a reality, -- but must know what justifies the belief, and just
WHY and HOW the justification is sufficient. I beg that the reader will turn this over in
his mind and satisfy himself as to how far what I am saying is true. For it is not a very
simple point but is one that I intend to insist upon. Before knowledge of any subject
can be put to any extensive use, it is almost indispensable that it should be made as
thorough and complete as possible, until  every detail  and feature of the matter is
spread out as in a German handbook. But if I am asked to what the wonderful success
of modern science is due, I shall suggest that to gain the secret of that, it is necessary
to consider science as living, and therefore not as knowledge already acquired but as
the concrete life of the men who are working to find out the truth. Given a body of
men devoting the sum of their energies to refuting their present errors, doing away
with their present ignorance, and that not so much for themselves as for future gen-
erations, and all other requisites for the ascertainment of truth are insured by that
one.” (1902, CP 7.49-50)

Peirce describes in this passage the nature of truth, the means of justification, and
the role of doubt. Let’s first understand more precisely what Peirce means by belief:
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“A cerebral habit of the highest kind, which will determine what we do in fancy as
well as what we do in action, is called a belief. The representation to ourselves that we
have a specified habit of this kind is called a judgment. A belief-habit in its develop-
ment begins by being vague, special, and meagre; it becomes more precise, general,
and full, without limit. The process of this development, so far as it takes place in the
imagination, is called thought. A judgment is formed; and under the influence of a be-
lief-habit this gives rise to a new judgment, indicating an addition to belief. Such a
process is called an inference; the antecedent judgment is called the premiss; the con-
sequent judgment, the conclusion; the habit of thought, which determined the pas-
sage from the one to the other (when formulated as a proposition), the leading princi-
ple.” (1880, CP 3.160)

Interestingly, though, Peirce closely ties belief to probability:

“Probability and chance undoubtedly belong primarily to consequences, and are rela-
tive to premisses; but we may, nevertheless, speak of the chance of an event abso-
lutely, meaning by that the chance of the combination of all arguments in reference to
it which exist for us in the given state of our knowledge. Taken in this sense it is in -
contestable that the chance of an event has an intimate connection with the degree of
our belief in it. Belief is certainly something more than a mere feeling; yet there is a
feeling of believing, and this feeling does and ought to vary with the chance of the
thing believed, as deduced from all the arguments. Any quantity which varies with the
chance might, therefore, it would seem, serve as a thermometer for the proper inten-
sity of belief. Among all such quantities there is one which is peculiarly appropriate.
When there is a very great chance, the feeling of belief ought to be very intense. Abso-
lute certainty, or an infinite chance, can never be attained by mortals, and this may be
represented appropriately by an infinite belief.” (1878, CP 2.676)

These views are one reason why Peirce contributed so much to probability theory
over his career. Peirce’s views are strongly tied to his belief in fallibilism: while truth
exists, it can never be known absolutely, but as an approximation moving toward its
limit function through testing and inquiry (namely, the scientific method). 

“... I used for myself to collect my ideas under the designation fallibilism; and indeed
the first step toward finding out is to acknowledge you do not satisfactorily know al-
ready; so that no blight can so surely arrest all intellectual growth as the blight of
cocksureness; and ninety-nine out of every hundred good heads are reduced to impo-
tence by that malady — of whose inroads they are most strangely unaware!” (1897, CP
1.13)

A core consistency underlying Peirce’s views of knowledge is his belief in reality.
Reality exists outside of the mind or the individual; it exists whether minds exist to
consider it; and it can be unveiled or discovered over time through observation and
inquiry. In all of his writings, except when dedicated to the topic, Peirce attempted
to look outside of psychology for his premises and logic. Objective truth exists, even
if not absolutely knowable at its limits:

“There are Real things, whose characters are entirely independent of our opinions
about them; those Reals affect our senses according to regular laws, and, though our
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sensations are as different as are our relations to the objects, yet, by taking advantage
of the laws of perception, we can ascertain by reasoning how things really and truly
are; and any man, if he have sufficient experience and he reason enough about it, will
be led to the one True conclusion. The new conception here involved is that of Real-
ity.” (1903, CP 5.384)

Knowledge is what we know of the past that influences our expectations about the fu-
ture. It produces judgments and enables us to act, based on our believed probabili-
ties. Unlike standard JTB, though, Peirce’s version of knowledge asserts the fallibility
of truth, is more rigorous in proposing how to justify and test for it, and includes the
role  for community adjudication.  Thus,  while  neither  truth nor justification may
ever be absolute, and may change based on what we discover about objective reality,
the weighing of the evidence gives us the belief in knowledge upon which to act.

Doubt as the Impetus of Knowledge

 Another difference from JTB that Peirce emphasizes regards the drive or the
quest for knowledge. So long as we doubt, we have an impetus to inquiry and knowl-
edge. Upon attaining what Peirce called ‘full belief,’ once doubt has been removed
and its irritation sated, the impetus to acquire knowledge on that topic abates: 

“Doubt is an uneasy and dissatisfied state from which we struggle to free ourselves
and pass into the state of belief.” (1892, CP 5.372)

“The irritation of doubt causes a struggle to attain a state of belief. I shall term this
struggle Inquiry, though it must be admitted that this is sometimes not a very apt des-
ignation.” (1892, CP 5.374)

The ‘irritation of doubt,’ how to remove it, and how to make ideas clear were the
subjects of a series of papers by Peirce in  Popular Science Monthly in the late 1870s.
One of the papers, “The Fixation of Belief,”43 critically reviewed what Peirce claimed
were the only four methods for obtaining belief and removing doubt. The four meth-
ods are the: 1) method of tenacity, wherein one repeats or wills to believe something;
2) the method of authority, wherein governments or external forces insist upon cer-
tain beliefs; 3) the a priori method, wherein precedent or social consensus determines
beliefs; or 4) the method of science, obtained from the scientific method and the ap-
plication of observation, testing, and logic. Peirce noted logical and other pitfalls for
the first three methods. Only the fourth method can fix (and re-fix!) belief in an ob-
jective reality based on fallible truth. It is noteworthy given Peirce’s lifelong devo-
tion to science and the scientific method that he also makes the explicit point that
belief, however, is not the objective of science:

“We believe the proposition we are ready to act upon. Full belief is willingness to act
upon the proposition in vital crises,  opinion is willingness to act upon it in relatively
insignificant affairs. But pure science has nothing at all to do with action.... There is
thus no proposition at all in science which answers to the conception of belief.” (1898,
CP 1.635)
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Through science, we gain probabilities on our information that constitutes condi-
tioned or provisional knowledge. Belief, how Peirce defines it, is not a matter of sci-
ence, but of action:

“But in vital matters, it is quite otherwise. We must act in such matters; and the prin -
ciple upon which we are willing to act is a belief. Thus, pure theoretical knowledge, or
science, has nothing directly to say concerning practical matters, and nothing even
applicable at all to vital crises. Theory is applicable to minor practical affairs; but mat-
ters of vital importance must be left to sentiment, that is, to instinct.” (1898, CP 1.636-
7)

Peirce perhaps does not say all that he could regarding doubt and the scientist’s
quest for truth. What we do glean from these perspectives, though, is the importance
of the scientific method to inquiry, the driving force of doubt in our seeking more in-
formation, and the role that belief plays in elevating information to knowledge.

WHAT IS REPRESENTATION?

‘Representation’ is the second part of knowledge representation (KR). One dictio-
nary sense is that ‘representation’ is the act of speaking or acting on behalf of some-
one  else.  This  sense  is  the  one,  say,  of  a  legislative  representative  (the  Thomas
Hobbes view, a dominant theme in classical empiricism44). Another sense is a state-
ment  made  to  some  formal  authority  communicating  an  assertion,  opinion  or
protest, such as a notarized document. The sense applicable to KR, however, accord-
ing to the Oxford Dictionary of English, is the one of ‘re-presenting.’ That is, “the de-
scription or portrayal of someone or something in a particular way or as being of a
certain nature.”45

Peirce bases his representational view of the world on  semiotics, the study and
logic of signs. In his seminal writing on this in 1894, “What is in a Sign?”,46 Peirce
wrote that “every intellectual operation involves a triad of symbols” and “all reason-
ing is an interpretation of signs of some kind.” Do not confuse Peirce’s semiosis with
that of Ferdinand de Saussure, which was for many years better known but lacks the
perspective of Thirdness (mediation, continuity) in Peirce’s version. 

After the advent of computers,  knowledge representation (and reasoning)  was
formalized as a sub-discipline of artificial intelligence and received more focused at-
tention. Davis  et al. wrote an influential piece in 1993 that stipulated five require-
ments for knowledge representation,47 all of which are captured in one way or an-
other by the approach recommended in this book. We may study KR through stan-
dard texts such as by Brachman and Levesque,48 or  van Harmelan.6 We may under-
stand KR via  the  language of thought hypothesis of  Jerry    Fodor  52 or via  set theory
(such as from Zhou49) or Fred Dretske‘s representational thesis (which pays particu-
lar attention to phenomenology but does not mention Peirce).54

Clearly, for the reasons cited throughout this book, Peirce is the polestar I have
chosen to guide my thinking on knowledge representation. We have already seen his
insights in information and knowledge. His semiosis takes dead aim at the questions
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of how to represent knowledge, and the role and the unique triadic relationship of
signs. Indeed, the sheer consistency and coherence of his logics and philosophical
views dovetail directly with the needs of conveying information and knowledge to
computers. Except for John Sowa’s book,50 now nearly 30 years old, it is time to bring
Peirce back into the knowledge representation fold of AI.

The Shadowy Object

When we see something, or point to something, or describe something in words,
or think of something, we are, of course, using proxies in some manner for the actual
thing. If the something is a ‘toucan’ bird, that bird does not reside in our head when
we think of it. The ‘it’ of the toucan is a ‘re-presentation’ of the real, dynamic toucan.
The representation of something is never the actual something but is itself another
thing that conveys to us the idea of the real something. In our daily thinking we
rarely make this distinction, thankfully, otherwise, our flow of thoughts would be
wholly jangled. Nonetheless, the difference is real, and we should be conscious of it
when inspecting the nature of knowledge representation.

How we ‘re-present’ something is also not uniform or consistent. For the toucan
bird, perhaps we make caw-caw bird noises or flap our arms to indicate we are refer-
ring to a bird. Perhaps we point at the bird. Alternatively, perhaps we show a picture
of a toucan or read or say aloud the word “toucan” or see the word embedded in a
sentence or paragraph, as in this one,  that also provides additional context. How
quickly or accurately we grasp the idea of ‘toucan’ is partly a function of how closely
associated one of these signs may be to the idea of toucan bird. Probably all of us
would agree that arm flapping is not nearly as useful as a movie of a toucan in flight
or seeing one scolding from a tree branch to convey the ‘toucan’ concept. There’s a
reason why we love the game of charades.

The question of what we know and how we know it fascinated Peirce over the
course of his intellectual life. He probed this relationship between the real or actual
thing, the object, with how that thing is represented and understood. This triadic re-
lationship between immediate object, representation, and interpretation forms a sign
and is the basis for the process of sign-making and understanding that Peirce called
semiosis.51 

Even the idea of the object, in this case, the toucan bird, is not necessarily so sim-
ple. The real thing itself, the toucan bird, has characters and attributes. How do we
‘know’ this real thing? Bees, like many insects, may perceive different coloration for
the toucan and adjacent flowers because they can see in the  ultraviolet spectrum,
while we do not. On the other hand, most mammals in the rainforest would also not
perceive the reds and oranges of the toucan’s feathers, which we readily see. Perhaps
only fellow toucans could perceive by gestures and actions whether the object toucan
is healthy, happy or sad (in the toucan way). Humans, through our ingenuity, may
create devices or technologies that expand our standard sensory capabilities to make
up for some of these perceptual gaps, but technology will never make our knowledge
fully complete. Given limits to perceptions and the information we have on hand, we
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can never completely capture the nature of the dynamic object, the real toucan bird.
Alternatively, let’s take another example more in keeping with the symbolic na-

ture of KR, in this case, the word for ‘bank.’ We can see this word, and if we speak
English, even recognize it, but what does this symbol mean? A financial institution?
The shore of a river? Turning an airplane? A kind of pool shot? Tending a fire for the
evening? In all of these examples, an actual object is the focus of attention. What we
‘know’ about this object depends on what we perceive or understand and who or
what is doing the perceiving and the understanding. We can never fully ‘know’ the
object because we can never encompass all perspectives and interpretations.

Peirce well recognized these distinctions. As we noted before, he termed the ob-
ject of the representations as the immediate object, while also acknowledging this rep-
resentation does not fully capture the underlying, real dynamical object:

“Every cognition involves something represented, or that of which we are conscious,
and some action or passion of the self whereby it becomes represented. The former
shall be termed the objective, the latter the subjective, element of the cognition. The
cognition itself is an intuition of its objective element, which may therefore be called,
also, the immediate object.” (1868, CP 5.238)

“Namely, we have to distinguish the Immediate Object, which is the Object as the Sign
itself represents it, and whose Being is thus dependent upon the Representation of it
in the Sign, from the Dynamical Object, which is the Reality which by some means
contrives to determine the Sign to its Representation.” (1906, CP 4.536)

“As to the Object, that may mean the Object as cognized in the Sign and therefore an
Idea, or it may be the Object as it is regardless of any particular aspect of it, the Object
in such relations as unlimited and final study would show it to be. The former I call
the Immediate Object, the latter the Dynamical Object.” (1909, CP 8.183)1

One imperative of knowledge representation — within reasonable limits — is to try to
ensure that our immediate representation of the objects of our discourse is in close
correspondence to the dynamic object. This imperative, of course, does not mean as-
sembling every minute bit  of  information possible to characterize our knowledge
spaces.  Instead, we need to seek a balance between what and how we characterize
the instances in our domains with the questions we are trying to address, all within
limited time and budgets. Peirce’s pragmatism, as expressed through his  pragmatic
maxim discussed in Chapter 14, helps us reach this balance. 

Three Modes of Representation

Representations are signs (CP 8.191), and the means by which we point to, draw
or direct attention to, or designate, denote or describe a particular object, entity,
event, type or general. In Peirce’s mature theory of signs, he characterizes signs ac-
cording to different typologies, which we cover in this and later sections. One of his

1 See further the prior Figures 1-1 and 2-1.
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better-known typologies is how we may denote the object, which, unlike some of his
other  typologies,  he  kept  relatively constant  throughout  his  life.  Peirce  formally
splits these denotative representations into three kinds: icons, indexes, or symbols (CP
2.228, CP 2.229 and CP 5.473). 

“... there are three kinds of signs which are all indispensable in all reasoning; the first
is the diagrammatic sign or icon, which exhibits a similarity or analogy to the subject
of discourse; the second is the index, which like a pronoun demonstrative or relative,
forces the attention to the particular object intended without describing it; the third
[or symbol] is the general name or description which signifies its object by means of an
association of ideas or habitual connection between the name and the character signi-
fied.” (1885, CP 1.369)

The icon, which may also be known as a likeness or semblance, has a quality shared
with the object such that it resembles or imitates it (see Table 2-1). Portraits, logos,
diagrams, and metaphors all have an iconic denotation. Peirce also views algebraic
expressions as icons since he believed (and did much to prove) that mathematical op-
erations can be expressed through diagrammatic means (as is the case with his later
existential graphs). 

An  index denotes the object  by some form of linkage or connection.  An index
draws or compels attention to the object by this  genuine connection, and does not
require  any  interpretation  or  assertion  about  the  nature  of  the  object.  A  finger
pointed at an object or a weathervane indicating which direction the wind is blowing
are indexes, as are keys in database tables or Web addresses (IRIs or URLs 52) on the
Internet. Pronouns, proper names, and figure legends are also indexes. 

An icon

} {
it possesses the quality signified.

An index  is a sign fit to be used as such
because

it is in real reaction with the 
object denoted.

A symbol it determines the interpretant
sign.

Table 2-1: Three Ways to Denote Objects of Signs 

Symbols, the third kind of denotation, represent the object by accepted conven-
tions or ‘laws’ or ‘habits’ (Peirce’s preferred terms). Symbols are an understood inter-
pretation, gained through communication and social consensus. All words are sym-
bols, plus their combinations into sentences and paragraphs. All symbols are gener-
als, though we express them as individual instances or tokens. For example, ‘the’ is a
single symbol (type), but it is expressed many times (tokens) on this page. Knowledge
representation, by definition, is based on symbols, which are interpreted by either
humans or machines based on the conventions and shared understandings we have
given them. When Peirce returned to the investigation of signs later in his career, he
attempted many times to help clarify how to best distinguish between these three.
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For example:

“There  is  an infallible  criterion for  distinguishing  between an  index  and an icon.
Namely, although an index, like any other sign, only functions as a sign when it is in-
terpreted, yet though it never happened to be interpreted, it remains equally fitted to
be the very sign that would be if interpreted. A symbol, on the other hand, that should
not be interpreted, would either not be a sign at all, or would only be a sign in an ut-
terly different way. An inscription that nobody ever had interpreted or ever would in-
terpret would be but a fanciful scrawl, an index that some being had been there, but
not at all conveying or apt to convey its meaning.” (1904, NEM 4:256)

Peirce confined the word representation to the operation of a sign or its relation to
the interpreter for an object. The three possible modes of denotation — that is, icon,
index or symbol — Peirce collectively termed the representamen: 

“A very broad and important class of triadic characters [consists of] representations.
A representation is that character of a thing by virtue of which, for the production of
a certain mental effect, it may stand in place of another thing. The thing having this
character I term a  representamen,  the mental effect, or thought, its  interpretant,  the
thing for which it stands, its object.” (1897, CP 1.564)

Symbols are in Thirdness, one of the universal categories we discuss at length in
Chapter 6. As a preview, though, understand these symbols are themselves represen-
tations, which build in an ever-growing cascade, to convey deeper and more compli-
cated representations, each with a meaning to its interpretant:

“The easiest of those [ideas in which Thirdness is predominant] which are of philo-
sophical interest is the idea of a sign, or representation. A sign stands for something to
the idea which it produces, or modifies. Or, it is a vehicle conveying into the mind
something from without. That for which it stands is called its Object; that which it con-
veys, its  Meaning; and the idea to which it gives rise, its  Interpretant. The object of a
representation can be nothing but a representation of which the first representation
is the interpretant. But an endless series of representations each representing the one
behind it may be conceived to have an absolute object at its limit. The meaning of a
representation can be nothing but a representation.” (1893, NEM4:309-310; MS 717)

Again, note that representation is the complete triadic sign, while meaning is the un-
derstanding conveyed by the symbolic representation, as understood and acted upon
by the interpreting agent.

Peirce’s Semiosis and Triadomany

In the same early 1867 paper in which Peirce laid out the three modes of denota -
tion of icon, index, and symbol,70 he also presented his three phenomenological cate-
gories for the first time, what I (and others) have come to call his universal categories
of Firstness, Secondness, and Thirdness.1 This seminal paper also provides the con-

1 See entire Chapter 6, especially Table 6-2.
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textual embedding of these categories, which is worth repeating in full:

“The five conceptions thus obtained, for reasons which will be sufficiently obvious,
may be termed categories. That is,

  BEING,
Quality (reference to a ground),
Relation (reference to a correlate),
Representation (reference to an interpretant),

SUBSTANCE.

The three intermediate conceptions may be termed accidents.” (1896, EP 1:6, CP 1.55)

Note the commas, suggesting the order, and the period, in the listing. In his later
writings, Peirce ceases to discuss Being and Substance directly, instead focusing on
the ‘accidental’  categories  that became the first  expression of his  universal  cate-
gories. Being, the starting point, is the absolute, most abstract beginning for Peirce’s
epistemology.54 The three ‘accidental’ categories of Quality, Relation and Representa-
tion are one of the first expressions of Peirce’s universal categories of Firstness, Sec-
ondness, and Thirdness, as applied to Substance. “Thus substance and being are the
beginning and end of all conception. Substance is inapplicable to a predicate, and be-
ing is equally so to a subject.” (1867, CP 1.548)

These two, early triadic relations — one, the denotations in signs, and, two, the
universal  categories  —  are  examples  of  Peirce’s  lifelong  fascination  with  tri-
chotomies.55 He used triadic  thinking in dozens of areas in  his  various investiga-
tions,1 often in a recursive manner (threes of threes). It is not surprising, then, that
Peirce also applied this mindset to the general characterization of signs themselves. 

Peirce returned to the idea of sign typologies and notations at the time of his
Lowell Institute lectures at Harvard in 1903.56 Peirce expanded upon his first triad of
icons, indexes, and symbols with two additional trichotomies. 

In one of these additions, the second trichotomy, Peirce proferred three ways to
describe the use of signs. These three uses are: qualisigns (also called tones,  potisigns,
or marks), which are signs that consist of a quality of feeling or possibility, and are in
Firstness; sinsigns (also called tokens or actisigns), which consist in action/reaction or
actual single occurrences or facts,  and are in  Secondness;  or  legisigns (also called
types or famisigns), which are signs that consist of generals or representational rela-
tions, and are in Thirdness. Instances (tokens) of legisigns are replicas and thus are a
sinsign. All symbols are legisigns. Synonyms, for example, are replicas of the same
legisign, since they mean the same thing, but are different sinsigns.

In the second of these additions,  the third  trichotomy, Peirce  described  three
ways to interpret signs (interpretant) based on possibility, fact, or reason.  A  rheme
(also called sumisign or seme) is in Firstness and is a sign that stands for its object for
some purpose, expressed as a character or a mark. Terms are rhemes, but they also
may be icons or indexes. Rhemes may be diagrams, proper nouns or common nouns.

1 Table 6-2 lists more than 60 examples.
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A proposition expressed with its subject as a blank (unspecified) is also a rheme. A di-
cisign (also called dicent or pheme) is the second interpretation of a sign. A dicent is in
Secondness and is a fact of actual existence. Icons cannot be dicisigns. Dicisigns may
be either indexes or symbols and provide indicators or pointers to the object. Stan-
dard propositions or assertions are dicisigns. An argument (also called suadisign or de-
lome) is the third way of a reasoning sign, in Thirdness, and stands for the object as a
generality, law, or habit.  A sign itself  is  an argument, including major and minor
premises and conclusions. Combinations of assertions or statements, such as novels
or works of art, are arguments. Context resides in Thirdness.

One might expect these three Peircean sign trichotomies to result in 27 different
possibilities (3 x 3 x 3). However, the nature of the monadic, dyadic and triadic rela-
tionships embedded in these trichotomies only logically leads to 10 variants (1 + 3 +
6).57 Table 2-2 summarizes these ten sign types and provides some examples of how to
understand them. The 1 + 3 + 6 variants include Sign I, Signs II to IV, and Signs V to X,
respectively, as shown in the table.

Sign by
Use

Relative
to

Object

Relative
to

Interpretant

Sign Name
(redundancies) Some Examples

I Qualisign Icon Rheme (Rhematic Iconic) 
Qualisign A feeling of ‘red’

II

Sinsign

Icon Rheme (Rhematic) Iconic 
Sinsign An individual diagram

III
Index

Rheme Rhematic Indexical 
Sinsign A spontaneous cry

IV Dicisign Dicent (Indexical) 
Sinsign

A weathercock or photo-
graph

V

Legisign

Icon Rheme (Rhematic) Iconic 
Legisign

A diagram, apart from its 
factual individuality

VI
Index

Rheme Rhematic Indexical 
Legisign A demonstrative pronoun

VII Dicisign Dicent Indexical 
Legisign

A street cry (identifying the
individual by tone, theme)

VIII

Symbol

Rheme Rhematic Symbol 
(Legisign) A common noun

IX Dicisign Dicent Symbol 
(Legisign)

A proposition (in the con-
ventional sense)

X Argument Argument (Symbolic
Legisign) A syllogism

Table 2-2: Ten Classifications of Signs58

The schema in Table 2-2 is the last one fully developed by Peirce. We will next re-
turn to this schema in Chapter 16 (specifically Table 16-3) when we turn to the topic of
semantic parsing of natural language. However, also realize, in Peirce’s last years, he
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also developed 28-class and 66-class sign typologies, though incomplete in important
ways  and  details.  These  expansions  reflected  sign  elaborations  for  various  sub-
classes of Peirce’s more mature trichotomies, such as for the immediate and dynamic
objects previously discussed (c.f., 1904, CP 8.342-379).

A symmetrical and recursive beauty exists in these incomplete efforts, with suffi-
cient  methodology suggested to enable  informed speculations  as  to  where Peirce
may have been heading.59 60 61 62 Twenty-five years ago Nathan Houser opined that “...
a sound and detailed extension of Peirce’s analysis of signs to his full set of ten divi-
sions and sixty-six classes is perhaps the most pressing problem for Peircean semi-
oticians.”63 I somewhat agree, but applying the pragmatic maxim suggests it is not the
next priority. True, with much digging the archeology of Peirce’s intent at the time
may be discerned to some degree. However, Peirce himself would likely have re-con-
sidered and revised his views, as he was wont to do over time, especially in light of
massive changes in knowledge over the past century. Such is the nature of knowl-
edge, and how we dynamically respond to it. 

A significant portion of the Peircean community believes that signs and semiosis
are the central aspects underlying Peirce’s philosophy. Passages in Peirce’s writings
support this interpretation. However, I agree that Peirce’s ‘theory of categories,’ to
use Siosifa Ika’s phrase, is the better key to understanding Peirce’s metaphysical and
epistemological realism.64 Besides Ika’s well-reasoned thesis, I argue three additional
reasons to see the universal categories as the more fundamental driver. First, Peirce,
as we noted, conducted his thought in threes and tried to reason in threes. Second,
similar and compelling passages in Peirce (see throughout and in Appendix A) support
the primacy of the universal categories in contradistinction to signs. Third, the cate-
gories prescind1 both signs and logic, indicating their superordinate position.

Thus, in this book, we take a different path. Rather than engaging in the archeol-
ogy of Peirce’s intended sign schemas, I have chosen to try to fathom and plumb
Peirce’s mindset. His explication of the centrality and power of signs, his fierce belief
in logic and reality, and his commitment to  discovering the fundamental roots of
epistêmê, guide how to think about knowledge representation attuned to today. I be-
lieve Peirce’s triadomany,55 especially as expressed through the universal categories,
provides the illuminating light to this guidance.
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THE SITUATION

ince Adam Smith, a focus of economics has been its attempt to explain the ba-
sis of growth. This emphasis is not surprising since the birth of the field of eco -

nomics corresponded to  a historically unprecedented inflection point in economic
growth. Smith ascribed this growth to productivity resulting from the  division of
labor, using his famous example of the  pin factory. However, it is only within the
past fifty years or so that economists have begun unpacking growth from the other
factors of production.1 In this chapter, we talk specifically about the role of informa-
tion in growth, and how it may contribute further.

S

Growth is a percent increase from a prior state. Economic growth compounded
over a period has the virtuous reward of resulting in increased wealth. We measure
economic growth through such means as revenues (for the individual firm) or GDP
(for regions or countries). Net worth (for the firm or individuals) or GDP per capita
measure the wealth associated with the current stock of economic goods at any given
point in time. Such measures, while useful proxies, still  do not account for other
changes in comfort, convenience, freedom, choice, leisure, and mobility that may ac-
company growth and transcend the material. On the other hand, growth may also
create ‘externalities,’ some of which may be negative such as pollution or traffic con-
gestion.  Wealthier  societies  have tended to  regulate  against  such  harmful effects
over time. We should include all of these factors in the value equation. 

Throughout history, we have seen discontinuities in growth (and then wealth) for
individuals, families, firms, industries, cities, regions, and nations. Growth thus has
immense importance across the entire economic spectrum. This chapter makes the
argument that access to information — and impediments to that — are a significant
determinant of wealth and economic growth. Better knowledge representation using
computers is one means to improve the economic well-being of all peoples.

INFORMATION AND ECONOMIC WEALTH

If we toil, year by year, doing the same activity, like growing wheat, and we gain
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the same harvest for the same inputs of labor and land, we are not surprised. Some-
times, the weather or rainfall patterns may differ, or we may have more children
helping us in the fields, or a mule to help plow. Money helps us buy more of the es-
sential inputs, maybe more land, seed or mules, or the comfort to have more chil-
dren. These are the traditional factors of production: that is, land, capital, and labor.

If we add more of these factors to the mix, we still understand we have merely
tweaked the  regular basis of  our wheat production.  Differences in the amount of
these factors of production, throughout most of human history, are what accounted
for the differences between rich and poor, landlord and serf. If by having more land
or children, we are now able to feed more people, we are by definition more wealthy,
and if we can accumulate more of this wealth, we can leverage these standard factors
even more. Control and exploitation have been common paths to much wealth cre-
ation.

These factors are pretty easy to observe and track. We intuitively understand that
more inputs of labor, land or capital can result in growth, but one that feels and ap-
pears somewhat fixed based on the change in these inputs. This kind of growth has a
more-or-less trending return based on changes in these inputs. These types of inputs
may also be subject to diminishing returns, wherein adding more of a given factor re-
duces payoff. For example, adding more fertilizer to the wheat crop produces less per
unit  output  yield  after  some  optimum,  eventually  lowering yields  by  chemically
burning the crop.  Alternatively, while a computer increases the productivity of an
individual worker, giving her more computers may degrade her overall performance.

Historical Breakpoints

Still, a different kind of growth is not constrained to a fixed return based on in-
puts. Perhaps we have a neighbor who raises more wheat, possibly on drier, more
marginal land, or with less water or fertilizer. His yield exceeds our own. These dif-
ferences occur because our neighbor is doing something different and is producing
more given his inputs.

Many of us (now) older people can recall grandparents talking about their first
sight of a car or airplane. In my own life (born 1952) I can  remember the first in-
stance of color TVs,  electronic calculators,  personal computers,  the Internet,  and
smartphones. The fact is, the pace of development and technological change is now
so constant that its very existence seems unremarkable — part of the daily back-
ground noise. For 99.5% of human history, this has not always been so.2

In  our daily  lives  we are  bombarded by statistics:  quarterly  economic growth
rates, sports scores, weather precipitation likelihoods and daily temperatures, in a
constant and thus background stream of numeric immersion. It is interesting to note
that  statistics (originally derived from the concept of information about the  state)
only began in France in the 1700s. The first actual population census, as opposed to
enumerations in biblical times or the land and tax recordings of the Domesday Book
in England in 1086, occurred in Spain in that same century, with the United States
being the first country to set forth a decennial census beginning around 1790.3
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Because the state collected no data — indeed, the idea of data and statistics did
not exist — attempts in our modern times to re-create economic and population as-
sessments in earlier centuries are a heroic exercise, laden with estimation. Nonethe-
less,  the renowned economic historian  Angus Maddison and his  team,  written in
some definitive OECD studies, prepared economic and population growth estimates
for the world and various regions going back to AD 1.3 4

Through at least 1000 AD global economic growth per capita (as well as popula-
tion growth) was approximately flat.  Maddison estimated that a doubling of eco-
nomic well-being per capita only occurred every 3000 to 4000 years. A historical shift
occurred about 1000 AD when flat or negative growth began to accelerate slightly.5

The growth trend looks comparatively impressive in Figure 3-1, but growth over a pe-
riod of about 800 years to 1750 AD only totals 45%, a doubling of per capita wealth
that still requires 1000 to 2000 years.  These are annual growth rates about 30 times
lower than today, which, with compounding, prove anemic indeed over such long his-
torical periods.

By 1820 or so onward, this doubling accelerated at warp speed to every 50 years
or so, as shown in Figure 3-2. Historically flat income averages skyrocketed, as this fa-
mous figure showing global changes in per capita (person) GDP from Maddison illus-
trates.2 3 3
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William Nordhaus captured a similar discontinuity looking at the price of light,
normalized according to the labor effort needed to obtain 1000 lumens. His study,
too, shows an exponential decrease in the price of lighting beginning about 1800.6

More recent trends show an additional upward blip in growth shortly after the turn
of the 20th century, corresponding to electrification, but then a more massive dis-
continuity beginning after World War II, as next shown in Figure 3-3. Growth rates ac-
celerated to a doubling of wealth every 40 to 45 years. These comparatively abrupt
changes in growth rates and concomitant changes in wealth were more than two or-
ders of magnitude higher than what had been experienced before in human history,
and thus garnered the attention of economists and economic historians as never be-
fore. Something huge did happen in the early 1800s.

Since  their  occurrence,  many have  attributed  the  inflection  points  in  growth
rates of the 1820s and 1950s to ‘technological change,’ but the specific causes of this
change lack consensus. The prior era of the Enlightenment suggested some funda-
mental shift in thinking. Had a notable transition occurred in the mid-1400s to 1500s
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it would have been obvious to ascribe more modern economic growth trends with
the availability of the printing press. While the printing press had massive effects as
Elizabeth Eisenstein has shown,7 the empirical record of changes in economic growth
is not coincident with its adoption. The closer concurrence with the Industrial Revo-
lution lent credence to the adoption of machines, prime movers and the harnessing
of  energy  as  a  likely  explanation.  Cultural  and  religious  factors  have  also  been
posited to explain why Britain and then the United States were the original centers
of growth. Earlier, I noted the invisible hand of the market and division of labor and
specialization, as advocated by Adam Smith. Education, followed by literacy, and sup-
port for basic and applied research have their advocates. Financial and banking inno-
vations and the rule of law and patents and other intellectual property rights  are
other possible causes.

Common sense tells us that all of these factors, and perhaps more, can all work as
force multipliers to the traditional inputs to the economic function. However, I posit
one element reigned supreme in these trends — information.

The X Factor of Information

Joel    Mokyr   provides a sweeping and comprehensive account of the period from
1760 (what he calls the ‘Industrial Enlightenment’) through the Industrial Revolution
beginning roughly in 1820 and then continuing through the end of the 19th century.8
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Mokyr centers  his explanation for these growth changes on ‘useful  knowledge,’  a
phrase first coined by Simon Kuznets, as expanded upon by Michael Polanyi and oth-
ers.  Mokyr argues how propositional knowledge, the base of knowledge such as science,
combines with prescriptive knowledge, the ‘recipes’ for applying knowledge, with dis-
covery, to create the innovations that fueled the observed growth acceleration. 

One of Mokyr’s key points is that both kinds of knowledge reinforce one another,
with that time frame being a period of unprecedented growth in such knowledge.
Another point, easily overlooked since ‘discoveries’ are the most visible, is that tech-
niques and practical applications of knowledge provide a multiplier effect to knowledge
growth. Mokyr notes that the inventions of writing, paper, and printing not only sig-
nificantly reduced access costs but also materially affected human cognition, includ-
ing the way people thought about their environment. Mokyr notes but does not ade-
quately pursue, “In the decades after 1815, a veritable explosion of technical litera-
ture took place. Comprehensive technical compendia appeared in every industrial
field.” Statements such as these in his  outstanding book,  The Gifts of Athena, hint at
these fundamental drivers. 

The industrialization that proceeded apace in the Americas and Europe is the en-
gine that produced the wealth reflected in the earlier figures. However, from where
did  that  mechanization  and  know-how  come?  It  came from  innovations  and  im-
proved methods, for sure, but the more direct cause, I believe, was the broader dis -
semination of  information.  Our first  inflection point  in  the  1820s  roughly  corre-
sponds to the innovation of cheaper ‘pulp’ paper (and the genesis of ‘pulp’ fiction by
serialized writers like Dickens or Hugo);9 the second inflection point in the 1950s cor-
responds to the beginning use of the computer and digital information. Change was
everywhere, and many factors were at work. It is hard to deny that information and
greater access to it must surely have been central factors for increased innovation,
literacy, and social and political change.

Knowledge and Innovation

Until the mid-1950s, economists ascribed the sources of this notable growth to
‘technological change’ and other vague factors, often argued in anecdotal ways. Em-
pirical datasets were few and far between to test hypotheses, and quantitative means
of reasoning over economic problems were only beginning. Growth theory was be-
coming an economic discipline in its own right.

Joseph  Schumpeter,  in  The  Theory  of  Economic  Development,  first  published  in
1911,10 argued that innovation is central to economic growth and continuously dis-
rupts the general equilibrium of market exchange. Innovation gains the firm a tem-
porary monopoly status in which to charge higher rents, thereby providing an incen-
tive  for  further  innovation.  Schumpeter’s  emphasis  on  entrepreneurship and  his
popularization of ‘creative destruction’ recognized that new innovative market en-
trants might cause older firms to become obsolete. He tied these ideas into his basic
views on business cycles, also driven by technological change. Innovation was central
to Schumpeter’s economic worldview.
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The theoretical story begins in earnest after World War II when the concept of
total  factor  productivity came to the fore.  Robert  Solow is  an American economist
mainly known  for  his  work  on  the  theory  of  economic  growth;  we  name  the
exogenous growth model after his work.  Solow took courses from Schumpeter at
Harvard and was influenced by his views on innovation and technological change,
though Solow was also part of the generation of economists embracing the new disci-
pline of mathematical or quantitative economics, which was foreign to Schumpeter.11

Solow’s insight in two papers in 1956 and 1957, for which he won a Nobel prize, was
that  technological  change,  what  he  called  ‘technological  progress,’ must  be  the
‘residual’ left over from empirical growth once we remove the traditional inputs of
labor and capital.12 Total-factor productivity (TFP) is the ‘residual’ in total output not
credited to the traditional inputs of labor and capital.1 Solow calculated that 87.5% of
the  growth  in  US  output  per  worker  was  due  to  technical  progress.13 In  1954,
Solomon Fabricant similarly estimated the amount as 90%.14 But these were ‘lumpy’
measures;  factors  like  a  changing  composition  of  the  workforce (especially  the
growth of women and two-earner families) were also at play. 

Fritz Machlup’s seminal 1962 book, The Production and Distribution of Knowledge in
the United States, was the first to coin the terms ‘knowledge industry’ and ‘knowledge
worker’.’15 It noted that the knowledge industry generated 29 percent of the US GNP
in 1958.18 Marc Porat updated Machlup's efforts for 1967 using a different methodol-
ogy based on national income accounts, an approach that is less comprehensive than
Machlup’s, but which has the advantage of relying on standard data collection. This
effort,  The  Information  Economy,  authored  with  Michael  Rubin  in  1977,  was  also
adapted  as  the  methodology  for  cross-country  comparisons  by  the  OECD  in  the
1980s.24 Another influential paper of this era was by Kenneth Arrow in 1962, in which
he introduced the concept and evidence for what he called ‘learning by doing,’17 what
is now more formally understood and accepted as the learning curve. Unlike a spe-
cific innovation, the idea of the learning curve captured that experience and practice
led to efficiencies and productivity on their own as we master our tasks.

By the 1960s and 1970s, it was becoming clear that developed economies were be-
coming  information economies, increasingly staffed by  knowledge workers. These
forces needed explicit attention within quantitative economic models. Robert Lucas,
now a Nobel laureate from the University of Chicago, probed the questions of ratio-
nal expectations and internal factors promoting growth. By the mid-1980s, a group
of growth theorists had become increasingly dissatisfied with  standard accounts of
exogenous factors determining long-run growth. The focus shifted to the needs for
quantitative models that made these ‘technological’ or ‘information’ factors explicit.
In other words, these ‘X’ factors are not a lump, residual consideration as defined by
TFP, but are an internal one within the models with multipliers and feedbacks. In
short, these new growth factors needed an explicit and endogenous (internal) specifi-
cation in the model, not left as some exogenous (external) residual.

Arguably, the field of information economics began with David Lawrence’s book,
The Economic Value of Information, in 1999.18 A book by David Warsh in 2007, Knowledge

1 By definition, TFP cannot be measured directly.

51

http://en.wikipedia.org/wiki/Robert_Lucas,_Jr.
http://en.wikipedia.org/wiki/Knowledge_worker
http://en.wikipedia.org/wiki/Information_economy
http://en.wikipedia.org/wiki/Learning_curve
http://en.wikipedia.org/wiki/Learning_by_doing
http://en.wikipedia.org/wiki/Kenneth_Arrow
http://en.wikipedia.org/wiki/Exogenous_growth_model
http://en.wikipedia.org/wiki/Robert_Solow
http://en.wikipedia.org/wiki/Total_factor_productivity


A KNOWLEDGE REPRESENTATION PRACTIONARY

and the Wealth of Nations: A Story of Economic Discovery,19 is an explicit account of the
transition from TFP to an internal growth model.  The book focuses on Paul Romer,
then of Stanford University, a recent chief economist of the World Bank, but earlier a
colleague  of  Lucas,  pivoting  on  his  seminal  paper,  “Endogenous  Technological
Change.”20 By bringing the consideration internal to the model, it could be inspected
and broken into parts. The first Romer insight is that information and its artifacts
are also products and outputs of the economic function. Romer’s second insight is
that once produced, information or knowledge assets may be provided or distributed
at essentially zero marginal cost. Romer had added a new dimension  of ‘rival’ and
‘non-rival’ goods to the growth theory lexicon. Information and knowledge were be-
coming both inputs and outputs to the economic function. Romer’s papers provided
the concepts to analyze further the role of information in growth.

For example, between 2000 and 2005, estimates at the industry level indicate that
almost half of the aggregate productivity was due to productivity growth originating
from information technology,21 though the IT industries themselves only accounted
for a little over 3% of nominal aggregate value.22 Jorgenson, Ho, and Samuels22 explic-
itly separated out innovation from the diffusion of prior innovations due to informa-
tion. The study by Apte and Nath, mostly an update of the earlier analyses by Porat,
found that by 1997 two-thirds of the US economy was an information one.23

By 2009, Romer and Jones were able to claim proof for the endogenous growth
model, and they put forward six research questions to look for in the coming 25
years, including the role of human capital, differential growth rates between coun-
tries, and accelerated growth.24 Innovation and its grounding in knowledge had fi-
nally assumed its central,  internal role in economists’ understanding of economic
growth. What Schumpeter had referred to as ‘innovation’ is now understood as too
broad; innovation is but a part of the overall growth effect due to information. What
is helpful from these more recent studies is to separate out innovation from informa-
tion  dissemination.  The  next  step,  for  which  we  have  not  yet  developed  useful
datasets, would be to unpack the ideas of innovation and information into the cate-
gories from Mokyr,8 namely, propositional and prescriptive knowledge.

Innovation is an individual affair in its discovery, but a communal one in its appli-
cation, at which point we call it  knowledge.  We mimic innovations that produce real
differences. Farming innovations may include better ways of planting or spacing the
wheat, perhaps using a plow; selecting specific wheat strains for next year’s plant-
ings; irrigating the land; providing harnesses to the mules; or dividing and specializ-
ing the responsibilities between the children, Some of these innovations are new de-
vices, such as harnesses or plows. Some of these innovations are new practices, such
as tilling or irrigation methods or specializations in tasks or labor. Not every farmer
must innovate on his own. Copying and imitation diffuse these changes across farms
and workers.

Indeed, for millennia, this is how human progress took place. Some innovations,
such as fire, the wheel, iron and bronze, the arch, alphabets, the plow and the yoke
had material benefits to all who encountered them. These innovations were funda-
mental and diffused at the pace of human movement.  However, one could argue,
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each arose as a flash of insight and not from a process of systemic information. Fur -
ther, innovations tended to diffuse slowly,  following the pace and concentration of
trade routes. The innovative event was quite rare, and most practices had been sta-
ble for centuries. It is not at all surprising that early economic ideas tended to focus
on the traditional factors of production of land, labor, and capital. These had been
the steady constants for what had been flat growth for centuries.

If the nature of the biological organism is to contain within it genetic information
from which adaptations arise that it can pass to offspring via reproduction — an in-
formation volume that is inherently limited and only transmittable by single organ-
isms — then the nature of human cultural information is a massive breakpoint. With
the fixity and permanence of printing and cheap paper — and now cheap electrons —
all prior information across the entire species can be accumulated and passed on to
subsequent generations. Our storehouse of available information is thus growing ge-
ometrically, and accessible to all, factors that make the fitness of our species indeed a
shift from all prior biological beings, including early humans.

It is silly, of course, to point to single factors or offer simplistic slogans about why
this growth occurred and when. Indeed, the scientific revolution, industrial revolu-
tion, increase in literacy, electrification, printing press, Reformation, rise in democ-
racy, and many other plausible and worthy candidates have been brought forward to
explain these historical  inflections in accelerated growth. For my lights, I  believe
each of these factors had its role to play. Still, at the most fundamental level, I think
the drivers for this growth came from prior human information.  Undoubtedly, the
printing press helped to increase total volumes, but it was declining paper costs that
made information access affordable and (nearly) universal. 

Information, specifically non-biological information passed on through cultural
means, is what truly distinguishes us humans from other animals. We have been eas -
ily distracted looking at the tangible when it is the information artifacts (‘symbols’)
that  make  us  human.  So,  the  confluence  of  cheaper  machines  (steam  printing
presses)  with  cheaper  paper  (pulp)  brought  information  to  the  masses.  In  that
process, more people learned, more people shared, and more people could innovate.
Now, with computers and the Internet, we can also digitize and place nearly all of the
accumulated human knowledge into anyone’s hands. What will that bring?

UNTAPPED INFORMATION ASSETS

Today, in the advanced knowledge economy of the United States, the information
contained within documents represents about a third of total gross domestic prod-
uct. Some 25% of the annual trillions of dollars spent on document creation lends it -
self to actionable improvements.25 If we are to improve our management and use of
information, we need to understand how much value we routinely throw away.

Valuing Information as an Asset

For an enterprise, we can define intangible assets as private expenditures on as-
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sets that are intangible and necessary to the creation and sale of new or improved
products and processes, including designs, software, blueprints, ideas, documents,
know-how, artistic expressions, recipes, branding, and the like. Nakamura made one
of the first economy-wide investigations of intangible assets in 2000.29 He presented
direct and indirect empirical evidence that US private firms invested at least $1 tril-
lion annually in intangible assets in that year. This amount was nearly equal to the
amount spent on plant and equipment. Firms also held a capital stock of intangibles
with a market value of at least $5 trillion, representing a third of the amount of US
corporate assets. 

Another  group — Carol  Corrado,  Charles  Hulten,  and Daniel  Sichel,  known as
‘CHS’ across their many studies — also began systematically to evaluate the extent
and basis of intangible assets.26 They estimated that spending on long-lasting knowl-
edge capital — not just intangibles broadly — grew relative to other major compo-
nents of aggregate demand during the 1990s. CHS was the first to show that by the
turn of the millennium that fixed US investment in intangibles was at least as large
as business investment in traditional, tangible capital. Surveys of more than 5,000
companies in 25 countries confirmed these trends and showed that most of these as-
sets did not get reflected in financial statements. A large portion of this value was
due to ‘brands’ and other market intangibles.27 The total ‘undisclosed’ portion ap-
peared to equal or exceed total reported assets. In 2009 the National Academies in
the US reported on their investigation into policy questions related to intangible as-
sets,28 with much relevant information. The study contained an update by CHS con-
firming and extending their prior findings. In 2010 Nakamura also re-visited his ear-
lier analysis and found that intangible values had finally exceeded expenditures on
plant and equipment, with intangible investments now being on the order of 8% to
10% of GDP annually in the US.29

In  parallel,  these groups  and others  began to  decompose the intangible  asset
growth by country, sector, or asset type. The specific component of ‘information’ re-
ceived a great deal of attention. Apte, Karmarkar, and Nath, in particular, conducted
a couple of important studies during the 2000 decade.23 30 31 They found nearly two-
thirds of recent US GDP was due to information or knowledge industry contributions,
a percentage that had been growing over time.23 They found that a secondary sector
of information internal to firms constituted well over 40% of the information econ-
omy or some 28% of the entire economy. So the information activities that are inter-
nal to organizations represent a considerable part of the economy.

Today, intangibles now equal or exceed the value of tangible assets in advanced
economies. The methodological and conceptual issues of how to explicitly account
for information on a company’s books are, of course, matters best left to economists
and professional accountants. However, with the growing share of information  re-
lated to intangible assets, this is a matter of great importance to national policy. For
example, accounting for R&D efforts, one possible component of intangible assets, as
an asset versus a cost, has been estimated to add on the order of 11 percent to US na -
tional GDP estimates.28

The mere generation of information is not necessarily an asset. Some of the infor-
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mation has no value, and some indeed represent a net sunk cost. What we can say,
however, is that valuable information that is created by the enterprise but remains
unused or created anew means that what was an asset has now been turned into a
cost1 — sometimes a cost repeated many times over. Information that is used is an as-
set, intangible or not.  The value of this information depends on its nature and use.
We may value the information by cost (historical cost or what it cost to develop it),
market value (what others will pay for it), or utility (what is its present value as bene-
fits, broadly accounted for, accrue into the future). Traditionally the historical cost
method has been applied to information.  However, since information can both be
sold and still retained by the organization, it may have both market value and utility
value, with its total value being the sum or a portion thereof.2

Researchers estimated in the early 2000s that enterprises adequately use only five
to seven percent of existing information and the total value of information in enter-
prises is in the range of 10% to 33% of US GDP.25 23 Amongst all enterprise resources
and assets, information is the least understood and the least managed. Managers are
overlooking the value of their information.

More than a decade ago Moody and Walsh put forward a seminal paper on the
seven ‘laws’ of information.32 Unlike other assets, information has some unique char-
acteristics  that make understanding and valuing it  more difficult,  which leads to
lower perceived importance. I have taken some liberty with the Moody and Walsh
‘laws’ to reflect my experience:

1. Information is (infinitely) shareable, it is not necessarily a depletable resource
(though sharing may reduce proprietary advantage);

2. The benefit of information often increases with use, such as through the learn-
ing curve;3

3. The value of information increases with accuracy;

4. The value of information increases in combination;4

5. The value of information is situational and perishable, with varying shelf life;

6. More is not necessarily better; the question is one of relevancy; and

7. Information builds upon prior information, the combinations of which often
stimulate new insights.11 

1 That is because time and effort is required to generate unique information.

2 Of course, information can also have a multiplicative effect, especially in those areas Mokyr calls prescrip-
tive knowledge; but, that is not applicable to this specific point, since we are talking about re-use.

3 A corollary is that it is an asset only if it provides future economic value, another is that awareness of the 
information’s existence is an essential requirement in order to obtain this value, and a third corollary is 
that information requires an understanding of where it fits and how to take advantage of it.

4 Network effects are particularly important here; see discussion of the Viking algorithm in Chapter 10. 

11 This propagation results from summations, analysis, unique combinations and other ways that basic datum 
get recombined into new information. Thus, while the first law noted that information can not be con-
sumed (or depleted) by virtue of its use, we can also say that information tends to reproduce and expand it-
self via use and inspection.
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Lost Value in Information

Information — more specifically, knowledge management — has bedeviled enter-
prises for decades. As the prior section indicates, information has enormous impor-
tance to most organizations and the overall economy.  Why do these disheartening
statistics keep cropping up concerning information management?

 65% of data integration or KM projects ‘fail’;

 A typical organization only uses 5 to 7 percent of the information it already has
on hand;

 20% to 25% of a knowledge worker’s time is spent trying to find information;

 We waste 25% of all document creation costs; or

 IT now consumes 4% of all enterprise expenditures and employs 6% of enter-
prise workers. 

These are statistics I have encountered, or about which I have researched and writ-
ten.1 As rough figures or averages, they say nothing about what an individual enter-
prise or project may experience — there are, after all, good managers out there — but
they do provide a pretty fair metric for the typical experience.

About a decade ago I began a series of analyses looking at how we spend money
on preparing documents within US companies, and how much of that investment
was being wasted or not re-used.25 The total benefit from improved information ac-
cess and use to the U.S economy may be on the order of 8% of GDP. For the 1,000
largest U.S. firms, benefits from these improvements can approach nearly $250 mil-
lion annually per firm (2002 basis). About three-quarters of these benefits arise from
not re-creating the intellectual capital already invested in prior document creation.
About one-quarter of the benefits are due to reduced regulatory non-compliance or
paperwork,  or better  competitiveness  in  obtaining solicited grants  and contracts.
Finding and re-using information for compliance purposes as well as avoiding dupli-
cate content creation are areas amenable to waste reductions. Note that new initia-
tives, as discussed in the next Chapter 4, are not included in this analysis.

This overall value of document use and creation is in line with the analyses of in-
tangible and information assets noted above, and which arose from entirely different
analytical bases and data. This triangulation brings some confidence that the esti-
mates are approximately accurate. In any case, the potential benefits to the better
use of existing information assets likely exceed what most managers currently be-
lieve, otherwise we would see better performance trends.

IT departments seem to have particular difficulty with information and knowl-
edge management projects. Transaction and relational data systems require a differ-
ent set of skills and viewpoint than for information sharing and the open nature of
knowledge.1 Relational database systems, which embody a closed-world design, work
well for environments where the information domain is known and bounded, but do

1 See Chapter 8.
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not work well with knowledge and changing information. Moreover, the schema that
governs closed-world designs  is brittle and hard to  improve and manage. It is this
fact that has often led to IT delays and frustrations. Re-architecting or adding new
schema views to an existing closed-world system, as knowledge systems demand, can
be fiendishly difficult. Here are some other areas of frustration with IT regarding in-
formation and knowledge management:

IT Problems for KM Comments

Inflexible Reports

 reports are rarely ‘self-service’ 
 new requests need to be placed in a queue 
 90% of stored report templates are never used 
 unlimited ‘slicing and dicing’ not available 

Inflexible Analysis

 the analysis is rarely ‘self-service’ 
 new requests need to be placed in a queue 
 many requests not accepted due to schema rigidities, cascading 

changes needed 
 analysis options are ‘pre-canned,’ inflexible 

Schema Bottlenecks

 brittleness of relational data model and typical star schema 
 crossing across schema or databases difficult 
 load and re-indexing cycles can limit access, impose expensive 

back-end requirements 
 cannot (often) accommodate new data, structures 

ETL Bottlenecks

 getting data into the system needs to be placed in queue 
 new external data requires extract, transform and load (ETL) rou-

tines to be written 
 schedule and update cycles can be a mismatch to access needs 

Reliance on 
Intermediaries

 all problems above work through intermediaries 
 there is a disconnect between those with need and decision-mak-

ers and those who implement the solutions 
 inherent issues in communicating requirements to implementers 
 related time delays to implementation exacerbate the communica-

tion of requirements 

Specialized Expertise 
Required

 expertise and skill sets needed to implement solutions different 
from those of the knowledge consumer 

 inherent issues in communicating requirements to implementers 
 high costs for attracting necessary expertise 
 expertise is inherently an overhead function 

Slow Response Time

 all problems above lead to delays, slow response 
 timely communications, analysis, decisions suffer 
 delays mean knowledge management is not an active ‘contact 

sport,’ becomes mired and unresponsive 
 some needs are just not requested because of these problems 
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IT Problems for KM Comments

Dependence on External 
Apps

 new apps need to be identified, procured 
 design and configuration of apps requires external expertise, pro-

gramming skills 
 multiple sourcing of apps leads to frequent incompatibilities, high 

costs for integration, poor interoperability 

Unmet Needs

 many KM needs are not requested 
 by the time responses are forthcoming, needs and imperatives 

have moved on 
 communications, analysis, and decisions become hassles 
 the ‘contact sport’ of active discovery and learning is unmet

High Opportunity Costs

 many KM insights are not discovered 
 delays and frustration adds to costs, friction, inefficiencies 
 no way to know the opportunity costs of what is not learned — 

but, surely is high 

High Failure Rates
 the net impact of all of the problems above is to lead to high fail-

ure rates (~60% to 70%) and unacceptable costs 
 reliance on IT for KM has generally failed 

Table 3-1: Enterprise IT Weaknesses in Relation to KM

The problems raised in Table 3-1 show that losses in information and its poor or-
ganization and handling lead to a decline in business value. Removing unnecessary
mediation roles by IT and placing the knowledge management function directly into
the hands of the knowledge worker presents a huge opportunity to recapture that
lost value. Much of what I discuss throughout the remainder of this book is geared
directly to this aim.

The Information Enterprise

One can probably clock the start of enterprise information technology (IT) to the
first use of mainframe computers in the early 1950s, or nearly seventy years ago.33

The earliest mainframes were  massive and expensive machines that required their
own specially air-conditioned rooms because of the heat they generated. The first
use of ‘information technology’ as a term occurred in a Harvard Business Review ar-
ticle from 1958.34 Architectures progressed from mainframes to minis and then per-
sonal computers with networks, leading to today’s dominance of the Internet. Rela-
tional database designs won out for the enterprise in the 1970s and 80s, continuing
into today’s dominance, but with the recent adoption of graph and NoSQL datastores.

The apogee for enterprise software and apps occurred in the 1990s. Whole classes
of new applications (most denoted by three-letter acronyms) such as enterprise re-
source planning (ERP), business intelligence (BI), customer relationship management
(CRM), enterprise information systems (EIS) and the like came to the fore. These sys-
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tems also began as proprietary software, which resulted in the ‘stovepiping’ or creat-
ing of  information silos. In reaction and with market acceptance, vendors such as
SAP arose to provide comprehensive, enterprise-wide solutions, though often at high
cost, with disappointing results not uncommon. Software revenues as a percent of IT
vendor revenues peaked in about the mid-1990s. The plateau for IT expenditures as a
portion of GDP appears to have occurred somewhat around 2000.

More significantly, the 1990s also saw the innovation of the World Wide Web with
its basis in  hypertext links on the  Internet. Greatly facilitated by the  Mosaic Web
browser,  the  basis  of  the  Netscape  browser (ultimately Firefox),  and  the  HTML
markup language and HTTP transport protocol, millions began experiencing the ben-
efit of creating Web pages and interconnecting. By the mid-1990s, enterprises were
on the Web in force, bringing with them larger content volumes, dynamic databases,
and enterprise portals. The ability for anyone to become a publisher led to a focus
and attention on the new medium that led to still further innovations in e-commerce
and online advertising, creating entirely new categories of business. New languages
and uses of Web pages and applications emerged, creating a convergence of design,
media, content, and interactivity. Venture capital and new startups with valuations
independent of revenues led to a frenzy of hype and eventually the dot  -  com crash   of
2000. The growth companies of the past 15 years have not had the traditional focus
on enterprises but the use and development of the Web. From search (Google) to so-
cial interactions (Facebook and Twitter) to media and video (Flickr, YouTube) and in-
formation (Wikipedia), the engines of growth have shifted away from the enterprise.

Meanwhile, the challenges of data integration and interoperability that were such
a keen focus going back to initial enterprise computerization remain. Now, however,
these challenges are even higher, as we see images, documents (unstructured data)
and Web pages, markup and metadata (semi-structured data) become first-class in-
formation citizens. What was a challenge in integrating structured data in the 1980s
and 1990s via  data warehousing, remains daunting for the enterprise today in the
face of unprecendented scale and scope. Services have drifted to the largest IT ven-
dors, and open source is now a primary source of innovation and challenge. We have
climbed the data federation pyramid sufficient to overcome most obstacles of hard-
ware, protocols, and data formats, but are stuck at the levels of semantics and trust
(provenance).

Roughly in 1997 or so, the number of public enterprise software vendors peaked
as did venture funding.35 There was an uptick in preparing for Y2K and a significant
downtick due to the  dot-com bubble, and then later the financial crisis.  However,
change is coming about from the shift of expenditures from license and maintenance
fees to services.  Some software vendors began to see revenues from services over-
come that from licensing in the 1990s. By the early 2000s, this was true for the enter-
prise software sector as a whole.35 Today, service revenues account for 70% or so of
aggregate sector revenues. Combined with the emergence of open source and other
alternatives such as software as a service (SaaS) and cloud computing in general, I
think it fair to say that the era of proprietary software with exceedingly high mar-
gins from monopoly rents has come to an end.36 According to Gartner, in the US,
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more than 70% of IT expenditures are devoted to running existing systems, with only
about 11% of budgets dedicated to innovation. This relative lack of support for inno-
vation and high percentages for running existing systems has held true for a decade.
Meanwhile, IT’s contribution to US productivity has been declining since 2001.37

Arguably  the  emphasis  on  consumer  and  Internet  technologies  means  that  is
where the best developers gravitate. Developing apps for smartphones or working at
one of the cool Internet companies or joining a passionate community of open source
developers are now attracting the best developers. Open source and Web-based sys-
tems also lead to faster development cycles. The very best developers are often the
founders  of  the  next  generation  startups  and  Web  and  software  companies,  as
startup costs plunge.38

The shift in innovation away from the enterprise has been structural, not cyclical.
That means that very fundamental forces are at work to cause this change in innova-
tion focus. Every knowledge-oriented organization must learn to support and nur-
ture  its  information  enterprise.  These  structural  shifts  need  to  affect  priorities,
mindsets, budgets, and staffing. In an environment of cost pressures and the need for
quantifiable results, we need to make pragmatic choices, Peirce’s dominant message.
The rest of this book, in part, talks about machine learning and various other aspects
of artificial intelligence. These are all exciting topics, the shiny new thing. Still, the
pragmatic  viewpoint insists  that in the process  of making expenditures  for these
purposes, that we should include in our design more fundamental and, perhaps, use-
ful applications in information sharing and knowledge management. We will try to
weave this practical viewpoint through our narrative as well.

IMPEDIMENTS TO INFORMATION SHARING

Our survey of the current situation suggests a few things. Better use of informa-
tion will be a significant factor in future economic growth. Growth is vital to wealth
creation. Leveraging our existing information assets through re-use and connections
is one immediate source of growth, with surprisingly large upsides. Innovations us-
ing artificial  intelligence will  continue the virtuous cycle to help support  healthy
growth. Individuals and enterprises need to grasp the challenge of knowledge man-
agement and need to place those functions into the hands of the knowledge worker.
In an information-driven economy, education and access to information and knowl-
edge management resources are essential foundations. 

Cultural Factors

Since the widespread adoption of the Internet, which marked a passage beyond
hardware, protocols, and formats as limits to interoperate data, the  main impedi-
ments to information sharing have become cultural. Awareness of the importance of
information as an asset has been lacking. Knowing how to interoperate across infor-
mation stores is not a sought skill. Rewards are geared to information hoarding and
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gatekeeping over openness and sharing, which are rarely a formal part of perfor-
mance evaluations. A lack of enlightened understanding about the importance of in-
formation leads to a lack of vision and an absence of a knowledge strategy. Since
many bosses don’t know what to do, they make second-rate decisions about informa-
tion and knowledge assets. Budget and operational fiefdoms continue a climate that
guarantees inefficiencies, with a high opportunity cost, in how to manage informa-
tion and knowledge. This book tries to provide a consistent viewpoint and logic for
why information sharing is so important to enterprises. A change in  perspective is
required to unleash new growth, one that focuses on management and mindset. 

The fact that an overlay of semantic technologies is required, as I discuss in Chap-
ter 5, is good news from a cultural standpoint. A critical aspect of shared knowledge
schema within an enterprise is the need for relevant stakeholders to have a role in
bounding and defining the terminology of the domain. The first dictum of effective
messages and reasoning is to communicate with a shared grammar and semantics.
The  absolute  wrong  strategy  is  to  try  to  find  or  impose  ‘official’  terminologies.
Rather, we need to capture language as we use it daily in our tasks and find ways to
relate these uses to a shared knowledge graph. Relevant stakeholders need to inter-
act to document current terms and tasks, using the language of their daily work.
With sufficient top management commitment, not often easy, such first steps can
help set a new cultural tone for sharing. Given the potential incremental nature of
deploying  semantic  technologies,  early  efforts  should  focus  on  prototypes at  the
level  of  workgroups or  departments.  The  open  nature  of  semantic  technologies
means we can readily expand the vocabularies and relate them to what already exists
as we bring new stakeholders into the process. One can start small and grow as re-
sults become evident. I have called this the ‘pay as you benefit’ strategy.1

No fundamental technical roadblocks are preventing any enterprise from moving
to  a  vision  of  shared  information,  providing  useful  knowledge  support.  Despite
decades  of  trying,  enterprises  have  still  not  broken  down their  data  stovepipes.
Rather, they continue to proliferate. In the process, the enterprise has failed to un-
lock 80% of its information value in documents (unstructured data) and has continu-
ously wasted money in unneeded duplication and lost opportunities.

Tooling and Technology

 The semantic technologies recommended in this book are open standards with
years of implementation experience; still, their state of tooling is weak. Knowledge
graph (ontology) editors and development environments exist, but all of the create,
edit, manage, update, delete, map, and validate tools could be improved. Each opera-
tion would benefit from being streamlined from the standpoint of the user, starting
with subject  matter  experts  (SMEs).  Rather  than comprehensive  IDEs  (integrated
development environments), many of these functions are better separated out as op-
tions embedded within current  workflows. Such a function, say, might be to add a
new synonym for a concept in the knowledge base when encountered in a relevant

1 See Chapter 13.
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document. Many individual functions would benefit from being split apart and incor-
porated in a distributed way across multiple steps in information handling, from cre-
ating to using, validating, updating, or archiving.

Another weak area is in user permissions and authorizations. Optimally, a single
sign-on should be sufficient to grant access or not to various datasets, records, and
applications. Methods and protocols exist, mostly IP-based, with some working in-
stallations  from which to  draw  lessons,  but  more  robust  and  secure  options  are
needed, likely using third-party applications. When relying on Internet protocols, we
need to manage unauthorized access and hacking. 

Perspectives and Priorities

 I think it is fair to say, in general, that we do not have a broad and informed view
on the value of information. We do not know what information we have and can not
find it, and we waste much time looking for it. We misallocate resources for generat-
ing, capturing and storing information because we do not understand its value and
potential and don’t know what we already have. We do not manage the use of infor-
mation or its re-use. We do a lousy job of using information to bridge communication
differences across our stakeholders. We inadequately leverage what information we
have and often miss valuable insights. What we have we do not connect. We do not
know how to turn our information into knowledge.

Fundamentally, because we do not understand information in our bones as cen-
tral to the well-being of our enterprises, we continue to view the generation of infor-
mation as a ‘cost’ and not an ‘asset.’ Perhaps, akin to the perspective of Thirdness in
Peirce’s universal categories, which we discuss in  Chapter 6,  we need to bring new
perspectives to our understanding and appreciation of information.

Peirce defended and is known as a realist. Within that realism and subject to his
pragmatism, I believe he can also be called an idealist. Real and practical ways exist
to  achieve  meaningful  visions  of  information  sharing,  which  can  release  hidden
value within any information enterprise. This foundation can then be extended with
knowledge bases and artificial intelligence to mine further still the value contained
in that information.
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harles S. Peirce, the intellectual founder of  pragmatism, a uniquely American
contribution to philosophy, advocated we obtain knowledge by balancing re-

search effort with a likelihood of results. To do so, we should first consider all of the
‘practical effects’ posed by alternatives. We select what deserves more detailed atten-
tion using a mode of logical inference he called abduction. Wherever we have doubt,
we should be open to and pursue the path of  inquiry to unveil  further potential
‘practical effects,’ enhancing our knowledge. In this way, we continually modify what
we believe about the world, and therefore how we act within it.

C

Today, we have the ability and information to query nearly the entire storehouse
of  accumulated  human knowledge.  By combining  general  knowledge  storehouses
with representations of our organizations and domains, we have paths of inquiry
leveraging computers and machine learning to test what we think we know, and to
discover previously hidden anomalies or falsities to propel our knowledge further. As
we have seen with earlier breakpoints in humanity’s abilities to share and process in-
formation, this quest for new truth will bring significant financial benefit across the
full spectrum of economic actors, from individuals and small groups to enterprises
and governments.1 

In this chapter, I discuss these opportunities under three broad tents. The first
tent, more of a foundation, embraces general applications in  knowledge management
(KM). This broad tent may not be the motivating interest, but it does reside on the
path to other capabilities, and it addresses important needs in their own right. The
second tent, more of a process, are the approaches and applications that enable data
interoperability. The techniques of data interoperability are essential for ingesting rel-
evant information leading to knowledge and for unleashing the value of existing in-
formation assets across the organization. The third tent, more an expression of po-
tential, is knowledge-based artificial intelligence. Via KBAI we can cost-effectively create
labeled training sets (supervised learning) and training corpora (unsupervised) for
machine learning to support a variety of tasks from entity and relation recognition
and extraction to categorization, natural language understanding, sentiment analy-
sis, and much more. Like the lizard eating its tail, we can also apply KBAI to our ini -
tial knowledge bases and knowledge graphs that drive these applications, producing
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a virtuous cycle of knowledge expansions and better learning accuracy.

KM AND A SPECTRUM OF APPLICATIONS

Many of the problems of wasted information assets and lack of connections, some
described in the prior chapter, and most with real economic costs, can be ascribed to
a failure of knowledge management. KM is the practice of creating, sharing, finding, an-
notating, connecting, and extending information and knowledge for a given domain.2

The practice includes applications and management platforms; shared workflows,
vocabularies, and organizational schema; training and best practices; and roles for
practitioners. The practice is managed and possibly encouraged by rewards and in-
centives. Software is an  essential component  of knowledge management, but woe-
fully inadequate alone to accomplish it.

Some Premises

The nature of knowledge helps set some parameters for what a knowledge man-
agement system should encompass. First, knowledge is ‘open’ and needs an architec-
ture and design that embraces this openness. This consideration has logical and epis-
temic importance that gets further treatment in Chapter 9. Second, knowledge is ulti-
mately a community reality, since knowledge is what we believe and upon which we
act. Because our means of communicating within the community is via symbols, we
need methods for defining, clarifying, and reconciling the meanings of those sym-
bols, such that we are effectively communicating within the community. This imper-
ative means that we should look to semantic technologies as our representation and
messaging frameworks;  Chapter  5 covers this topic. Moreover, third, we need to de-
sign our knowledge management systems to get maximum pragmatic leverage from
what already exists and what we can support with such a system. We need to design
our systems for knowledge uses, with management a contributing component to that.

Potential Applications

KM includes such applications as  business intelligence,  data warehousing,  data
integration and  federation,  enterprise  information  integration and  management,
competitive intelligence, workflow systems, knowledge representation, and so forth.
Information  management is  a  bit  broader  category  and  adds  such  functions  as
document management,  data management,  enterprise content management, enter-
prise or controlled vocabularies, systems analysis,  information standards and infor-
mation assets management to the functions of KM. Knowledge management also im-
portantly includes pruning (deleting) dated, inaccurate, or otherwise wasteful infor-
mation. An absolute essential for an effective KM system is bridging vocabulary, con-
cept, and representation differences.

These are all important and legitimate knowledge management functions, but we
often pursue them in isolation or under different databases, vocabularies, or concep-

66

http://en.wikipedia.org/wiki/Documentation_Standards
http://en.wikipedia.org/wiki/Systems_analysis
http://en.wikipedia.org/wiki/Controlled_vocabulary
http://en.wikipedia.org/wiki/Enterprise_content_management
http://en.wikipedia.org/wiki/Data_management
http://en.wikipedia.org/wiki/Document_management
http://en.wikipedia.org/wiki/Information_management
http://en.wikipedia.org/wiki/Knowledge_representation
https://en.wikipedia.org/wiki/Workflow_management_system
http://en.wikipedia.org/wiki/Competitive_intelligence
http://en.wikipedia.org/wiki/Enterprise_information_management
http://en.wikipedia.org/wiki/Enterprise_Information_Integration
http://en.wikipedia.org/wiki/Federated_database_system
http://en.wikipedia.org/wiki/Data_integration
http://en.wikipedia.org/wiki/Data_integration
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Business_intelligence


THE OPPORTUNITY

tual approaches. In point, one could reasonably argue that much of the challenge
that has faced KM has been a lack of coherence or a shared conceptual grounding to
the efforts. The decades-long literature into KM supports such a view of fragmenta-
tion.

A broadly useful KM framework should support a minimum of four application ar-
eas:

 First, some form of governing conceptual and terminological schema is required
by which to reference and ground disparate information sources. In KM systems
based on semantic technologies, this schema takes the form of a knowledge graph
(or ontology);

 Second, given that on average about 80% of an organization’s information base
resides in documents,  natural language processing should be an integral part of
the mix. NLP uses computers to extract meaningful information from natural
language input or produce natural language output. NLP is one method for as-
signing structured data characterizations to text content; without NLP, all such
assignments are manual, which does not scale;3 

 Third, as part of these NLP capabilities, we need various extractors. Entity recog-
nition, the means for identifying specific entities in text, is the first among equals
here. Concept and relation extractors may supplement that.  Extraction meth-
ods involve parsing and tokenization, and then generally the application of
one or more information extraction techniques or algorithms;

 Fourth, tagging is a needed adjunct to extraction. The tag is a keyword or term
we assign to a piece of information (e.g., a picture, article, portion of text, or
video clip). Tags describe the item and enable keyword-based classification
of the information.1 The resulting representation is a form of semi-structured
data. Like extractors, we may use tags  for entities, concepts, attributes, or
relations. When a knowledge graph is employed, we recommend  ontology-
based information extraction (OBIE), which is the use of an ontology to inform
this tagging process.

These are the essential functions required to ‘ingest’ new content and provide
a shared vocabulary via the schema for placing content onto a common footing.
This shared representation is the basis for a series of specific KM format conver-
sions from multiple external sources, and in functions such as search, retrieval,
analysis, and visualization. As we add multiple input sources to the system, we
assign  metadata by source (such as title,  provenance, workflow dates,  formats,
and such) to the content, providing still additional means for searching, filtering,
and aggregating the content.

If the KM system is also a precursor to more knowledge- and intelligence-ori-
ented tasks, we advise including reasoners and mappers. Reasoning is one of many

1 Tagged information is one of the main sources of semi-structured data; see Chapter 5.
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logical tests using inference rules as commonly specified using an ontology language,
and often a description logic. Many reasoners use first-order predicate logic to per-
form  reasoning.  Inference  commonly  proceeds  by  forward  chaining or  backward
chaining (see Chapter 8).  Mapping connects objects in two different sources to one
another, using a specific  property to define the relation. A linkage is a subset of
possible mappings where the connections may be traced and followed. Mappings
are the means by which we bring in multiple information sources leading to a
federation of sources, so that we may use, analyze, or reason over all of them. It
is the central task of data federation. Pairwise mappings result in a combinatorial
explosion of connections as the number of sources increases. A hub-and-spoke
design is the only practical architecture to overcome this problem since it scales
linearly, with a reference set of concepts, such as KBpedia, providing the hub. 

A Minimal Scaffolding

We could stop with this initial configuration and  merely deploy the knowledge
management system for generic KM tasks. This basis, the minimal scaffolding, is suf-
ficient to address the lost opportunities and waste described in the prior chapter.
However, we have our sights set higher than recovering lost opportunities.

The general development path this book recommends is to first address these lost
opportunities, perhaps on a small or departmental basis (see ‘pay as you benefit’ in
Chapter 13). As we gain confidence and climb the learning curve, it is then appropri-
ate to bridge out to encompass more departments and to begin deploying machine
learning to develop bespoke extractors and classifiers, tuned for the relevant nature
of your growing knowledge base. 

We introduce the role of KBpedia here as a lead-in to later chapters. KBpedia is an
open source knowledge graph with maps to leading knowledge bases. Parts III and IV
cover design and deployment topics in detail. Appendix B is a broad overview of KBpe-
dia. Appendix C discusses the features available in KBpedia for machine learning.

DATA INTEROPERABILITY

Data    integration   is  the bringing together of data from heterogeneous and often
physically distributed data sources into a single, coherent view. Sometimes this is the
result  of  searching  across  multiple  sources,  in  which  case  it  is  called  federated
search. However, it is not limited to search. Data integration is a crucial concept in
business  intelligence and  data  warehousing and  a  driver  behind  master  data
management (MDM). Data integration first became a research emphasis within the
biology and computer science communities in the 1980s.4 5 At that time, extreme di-
versity in physical hardware, operating systems, databases, software, and immature
networking protocols hampered the sharing of data. Data interoperability extends be-
yond integration to add unified views for analysis and reasoning across its sources.

By its nature, data integration means that we combine data across two or more
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datasets.  Such integration brings to  light the myriad aspects  of semantic  hetero-
geneities, precisely the kinds of issues why we use semantic technologies. However,
resolving semantic differences, which we probe in detail in Chapter 5,  cannot be ful-
filled by semantic technologies alone. While semantics can address the basis of dif-
ferences in meaning and context, resolution of those differences or deciding between
differing interpretations (that is, ambiguity) also requires many of the tools of artifi-
cial intelligence or natural language processing (NLP). By decomposing this content
into its various sources of semantic heterogeneities — as well as the work required to
provide for such functions as search, disambiguation, mapping, and transformations
— we can begin to understand how all of these components can work together to
help achieve data interoperability. 

The Data Federation Pyramid

It is easy to forget just how far data federation has progressed in the last four or
five  decades.  Before the introduction of  the  IBM personal  computer in  1981,  the
hardware  landscape  was  diverse  and  fragmented.  There  were  mainframes  from
weird 36-bit Data General systems to DEC PDP minicomputers to the PCs themselves.
Even on PCs, there were multiple operating systems, and many then claimed that CP/
M was ascendant, let alone the upstart MS-DOS or the gorilla threat of IBM’s OS/2 (in
development). Hardware differences were manifest, and operating systems were di-
verse; nothing worked with anything else. 

‘Data federation’ at that time needed to first look at issues at the iron or silicon or
OS  level.  Those  problems  were  pretty  daunting,  though  the  clever  folks  behind
Ethernet and Novell with PCs were about to show one route around the traffic jam.
Client-server and all of the ‘N-tier’ networking speak soon followed. It was an era of
progress, but still, one of costly and proprietary answers to get devices to talk to one
another.  That is  where  the Internet,  specifically  the Web protocols  of  HTTP and
HTML and the  Mozilla (then commercially Netscape) browser came in. Within five
years (actually less) from 1994, the Internet took off like a rocket, doubling in size ev-
ery 3-6 months.

In the early years of trying to find standards and conventions for representing
semi-structured data (though not yet called that), the primary emphasis was on data
representation and transfer protocols. In the financial realm, one standard dating
from the late 1970s was electronic data interchange (EDI). In information and library
science, the MARC communications format for sharing catalog metadata arose in the
1960s and remains well-used in many countries today. In science, there were tens of
exchange formats proposed with varying degrees of acceptance. Notable examples
are  the abstract  syntax  notation  (ASN.1),  TeX (a  typesetting  system  created  by
Donald Knuth and its variants such as  LaTeX), hierarchical data format (HDF),  CDF
(common  data  format),  and  the  like,  as  well  as  commercial  formats  such  as
Post  S  cript  , PDF (portable document format), and RTF (rich text format). One of these
formats was the ‘standard generalized markup language’ (SGML), first published in
1986. SGML was flexible enough to represent either formatting or data exchange.
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However, with its flexibility came complexity. Only when its two simpler progeny
arose, namely  HTML (HyperText Markup Language) for describing Web pages and,
later,  XML (eXtensible  Markup  Language)  for  data  exchange,  did  variants  of  the
SGML form emerge as widely used common standards. JSON has also now joined this
group as a leading data representation. The Internet and its  TCP/IP and Web HTTP
protocols and XML standards, in particular, have been major contributors to over-
coming respective physical and syntactical and data exchange heterogeneities. 

I illustrate this historical progression over the decades, from the bottom up, using
the data federation pyramid in Figure 4-1. Current progress and adoption place us, to-
day, with a stack that has boundaries at the data (and knowledge) representation, se-
mantics, and pragmatics layers in the Figure 4-1 pyramid. We show only a part of the
progress in Web standards. The TCP/IP and HTTP protocols were essential to over-
come the network bottlenecks; we show OWL and RDF due to their importance to our
story and their role in addressing semantics issues. We can not integrate information
as knowledge until we overcome the semantic challenges. Pragmatics covers under-
standing the kinds of practical needs and implications resulting from our integration
of information. Trust refers to the ability to identify and track the provenance of our
information to judge whether we use and integrate it or not. These upper layers of
the stack are some of the unresolved issues we attend to over the rest of this book.

Benefits from Interoperability

Data interoperability should be one of the  chief emphases of a knowledge man-
agement initiative because of these challenges, many of which have  remained un-
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solved for decades: 

 80% of all available information is in text or documents (unstructured); 

 40% of standard IT project expenses are devoted to data integration in one form
or another, due to the manual effort needed for data migration and mapping; 

 Information volumes are now doubling in fewer than two years;

 Current information resides in individual stores, stovepiped from one another,
with few or no connections to external knowledge sources; 

 Other trends including smartphones and sensors are further accelerating infor-
mation growth; and 

 Effective business intelligence requires the use of quality, integrated data. 

The problem is creating a focus and then beginning to implement a data interoper-
ability initiative. We know it promises to deliver some key, measurable benefits: 

 Efficiency — trillions of dollars are spent each year globally in the research, cre-
ation, re-use, publishing, storing and browsing of information.  Relevant infor-
mation is hard to find, and sometimes we overlook useful but obscure informa-
tion. The lack of reuse of prior good content because it is not discoverable is un-
conscionable given today’s technologies; 

 Cost — missed information or lack of awareness of relevant information leads to
increased time, increased direct costs (labor and material), and increased indi-
rect costs to re-create it. Awareness, understanding, and re-use of existing in-
formation would save millions or more for large firms annually if we could over-
come these interoperability gaps; 

 Insight — drawing connections between previously unconnected things and en-
abling discovery are essential inputs to innovation, itself the overall driver of
productivity (and, therefore, wealth) gains. The reinforcing leverage of interop-
erability resides in its ability to bring new understandings and insights; and 

 Capture —  we benefit by capturing the many  fields, data streams, APIs, map-
pings,  DBs,  datasets,  Web content,  on-the-fly  discoveries,  and device sensors
available through the connectedness of the Web and the Internet of things (IoT).

For decades, the vision of data interoperability has mostly remained unfulfilled.
Though significant progress has occurred in climbing the data federation pyramid,
only when one is at the very topmost layers can we achieve actual data interoperabil-
ity. The semantics are an absolute threshold. A few practitioners and a few  exem-
plary organizations have demonstrated the worth of semantic technologies to lever-
age this next step. Doing so adheres to Peirce’s pragmatic maxim, the understanding
of a topic or object by an apprehension of all of the practical consequences poten-
tially arising from it.

Adopting knowledge graphs is a prerequisite for applying semantic technologies
to the fullest. Once adopted with the graph mindset embraced, it is then straightfor-
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ward to extend the scope of the graphs a bit to encompass labels for user interfaces
and calls to small, external Web applications. We discuss these so-called administra-
tive ontologies in  Chapter 11. These practical techniques cost little to implement and
can be a useful adjunct to standard knowledge maintenance. 

Material progress on the data interoperability challenge will bring us one step
closer to self-service information management. The benefits and flexibilities from
doing so will extend from creating data and content to publishing and deploying it.
The fact that any source — internal or external — or format — unstructured, semi-
structured and structured — can be brought together with semantic technologies is a
qualitative boost over existing KM approaches. Further, since we represent all infor-
mation via simple text formats, we can readily manipulate and manage that informa-
tion with easy to understand tools and applications. Reliance on open standards and
languages by semantic technologies also leads to greater use and availability of open
source systems. In short, self-service information management could be one of the
great benefits from interoperability. These are the kinds of opportunities that will
enable knowledge management to fulfill its vision.

A Design for Interoperating

Ultimately, since we express all of our content and information with human lan-
guage, we need to start there to understand the first sources of semantic differences.
Like the differences in human language, we also have differences in worldviews and
experience. These differences are often conceptual and reveal distinctions in real-
world perspectives  and experiences. From there,  we encounter differences in our
specific realms of expertise or concern, or the  relevant domain(s) for our informa-
tion and knowledge. Then, as we probe details, we give our observations and charac-
terizations data and values to specify and quantify our observations.  The attributes
of these data are subject to the same semantic vagaries as concepts. Attributes also
pose challenges in how we measure and express units.

The current challenge is to resolve differences in meaning, or semantics, between
disparate data sources. Your ‘glad’ may be someone else’s ‘happy’ and you may orga-
nize the world into countries while others organize by regions or cultures. From the
conceptual to actual data, then, we see differences in perspective, vocabularies, mea-
sures, and conventions. Only by systematically understanding these sources of het-
erogeneity — and then explicitly addressing them — can we begin to try to put differ-
ent information on a common footing. Only by reconciling these differences can we
begin to get data to interoperate. Some of these differences and heterogeneities are
intrinsic to the nature of the data at hand. Some of these heterogeneities also arise
from the basis and connections asserted between datasets, as misuse of the  sameAs
predicate showed in early linked data applications. Fortunately, in many areas, we
are transitioning due to technological progress to overcome many of these sources of
semantic heterogeneity. Semantic  Web approaches where data items are assigned
unique IRIs are another source of making integration easier.  Moreover, whether all
agree from a cultural aspect if it is  right, we  also see English becoming the  lingua
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franca of research and data.
To bring about a basis for data interoperability, John Blossom argues the impor-

tance of Web approaches and architectures; incorporation of external data; leverage
of Web applications; and, use of open standards and APIs to avoid vendor lock-in.6

Much, if not all of this, can be aided by open source software. Open source is not in-
dispensable: commercial products that embrace these approaches can also be com-
patible components across the stack. Further, we need to resolve semantic hetero-
geneities. Though only a single layer of the pyramid in Figure 4-1 above, resolving se-
mantics is a complicated task and may involve  structural conflicts (such as naming,
generalization, aggregation), domain conflicts (such as schemas or units), or data con-
flicts (such as synonyms or missing values). Researchers have identified nearly 40 dis-
tinct types of possible semantic heterogeneities, to which we delve into more detail
in Chapter 5.

Semantic technologies give us the basis for understanding differences in meaning
across sources, specifically geared to address real-world usage and context. Semantic
tools are essential for providing common bases for relating structured data across
various sources and contexts. These same semantic tools are also the basis by which
we can determine what unstructured content ‘means,’ thus providing the structured
data tags that also enable us to relate documents to conventional data sources (from
databases, spreadsheets, tables, and the like). These semantic technologies are thus
the key enablers for making information — unstructured, semi-structured and struc-
tured — understandable to both humans and machines across sources. Such under-
standings are then the basis for powering the artificial intelligence applications in-
volving human language.

An initial  embrace of semantic technologies  for knowledge management often
naturally leads to adopting knowledge graphs. These ontologies provide a means to
define and describe these different worldviews. Referentially integral languages
such as  RDF (Resource Description Framework) and its schema implementation
(RDF-S) or the Web ontological description language OWL are leading standards
among other emerging ones for machine-readable means to communicate the se-
mantics of data. You can read more about the languages of these semantic tech-
nologies in Chapter 8.

Adoption of semantic technologies does not  necessarily mean open data nor
open source (though they are suitable for these purposes with many open source
tools available). We can apply the techniques equivalently to internal, closed, propri-
etary data and structures. We can use these techniques as a basis for bringing exter-
nal information into the enterprise. The use of ‘open’ here refers to the critical use of
the open world assumption (Chapter 9).  Moreover, the design practices we recom-
mend here do not require replacing current systems and assets; they can be applied
equally to public or proprietary information; and, they can be tested and deployed
incrementally at low risk and cost. The very foundations of our recommended prac-
tice encourage a learn-as-you-go approach and active and agile adaptation. While
embracing semantic technologies can lead to quite disruptive benefits and changes,
we can do so as a layered initiative with minimal disruption. Incremental adoption is
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one of the most compelling aspects of semantic technologies.

KNOWLEDGE-BASED ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is the use of computers to do or assist complex human
tasks or reasoning. AI has many, broad sub-fields from pattern recognition to robot-
ics, and sophisticated planning and optimizations. Knowledge-based artificial intelli-
gence, or KBAI, is the use of large statistical or knowledge bases to inform feature se-
lection for  machine-based learning algorithms used in AI. Correctly expressed KBs
can support creating positive and negative training sets, promote feature set genera-
tion and expression, and generate reference standards for testing AI learners and
model parameters. The use of knowledge bases to train the features of AI algorithms
improves the accuracy, recall, and precision of these methods. These improvements
lead to better information queries, including for pattern recognition. Further, in a
virtuous circle, KBAI techniques can also be applied to identify additional possible
facts within the knowledge bases themselves, improving them further still for KBAI
purposes. Lastly, we hope that better ways to represent knowledge (with richer fea-
ture sets) may help unlock some of the black-box aspects typical of neural nets and
deep learning.

Knowledge-based artificial intelligence is not a new idea. Its roots  extend back
perhaps to one of the first AI applications, Dendral, more than a half-century ago in
1965.  Edward Feigenbaum initiated Dendral, which became a ten-year effort to de-
velop software to deduce the molecular structure of organic compounds using scien-
tific instrument data. Dendral was the first  expert system and set the outline for
knowledge-based systems, which are one or more computer programs that reason
and use knowledge bases to solve complex problems. Indeed, it was in the area of ex-
pert systems that AI first came to the attention of most enterprises. Expert systems
spawned the idea of  knowledge engineers, whose role was to interview and codify
the logic of the chosen experts. However, expert systems proved expensive to build
and difficult to maintain and tune.

The  specific  identification  of  ‘KBAI’  was  (to  my  knowledge)  first  made  in  a
Carnegie-Mellon University report to DARPA in 1975.7 The source knowledge bases
were broadly construed, including listings of hypotheses. The first known patent cit-
ing knowledge-based artificial intelligence is from 1992.8 Within the next ten years
there were dedicated graduate-level course offerings on KBAI at many universities,
including at least Indiana University, SUNY Buffalo, and Georgia Tech. In 2007, Bosse_
et al. devoted a chapter to KBAI in their book on information fusion, but still, at that
time, the references were more generic.9 However, by 2013, as a report by Hovy et al.
indicates, collaborative, semi-structured information stores such as Wikipedia were
assuming a prominent position in AI efforts.10 It has been the combination of KB + AI
that has led to the notable AI breakthroughs for knowledge purposes of the past, say,
decade. It  is in this combination that we gain the seeds for sowing AI benefits in
other areas, from tagging and disambiguation to the complete integration of text
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with conventional data systems. Further, the structure of all of these systems can be
made inherently multi-lingual, meaning that context and interpretation across lan-
guages can be brought to our understanding of concepts.

KBAI is part of the AI branch that includes knowledge-based systems. Besides
areas already mentioned, knowledge-based systems also include:

 Knowledge models   — formalisms for knowledge representation and reasoning;
and 

 Reasoning systems   — software that generates conclusions from available knowl-
edge using logical techniques such as deduction and induction. 

As  the  influence  of  expert  systems  waned,  another  branch  emerged,  that  of
knowledge-based engineering and their support for  CAD– and  CASE-type systems.
Still, we can charitably describe the overall penetration to date of most knowledge-
based systems as disappointing.

It is different today. Structured information and the means to query it now gives
us a powerful, virtuous circle whereby our knowledge bases can drive the feature se-
lection of AI algorithms, while those very same algorithms can help find still more
features and structure in our knowledge bases (see  Figure 4-2). Once we reach this
threshold of feature generation, we now have a virtuous dynamo for knowledge dis-
covery and management. We can use our AI techniques to refine and improve our
knowledge bases (the top loop of Figure 4-2), which then makes it easier to improve
our AI algorithms and incorporate  still  further  external  information (the bottom
loop).  Effectively  utilized  KBAI  (knowledge-based  artificial  intelligence)  thus  be-
comes a generator of new information and structure.

This virtuous circle has not been applied fully, seen mostly to date in the adding
of new facts to Wikipedia or Wikidata. Importantly, we can apply these same basic
techniques to the very infrastructural foundations of KBAI systems in such areas as
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data integration,  mapping to new external structure and information,  hypothesis
testing, diagnostics and predictions, and the myriad other uses to which researchers
for decades hoped AI would contribute. The virtuous circle between knowledge bases
and AIs does not require us to make leaps and bounds improvements in our core AI
algorithms. Instead, we need only stoke our existing AI engines with more structure
and knowledge fuel to keep the engine churning. 

KBAI has two  primary knowledge sources: recognized  knowledge bases, such as
Wikipedia, and statistical corpora. Knowledge bases are coherently organized infor-
mation with instance data for the concepts and relationships covered by the domain
at hand, all accessible in some manner electronically. Knowledge bases can extend
from the nearly global, such as Wikipedia, to particular topic-oriented ones, such as
restaurant reviews or animal guides. Some electronic knowledge bases are designed
explicitly to support digital consumption, with defined schema and standard data
formats and, increasingly,  APIs. Others may be electronically accessible and highly
relevant, but the data is hard to consume and requires extraction and processing be-
fore use. Hundreds of knowledge bases are suitable for artificial intelligence, most of
a restricted domain nature.9 Chapter 11 is devoted to this topic.

The use and role of statistical corpora are harder to describe. Statistical corpora
provide relationships or rankings to aid the processing of (mostly) textual informa-
tion. Uses can range from entity extraction to machine language translation.  Huge
sources, such as search engine indexes or massive crawls of the Web, are most often
the sources for these knowledge sets. The statistical corpora or databases have a pre-
cise focus. While lists of text corpora and many other things may contribute to this
category, the ones actually in commercial use are huge and designed for bespoke
functionality. A good example is the Web 1T 5-gram data set.12 This data set, contrib-
uted by Google for public use in 2006, contains English word n-grams and their ob-
served frequency counts. N-grams capture word tokens that often coincide with one
another, from single words to phrases. The length of the n-grams ranges from uni-
grams (single words)  to  five-grams. Google generated the database from approxi-
mately 1 trillion word tokens of text from publicly accessible Web pages.

Another example of statistical corpora is what Google’s Translate uses. According
to  Franz Josef Och, a former lead manager at Google for its translation activities, a
solid base for developing a usable language translation system for a new pair of lan-
guages should consist of a bilingual  text corpus of more than a million words, plus
two monolingual corpora each of more than a billion words. Statistical frequencies of
word associations form the basis of these reference sets. Google  initially seeded its
first language translators using multiple language texts from the United Nations.7 If
we add structure to statistical corpora, they may evolve to look more like a knowl-
edge base. NELL, for example, contains a relatively flat listing of assertions extracted
from the Web for various entities. NELL goes beyond frequency counts or relatedness
but does not have the full structure of a general knowledge base like Wikipedia.14 We
thus can see that statistical corpora and knowledge bases reside on a continuum of
structure, with no bright line to demark the two categories.

Created using both statistical techniques and results from machine learning, we
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are using these methods to extract massive datasets of entities, relationships, and
facts from the Web. Some of these efforts, like NELL, or its academic cousins such as
KnowItAll or Open IE (UWash), involve extractions from the open Web. Others, such
as the terabyte (TB) n-gram listings from Google, are derived from Web-scale pages
or  Google books.  Word, sentence or  graph vectors are other types. These examples
are but a sampling of various datasets and corpora available. These various statistical
datasets may be used directly for research on their own or may contribute to further
bootstrapping of still further-refined AI techniques. Similar datasets are aiding ad-
vertising placements and search term disambiguation. In some cases, while the full
datasets may not be available, open APIs may be available for areas such as  entity
identification or tabular data.

The Web is the reason these sources — both statistical corpora and knowledge
bases — have proliferated, so the dominant means of consuming them is via Web ser-
vices with the information defined and linked to IRIs. The availability of electroni-
cally accessible knowledge bases, exemplified and stimulated by Wikipedia, has been
the telling factor in recent artificial intelligence advances. For example, at least a
thousand different papers cite using Wikipedia for various natural language process-
ing,  artificial  intelligence,  or  knowledge  base  purposes.  These  papers  began  to
stream into conferences about 2005 to 2006, and have not abated since. In turn, re -
searchers are applying the various techniques innovated for extracting more and
more structure and information from Wikipedia to other semi-structured knowledge
bases,  resulting  in  a  renaissance  of  knowledge-based processing  for  AI  purposes.
These knowledge bases are emerging as the information substrate under many re-
cent computational advances, such as for virtual agents we command by voice. The
agents use  pattern recognition at the front and back end of the workflow based on
statistical datasets derived from phonemes and text. The agents apply  n  atural lan  -  
guage  processing,  as  informed by  knowledge  bases  and represented  by  semantic
technologies,  to the text  sandwiched between these bookends to conduct question
understanding and answer formulation.

This remarkable chain of processing is now almost taken for granted, though its
commercial use in virtual agents is fewer than ten years old. For different purposes
with different workflows, we see useful question answering and diagnosis with sys-
tems like  IBM’s  Watson15 and structured  search results  from Google’s  Knowledge
Graph.16 Try posing some questions to Wolfram Alpha and then stand back and be im-
pressed with the  data visualizatio  ns  .  Behind the scenes, pattern recognition from
faces to general images or thumbprints is further eroding the distinction between
man and machine. Google’s Knowledge Vault extends the Knowledge Graph using
probabilistic methods to add facts gleaned from the Web.17 Google Translate now ef-
fectively covers language translation between more than 100 human languages.18 All
major  Web  players  are  active  in  these  areas,  from  Amazon’s  recommendation
system19 to Facebook, Microsoft, Twitter or Baidu. Unfortunately, the sponsors re-
quired significant effort to re-organize and characterize the source knowledge bases
as coherent inputs to KBAI. All of the impressive advances we have seen to date in
distant  supervised  machine  learning  applications  result  from  bespoke,  manually
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trained efforts, repeated numerous times across providers. 
We  now  understand  how  content-rich  electronic  knowledge  bases  may  help

power machine learning for natural language understanding and information pro-
cessing. The usefulness is  apparent to re-express the KBs to maximize the features
available for machine learning, including disjointedness assertions to enable selec-
tion of positive and negative training sets. Specific aspects of the KBs, for which such
re-organization is appropriate, include concepts, types, entities, relations, events, at-
tributes, and statements. As we build these frameworks, they can facilitate mappings
to other knowledge structures, and aid in data interoperability and information inte-
gration. We may apply these same principles for building a general structure to new
domains or new knowledge bases. Three significant aspects — in machine learning,
knowledge supervision, and feature engineering — intersect to re-express knowledge
bases for KBAI purposes. Let’s investigate each in turn.

Machine Learning

Machine learning is the construction of algorithms that can learn from and make
predictions on data by building a model from example inputs. A wide variety of tech-
niques and algorithms may be employed — such as Markov chains, neural networks,
conditional random fields, Bayesian statistics, and many other   options   — that can be
characterized by many dimensions. Some are supervised, meaning we need to train
them against a standard labeled corpus to estimate parameters; others require little
or no training — that is, are unsupervised —  but may be less accurate as a result.
Some are statistical; others use pattern matching of various forms.  Supervised learn-
ing is  a  machine learning task of inferring a function from labeled training data,
which optimally consists of positive and negative training sets. The supervised learn-
ing algorithm analyzes the training data and produces an inferred function  that is
used to determine the correct class labels for unseen instances. In supervised learn-
ing, we present positive and (often) negative training examples to the learning algo-
rithm. Unsupervised learning is a different form of  machine learning, in that the ap-
proach attempts to find meaningful, hidden patterns without the use of labeled data.
We require no training examples in unsupervised learning. Supervised methods are
more accurate than unsupervised methods, and nearly universally so in the realm of
content information and knowledge. 

D  eep learning   is a recent trend to combine multiple techniques. In this approach,
the algorithm models the problem set as a layered hierarchy of distributed represen-
tations, with each layer using (often) neural network techniques for unsupervised
learning, followed by supervised feedback (often termed ‘back-propagation’) to fine-
tune parameters. While computationally slower than other techniques, this approach
has  the  advantage  of  automating  the  supervised  learning  phase  and  is  effective
across a range of AI applications. The major disadvantage is that deep learning cre-
ates ‘hidden’ statistical features within its intermediate layers; it is impossible to in-
terpret how the technique determines its final results. Deep learning is nonetheless
producing amazing results in recognizing images, audio, video or sensory percep-
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tion, and language translation. Effectiveness in knowledge areas has been less satis-
factory, with the lack of explanatory power a further detriment.

In supervised learning, the main drawback is the effort and expense associated
with labeling the positive or negative training examples (sets). The maximum effort
occurs from constructing the training sets entirely by hand. We can reduce the effort
by constructing them in a semi-automatic manner or by letting knowledge bases pro-
vide the labels. These techniques are known as semi-supervised, weak supervision, or
distant supervision.20 21 22 The accuracy of the eventual models is only as good as the
trueness of the input training sets, with traditionally the best results coming from
manually determined training sets. We call the most accurate of these sets ‘gold stan-
dards.’ The creation of manual training sets may consume as much as 80% of overall
machine learning efforts and is always a time-consuming task whenever employed. 

One way to help overcome the costs of developing manual training sets is by a
sub-class of supervised learning called  distant supervision, which is a method to use
knowledge bases to label entities or other types automatically in text, which is then
used to extract features and train a machine learning classifier. The knowledge bases
provide coherent positive training examples and avoid the high cost and effort of
manual labeling. When we use knowledge bases for distant supervision, we only use a
portion of the structure as features. Still, other distant supervision efforts may be
geared to other needs and use a different set of features. Indeed, broadly considered,
knowledge bases have a rich diversity of possible features. These potential features
arise from the text, and its content, syntax, semantics, and morphology; use vectors
of  co-occurring  terms  or  concepts;  categories;  conventions;  synonyms;  linkages;
mappings; relations; attributes; content placement within its knowledge graph; and,
disjointedness.  Appendix  C shows just how broadly diverse these types of features
may be.

State-of-the-art machine learning for natural language processing and semantics
uses distant supervision and knowledge bases like Freebase23 or Wikipedia to extract
training sets for supervised learning. We can create relatively clean positive and neg-
ative training sets with much-reduced effort over manually created ones. However,
as employed to date, distant supervision has mostly been a case-by-case, problem-by-
problem approach, and most often applied to entity or relation extraction. The effort
has heretofore not been systematic in approach nor purposefully applied across a
range of ML applications. How to structure and use knowledge bases across a range
of  machine learning applications with maximum accuracy and minimum effort  is
what we call knowledge supervision, which I discuss more in a moment.

Besides supervised and unsupervised learning, a third broad category of machine
learning is  reinforcement learning. Unlike the first two categories where prior exam-
ples are used to learn a statistical prediction for new cases, reinforcement learning
focuses on the learning process itself.  Reinforcement learning is an active, iterative
process where rewards associated with a given set of objectives are used to select
from and optimize next actions. “Although one might be tempted to think of rein-
forcement learning as a kind of unsupervised learning because it does not rely on ex-
amples of correct behavior, reinforcement learning is trying to maximize a reward
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signal instead of trying to find hidden structure.”24 Because we have not heretofore
linked knowledge bases with models of action, we have limited our use of KBs to
static questions and applications. Insofar as we may be able to stage and embed our
knowledge bases into a true action model, a topic of Chapters 7 and 16, we may be able
to see them inform models of reinforcement learning as well.

Knowledge Supervision 

Whatever the combination of method, feature set, or training sets, the ultimate
precision and accuracy of the machine learning requires the utmost degree of true
results in both positive and negative training sets. Training to inaccurate informa-
tion merely perpetuates inaccurate information. As anyone who has worked exten-
sively with source knowledge bases may attest, assignment errors and incomplete
typing and characterizations are all  too  familiar. Further, few existing knowledge
bases provide disjointedness assertions. Though early efforts in artificial intelligence
understood that capturing and modeling common sense was both an essential and
surprisingly tricky task — the impetus, for example, behind the thirty-year attempt
of the Cyc knowledge base — what is new in today’s circumstance is how these mas-
sive knowledge bases can inform and guide symbolic computing. The literally thou-
sand research papers regarding the use of Wikipedia data alone shows how these
massive knowledge bases are providing base knowledge around which AI algorithms
can work. Unlike the early years of mostly algorithms and rules, AI has now evolved
to explicitly embrace Web-scale content and data and the statistics that we may de-
rive from global corpora.

The innovation of distant supervision has been to leverage knowledge bases to
overcome the costs of labeling data and creating positive and negative training sets
for supervised learning. Wikipedia, as noted, has been leveraged for these purposes
by such players  as  IBM, Google,  Facebook, Baidu,  Microsoft,  Amazon,  and others.
However, each of these players has done their own massaging of Wikipedia from
scratch to support these purposes. None of this is free. Much purposeful work is nec-
essary to configure and stage the data structures and systems that support the broad
application of distant supervision. The idea of knowledge supervision, our third compo-
nent to KBAI along with feature engineering and machine learning, is to take distant
supervision one step further.

To  achieve  these  aims  for  knowledge  supervision,  we  purposefully  stage  our
source knowledge bases. We structure the KBs to maximize information extraction of
concepts, entities, relations, attributes, and events because we have provided such
structure in the central knowledge graph of KBpedia. We use these structures for
linking and mapping to still additional knowledge sources. We support this entire
process with methods for codifying self-learning such that our systems continue to
get more accurate. We test continuously to improve the assignments and the accu-
racy of the system.
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 Attribute ‘slot filling’ 
 Bespoke analysis 
 Bespoke platforms
 Classifiers   

◦ Concept tagging
◦ Document categorization  
◦ Entity classifiers 

 Cluster analysis  
◦ Concept clustering  
◦ Data clustering 

 Cognitive computing 
 Converters

◦ Data conversion  
◦ Format converters

 Disambiguators 
◦ Word sense disambiguation  

 Duplicates removal 
 Entity dictionaries

◦ Gazetteers     
 Information extraction  

◦ Attribute extractors 
◦ Entity recognizers   
◦ Event extractors
◦ Relation extractors
◦ Sub-graph extraction 

 Knowledge base improvements 
 Knowledge base population
 Machine learning  

◦ Deep learning  
◦ Distant supervision
◦ Knowledge supervision
◦ Supervised learning  
◦ Reinforcement learning  
◦ Unsupervised learning  

 Mapping 
◦ Data mapping   
◦ Knowledge base   mapping   
◦ Ontology mapping

 Master data management   
 Natural language processing  

◦ Artificial writing 
◦ Autocompletion   
◦ Entity   link  ing   
◦ Language translation  
◦ Multi-language versions 
◦ Phrase (n-gram) identification
◦ Speech recognition  
◦ Speech synthesis  
◦ Spell correction  
◦ Text generation   
◦ Text summarization   

 Ontologies
◦ Ontology development 
◦ Ontology matchers   
◦ Ontology mappers

 Pattern recognition  1

◦ Computer vision  
◦ Facial recognition  
◦ Image recognition  
◦ Optical character recognition  

 Reasoning  
◦ Inferencing   
◦ Question answering  
◦ Recommendation systems  
◦ Semantic relatedness analysis  
◦ Sentiment analysis  

 Search and information retrieval   
 Semantic publishing  

Table 4-1: Knowledge-based AI Applications

Table 4-1 provides a listing of some of those areas to which knowledge supervi-
sion may apply; some already use distant supervision or have been shown useful
in academic research, others we have not yet exploited. 

Knowledge supervision is thus the purposeful structuring and use of knowledge
bases to provide features and training sets for multiple kinds of machine learners
that we may apply to multiple artificial intelligence outcomes. While distant super-
vision also uses knowledge bases, it does so passively, taking the knowledge bases
as is,  rather than re-expressing them in a purposeful,  directed manner across
multiple  machine  learning  problems.  Knowledge  supervision  is  thus  the  better
method to achieve KBAI. 

1 Not a knowledge supervision ML option.28
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Feature Engineering

Feature engineering is the process of creating, generating and selecting the features
used in machine learning, based on an  understanding of the underlying data and
choosing ones likely to impact learning results and effectiveness. A feature is a mea-
surable property of the analyzed system. A feature is equivalent to what statistics
calls an explanatory variable. The ML algorithms tend to favor features with high ex-
planatory power independent of other features (that is, they are orthogonal) because
each added feature adds a computational cost. Many features correlate with one an-
other; in these cases, we need to find the strongest signals and exclude the other cor-
relates. Tuning and refinement are also more difficult with too many features, what
has  sometimes  been  called  the  curse  of  dimensionality.  Overfitting by  using  too
many features is also often a problem, which limits the ability of the model to gener-
alize to other data. Still,  using too few features results in inadequate explanatory
power.

Features and training sets are the major determinants of how successful the ma-
chine learning is. Training sets are a set of data used to discover potentially predictive
relationships. In supervised learning, a positive training set provides data that meet
the training objectives; a negative training set fails to meet the objectives. Features
also pose trade-offs and require skill in selection and use. Though it is hard to find a
discussion of best practices in feature extraction, many practitioners note that strik-
ing this  balance is  an art.25 We might  also need multiple  learners to  capture the
smallest,  independent  (non-correlated)  feature  set  with  the  highest  explanatory
power.26

An understanding of  what features are possible within knowledge bases is  the
first hurdle toward more purposeful knowledge supervision. We stage the structured
information as RDF triples and OWL ontologies, which we can select and manipulate
via APIs and SPARQL. We also stage the graph structure and text with the support of
a search engine,27 which gives us powerful faceted search and other advanced NLP
manipulations and analyses. These same features may also be utilized to extend the
features set available from the knowledge base through such actions as  extracting
new entities, attributes, or  relations; fine-grained entity typing;28 creation of word
vectors or tensors; results of graph analytics; forward or backward chaining; and effi-
cient processing structures. Appendix C overviews the features available to KBAI from
the KBpedia knowledge structure.

Because all features are selectable via either structured SPARQL query or faceted
search, it is also possible to more automatically extract positive and negative train-
ing sets. Attention to proper coverage and testing of disjointedness assertions is an-
other purposeful step useful to knowledge supervision since it aids identification of
negative examples for the training. We get into such operational details in Chapters
12 to 14.

These opportunities do not exhaust those available from applying Peircean guide-
lines to knowledge representation, backed by knowledge bases. However, knowledge
management, data interoperability, and knowledge-based AI form the leading edge
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of promising new capabilities.
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THE PRECEPTS

o gain the opportunities in artificial intelligence and knowledge management,
we need to look the world squarely in the eye and tackle realities as they exist.

As a philosopher, Charles S. Peirce was a confirmed and staunch defender of realism,
though he was also an idealist in his belief that truth, while not perhaps knowable in
its absolute limits, could be increasingly discovered through the application of logic
and the scientific method. Pragmatism is the way forward to approach this ideal.

T

The world is a messy place. Not only is it complicated and richly diverse, but our
ways of describing and understanding it are made more complex by differences in
language and culture. We know the world is interconnected and interdependent. Ef-
fects of one change can propagate into subtle and unforeseen consequences. Not only
is the world always changing, but so is our understanding of what exists in the world
and how it affects and is affected by everything else. This continuous flux means we
are always uncertain to a degree about how the world works and the dynamics of its
working. Through education and research we continually strive to learn more about
the world, but often in that process find what we thought was true is no longer so
and even our human existence is modifying our world in manifest ways.1

Knowledge is very similar to this nature of the world. We find that knowledge is
never complete and we can see it anywhere and everywhere. We capture and codify
knowledge  in  structured,  semi-structured  and  unstructured  forms,  ranging  from
‘soft’ to ‘hard’ information. We find that the structure of knowledge evolves with the
incorporation of more information. We often see that knowledge is not absolute, but
contextual. That does not mean truth does not exist; rather knowledge should be co-
herent, to reflect a logical consistency and structure that comports with our observa-
tions about the physical world. Knowledge, like the world, is  continually changing;
we thus must adapt to what we observe and learn.

Chapter 3 pointed to the importance of information to economic growth. We saw
the breakpoint accelerations in growth tied to historical changes in the cost and ac-
cess to information. Future generations will surely come to see the Internet phenom-
enon as one of those transitions. Massive storehouses of information, under free and
open licenses, are available at our fingertips. None of these sources were designed for
interoperability at a concept or knowledge level, and each has its context, format,
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and terminology. Here is a practically unlimited source of useful information that, by
applying our approaches and principles to semantic technologies and interoperabil-
ity, we can tap for digital reasoning and learning. 

To tap this storehouse of information, to connect and make the information us-
able with other information, we need to understand what makes that information in
its raw form a  Tower of Babel. To overcome these differences we need to embrace
some premises — or precepts — about how our information exists in its native forms,
and then to adopt still  further propositions for how to put that information on a
common  footing.  These  precepts  relate  to  the  nature  of  data,  semantic  hetero-
geneities in what that data means, and how we organize and classify that data. These
precepts help set the ground rules for our actions going forward.

EQUAL CLASS DATA CITIZENS

Knowledge representation, by our definition, operates in an electronic medium
with messages conveyed in bits, which makes all information represented in the sys-
tem as data. To deal in the realm of knowledge and belief, the purpose of our KR sys-
tems, we must be able to ingest and process any electronic data in any form that can
contribute to our knowledge.1 We include any digital information artifact in this cat-
egory, including ‘soft’ or ‘hard’ information, social information, information of vary-
ing certainty, and information of diverse provenance. We thus define content as in-
formation that has the potential to contribute to knowledge.

These variations are what would be called syntactic, or the structure or form of
the information, though content ambiguities also lead to an entirely different plane
of differences, those of a semantic nature. Whatever these differences of structure,
format or content, as long as the information represented is a possible contributor to
knowledge, we must be able to ingest and process it. Knowledge management sys-
tems must treat all data forms with a potential to contribute to knowledge as equal
class citizens.

1 While streaming media alone does not meet this definition, transcripts or tags associated with the content 
do.

86

https://en.wikipedia.org/wiki/Tower_of_Babel


THE PRECEPTS

The Structural View

A favorite, and I think useful, split of content is according to its native structure;
that is, the structure it assumes when created for its primary purpose. One of these
groupings is  st  ructured data  ,  what we most often think of when we hear the term
‘data.’ This classification is where the information presented is according to a de-
fined data model, commonly found in relational databases or other forms of tabular
data, such as even an electronic spreadsheet. This information includes any managed
by database management software, but it can also be as simple as an HTML table for
the Web. We can model, organize, form, and format structured data in ways that are
easy for us to manipulate. Much of our current know-how related to data and its
management comes from our decades-long experience with structured data. 

The second grouping of content is  u  nstructured data  ,  mostly consisting of text,
which lacks an explicit data model or schema. (But it does comport with the ‘struc-
ture’ of natural languages.) All documents and output from word processors or edi-
tors fall into this category, as do transcriptions of talking or speech. For decades, re-
searchers have estimated the amount of information within an enterprise embedded
in text documents  to approximate  80% of available information;  some recent esti-
mates put that contribution at 90%.2 Whatever the number, the percentage of infor-
mation in  documents  represents  the preponderance of  what  might  be useful  for
knowledge purposes within the organization. 

The third grouping of content is thus semi-structured data, which is of more recent
vintage. This category of content does not conform to a formal tabular or structural
data model but gets its ‘semi-structured’ nature by embedding tags or other markers
to denote fields within the content. We obtain it from unstructured data via  data
mining or  information extraction. Separate annotations not embedded within the
text, as is the case for metadata, are also part of this grouping. Markup languages em-
bedded in text are a common form of such sources. 

Semi-structured data provides  something of  a  ‘middle  ground’  between struc-
tured and unstructured sources. Semi-structured data models are sometimes called
‘self-describing’ (or schema-less).3 The first known definition of semi-structured data
dates to 1993 by Peter Schäuble.4 More current usage also includes the notion of la-
beled graphs or trees with the data stored at the leaves, with the schema information
contained in the edge labels of the graph. Semi-structured representations also lend
themselves well to data exchange or the integration of heterogeneous data sources.
Another nice aspect of semi-structured formats is that they are readable as text, with
a structure that can be understood and assigned by non-programmers without dedi-
cated IT staff. Semi-structured data is the preferred form for annotations.

To date, we have good processing engines for specific semi-structured forms, such
as rendering HTML in a Web browser or reading XML data sources, but inadequate
engines  for  combining  different  forms  of  semi-structured  data.5 Moreover,  semi-
structured data is the basis for including unstructured text with structured data, but
we still have the issues of extracting structure from various formats.
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The Formats View

Broad categorizations by content, while useful for generalizing, mask the ways we
can express these unstructured, semi-structured, and structured forms in various file
formats. Since no ‘official’ repository for file formats exists, it is impossible to know
how many different flavors of formats exist in the wild. The most extensive reference
that I have found, kept on Wikipedia, lists nearly  1500 different file formats from
AAC (audio coding)  to  zoo (file  compression).9 Perhaps this  sounds worse than it
should because these file formats span entire application areas from documents to
archives to audio or video or gaming. Further, skewed power-law distributions mean
only a fraction of these formats account for most uses. Individual application areas,
such as word processing or spreadsheets, have merely scores or hundreds of formats.
What we experience in the wild is also the subset of more popular formats, though in
a medium as broad as the Web, Google has found tens of thousands of individual
schemata.7 Single enterprises may need only deal with a few score common formats,
rather than thousands, with perhaps only a few dominant formats in given applica-
tion areas. Word processors, for example, might be mandated or standardized. Still,
even in this area, much readable text in multiple other formats is available.

Structured or semi-structured data formats also have a schema, in addition to the
serialization formats used for transmittal. Some markup languages, such as HTML or
Markdown, have embedded tags that instruct how to render Web pages or guide the
user interface. Other markup languages, such as fielded text, structured text, simple
declarative language (SDL), or more recently YAML or its simpler cousin JSON, have
become more widely adopted and supported by formal specifications, tools or APIs.
Many prefer JSON, for example, as a form for Web applications. Some formats, like
microformats or  BibTeX records, rely less on syntax conventions and may use re-
served keywords (such as AUTHOR or TITLE) to signal the key for the key-value pair. 

These various forms, sometimes well specified with APIs and sometimes almost
ad hoc as in spreadsheet listings, are what we call ‘structs.‘ Structs can all be displayed
as text and have, at a minimum, explicit or inferrable key-value pairs to convey data
relationships and attributes, with data types and values often noted by various white
space, delimiter (such as angle brackets) or other text conventions. Some of these
simple formats have been more successful than others, though none have achieved
market dominance. Few universal principles have emerged as to syntax or format.
One positive is that most of these various struct forms are easy for casual users to un-
derstand and easy for domain experts to write.

The sheer number of file formats one may encounter in the wild (including within
the single organization) is such that pairwise translators between forms are not com-
binatorially possible. The only way to handle the diversity of forms and formats is to
establish one or a limited few canonical formats and to translate wild forms to those
formats. This scalable approach to federation is a central topic of Chapter 9.

The Content View
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Refer to Jimmy Johnson by his name, and you might be referring to a former
football coach, a  NASCAR driver, a former  boxing champ, a  blues guitarist, or per-
haps even a plumber in your hometown. Alternatively, perhaps your Jimmy is none
of these individuals. The label ‘Jimmy Johnson’ is insufficient to establish identity. As
another example, let’s take the seemingly simple idea of ‘cats.’ In one source, the fo-
cus might be on house cats, in a second domestic cats, and in a third, cats as pets. Are
these ideas the same thing? Now, let’s bring in some taxonomic information about
the  cat  family,  the  Felidae.  We have  now  expanded  the  idea  of  ‘cats’  to  include
lynxes, tigers, lions, cougars and many other kinds of cats, domestic and wild (and,
also extinct). The ‘cat’ label used alone clearly fails us miserably here. 

As a third example, let’s take the concept or idea of the named entity of  Great
Britain: 

Depending on usage and context, Great Britain can refer to quite different scopes
and things. In one sense, Great Britain is an island. In a political sense, Great Britain
can comprise the territory of England, Scotland, and Wales.  Even more, precise un-
derstandings of that political grouping may include some outlying islands such as the
Isle of Wight,  Anglesey, the  Isles of Scilly,  the  Hebrides,  and the island groups of
Orkney and Shetland. Sometimes the Isle of Man and the Channel Islands, which are
not part  of the United Kingdom, are included in error in that political  grouping.
Then, in another context, Great Britain may also include Northern Ireland, since the
two countries sometimes combine their sports teams. These, plus other confusions,
can mean quite different things when referring to ‘Great Britain’ as the Venn dia-
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gram of possibilities shows us in Figure 5-1.1 
Even with the same label, items in different information sources can refer to the

same thing, but may not be the same thing or may define it with a different scope
and content. Ambiguity is one source for such error, as our examples show. If we in-
correctly identify the object, then connections can get drawn that are in error, which
is why disambiguation is such a big deal in knowledge systems. In broad terms, these
mismatches can be due to structure, domain, data or language, with many nuances
within each type. 

Data without context and relationships are meaningless. Logic and consistency al-
most by definition imply the application of a uniform perspective, a single  world-
view. Multiple authors making contributions without a common frame of reference
or viewpoint are unable to bring this consistency of perspective.  The  sameAs ap-
proach used to connect items in many current Web systems when they ignore such
heterogeneities, makes as little sense as talking about the plumber using facts drawn
from the blues guitarist. Even if we  can overcome the syntactic and format differ-
ences already discussed, we still face the hurdle of bridging the semantics of the data
federation pyramid shown in Figure 5-1.

ADDRESSING SEMANTIC HETEROGENEITY

The idea of something — that is, its meaning — is conveyed by how we define that
something, the context in which we use the various tokens (terms) for that some-
thing, and in the variety of words or labels we apply to that thing. The label alone is
not enough. We convey the idea of a parrot by our understanding of what the name
parrot means. In languages other than English, the same idea of parrot may be con-
veyed by the terms Papagei, perroquet, loro, , or попугай, or オウム, depending on the
native language. The idea of the ‘United States,‘ even just in English, may be conveyed
with labels ranging from America to  US,  USA,  U.S.A.,  Amerika,  Uncle Sam, or even the
Great Satan. What these examples illustrate is that a single term is more often not the
only way to refer to something, and a given token may mean vastly different things
depending on context. The oft-heard phrase, ‘things, not strings,’ captures this un-
derlying fact.8 

Sources of Semantic Heterogeneity

Our understanding of the patterns in semantic heterogeneities — for which we
need to account in the design of our knowledge systems  explicitly — is pretty ma-
ture.  We see confusion potentially arising from multiple terms for a single thing;2

single terms applying to numerous things; terms whose meaning derives from con-
text; how we characterize things; how we relate things; how we indicate surety or
confidence; how we point to things; and, how to annotate things. 

1 These associations also vary over time, again well evidenced by the scope of ‘Great Britain.’

2 Though true synonyms are rare, our practical interest is to capture alternate labels for the same thing. 
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Pluempitiwiriyawej  and  Hammer  provided  one  of  the  first  comprehensive
schemes  for  classifying  semantic  heterogeneities.9 I  have  used  and added  to  this
schema over many years. By decomposing this space into its various sources of se-
mantic heterogeneities — as well as the work required to provide for such functions
as search, disambiguation, mapping, and transformations — we can begin to under-
stand how all of these components can work together to help achieve data interoper-
ability. 

The following Table 5-1 shows more than 40 sources of semantic heterogeneities,
structurally organized, each of which is a possible impediment to get data to interop-
erate across sources: 

Class Category Subcategory Examples Type 12

LANGUAGE

Encoding

Ingest Encoding Mis-
match For example, ANSI v UTF-813 Concept

Ingest Encoding Lack-
ing

Mis-recognition of tokens be-
cause not being parsed with 
the proper encoding 13

Concept

Query Encoding Mis-
match

For example, ANSI v UTF-8 in 
search 13 Concept

Query Encoding Lack-
ing

Mis-recognition of search to-
kens because not being parsed 
with the proper encoding 13

Concept

Languages

Script Mismatch
Variations in how parsers han-
dle, say, stemming, white spa-
ces or hyphens

Concept

Parsing / Morphologi-
cal Analysis Errors 
(many)

Arabic languages (right-to-left)
v Romance languages (left-to-
right)

Concept

Syntactical Errors 
(many)

Ambiguous sentence refer-
ences, such as I’m glad I’m a 
man, and so is Lola (Lola by Ray 
Davies and the Kinks)

Concept

Semantics Errors 
(many)

River bank v money bank v bil-
liards bank shot

Concept

CONCEPTUAL Naming Case Sensitivity Uppercase v lower case v Camel
case Concept

Synonyms United States v USA v America 
v Uncle Sam v Great Satan

Concept

Acronyms United States v USA v US Concept

Homonyms

Such as when the same name 
refers to more than one con-
cept, such as Name referring to
a person v Name referring to a 
book

Concept

Misspellings As stated Concept
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Class Category Subcategory Examples Type 12

Generalization / Specialization

When single items in one 
schema are related to multiple 
items in another schema or 
vice versa. For example, one 
schema may refer to ‘phone,’ 
but the other schema has mul-
tiple elements such as ‘home 
phone,’ ‘work phone’ and ‘cell 
phone’

Concept

Aggregation

Intra-aggregation

When the same population is 
divided differently (such as 
Census v Federal regions for 
states, England v Great Britain 
v United Kingdom, or full per-
son names v first-middle-last)

Concept

Inter-aggregation May occur when we include 
sums or counts as set members Concept

CONCEPTUAL Internal Path Discrepancy

Can arise from different 
source-target retrieval paths in
two different schemas (for ex-
ample, hierarchical structures 
where the elements are differ-
ent levels of remove)

Concept

Missing Item

Content Discrepancy

Differences in set enumera-
tions or including items or not 
(say, US territories) in a listing 
of US states

Concept

Missing Content
Differences in scope coverage 
between two or more datasets 
for the same concept

Concept

Attribute List Discrep-
ancy

Differences in attribute com-
pleteness between two or more
datasets

Attribute

Missing Attribute
Differences in scope coverage 
between two or more datasets 
for the same attribute

Attribute

Item Equivalence

When we assert two types 
(classes or sets) as being the 
same when the scope and ref-
erence are not (for example, 
Berlin the city v Berlin the of-
ficial city-state)

Concept

When we assert two individu-
als as being the same when 
they are distinct (for example, 
John Kennedy the president v 
John Kennedy the aircraft car-
rier)

Attribute

Type Mismatch When we characterize the Attribute

92

http://en.wikipedia.org/wiki/USS_John_F._Kennedy_(CV-67)
http://en.wikipedia.org/wiki/John_F._Kennedy
http://en.wikipedia.org/wiki/States_of_Germany#Subdivisions
http://en.wikipedia.org/wiki/Berlin


THE PRECEPTS

Class Category Subcategory Examples Type 12

same item by different types, 
such as a person typed as an 
animal v human being v person

Constraint Mismatch

When attributes referring to 
the same thing have different 
cardinalities or disjointedness 
assertions

Attribute

DOMAIN

DOMAIN

Schematic
Discrepancy

Element-value to Ele-
ment-label Mapping

One of four errors that may oc-
cur when attribute names or 
values may not be completely 
unambiguous.

Attribute

Attribute-value to Ele-
ment-label Mapping

Attribute

Element-value to At-
tribute-label Mapping Attribute

Attribute-value to At-
tribute-label Mapping

Attribute

Scale or Units

Measurement Type
Differences, say, in the metric 
v English measurement sys-
tems, or currencies

Attribute

Units Differences, say, in meters v 
centimeters v millimeters Attribute

Precision
For example, a value of 4.1 
inches in one dataset v 4.106 in
another dataset

Attribute

Data 
Representation

Primitive Data Type
Confusion often arises in the 
use of literals v URIs v object 
types

Attribute

Data Format

Delimiting decimals by period 
v commas; various date for-
mats; using exponents or ag-
gregate units (such as thou-
sands or millions)

Attribute

DATA Naming

Case Sensitivity Uppercase v lower case v Camel
case

Attribute

Synonyms For example, centimeters v cm Attribute

Acronyms For example, currency symbols
v currency names Attribute

Homonyms

Such as when the same name 
refers to more than one at-
tribute, such as Name referring
to a person v Name referring to
a book

Attribute

Misspellings As stated Attribute

ID Mismatch or Missing ID URIs can be a particular prob-
lem here, due to actual mis-
matches but also use of names-

Attribute
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Class Category Subcategory Examples Type 12

paces or not and truncated 
URIs

Missing Data

A common problem, more con-
cerning with closed world ap-
proaches than with open world
ones

Attribute

Element Ordering

Set members can be ordered or
unordered, and if ordered, the 
sequences of individual mem-
bers or values can differ

Attribute

Table 5-1: Sources of Semantic Heterogeneities

We have assigned these structural aspects to one of two types: a) those that may
arise from the  conceptual differences between sources (mostly from schema differ-
ences); and b) those due to value and  attribute discrepancies (data). The table also
provides examples of what each of these categories of heterogeneities means.

This listing is a  reasonably comprehensive view of what is  involved in getting
things to talk together (semantic agreement). Fortunately, via the adoption of standard
syntactic protocols and semantic languages, means for managing many of these pos-
sible heterogeneities are handled in the background when complying with their rules
(axioms) or language constructs. That still leaves us with the heterogeneities associ-
ated with human communications and how to measure the attributes of things. 

From the conceptual to actual data, then, we see differences in perspective, vo-
cabularies,  measures,  and  conventions.  Some  of  these  differences  and  hetero-
geneities  are  intrinsic  to  the  nature  of  the  data  at  hand.  Some of  these hetero-
geneities also arise from the basis and connections asserted between datasets. Only
by systematically understanding these sources of heterogeneity — and then explic-
itly addressing them — can we begin to try to put disparate information on a com-
mon footing. Only by reconciling differences can we start to get data to interoperate. 

Role of Semantic Technologies

The first advantage of semantic technologies is that all kinds of information are
unified. No matter what information you consider, any content type may become a
‘first-class citizen.’ For really the first time, we can put all kinds of information rang-
ing from traditional databases and spreadsheets (structured) to markup, Web pages,
XML and data messages (semi-structured), and then on to documents and text (un-
structured) or multimedia (via metadata) on a level playing field. These data, now all
treated on an equal footing, can be searched and retrieved by a variety of techniques.
These range from SQL, standard text search, or SPARQL, depending on content type.
This unique combination enables us to fulfill all of the aspects of findability — find,
discover, navigate. Because of the diversity of search options available, we can vary
and optimize search results depending on circumstance and needs. Because all con-
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tent is represented either as a type of thing, an individual thing, or the relationships
between those things, we may use these classifiers for faceting or grouping. Further,
the  connections put all things in context, useful to ensure results are relevant and
disambiguated.

What  works  efficiently  for  transactions  and  accounting  is  a  poor  choice  for
knowledge  problems.  Traditional  relational  databases  work  best  with  structured
data; are inflexible and fragile when the nature (schema) of the world changes; and
thus require constant (and expensive) re-architecting in the face of new knowledge
or new relationships. Conversely, for semantic technologies, we describe things and
their relationships based on the ‘idea of the thing,’ not limited to keywords. Thus, we
can describe and find things using alternative terms, synonyms, acronyms or jargon.
We can add on or extend semantic vocabularies without altering what we have al -
ready asserted, assuming the prior assertions still hold true. 

We should use semantic technologies instead of conventional information tech-
nologies in the areas of knowledge representation (KR) and knowledge management
(KM). Semantic technologies are orthogonal to some other current technologies, in-
cluding cloud computing and big data. Semantic technologies are not limited to open
data: they are equivalently useful to private or proprietary data. Semantic technolo-
gies do not imply some grand, shared schema for organizing all information, though,
at some levels, that is extremely useful. Semantic technologies are not ‘one ring to
rule them all,’ but rather a way to capture the worldviews of particular domains and
groups of stakeholders. Semantic technologies appropriately done are not a replace-
ment for existing information technologies, but rather an added layer that can lever-
age those assets for interoperability and to overcome the semantic barriers between
existing information silos. These very same semantic technologies also provide the
proper representational basis for symbol-based machine learning and intelligence.

Semantic technologies give us the basis for understanding differences in meaning
across  sources,  specifically geared to address  differences in real-world  usage and
context. These semantic tools are essential for providing common bases for relating
structured data across various sources and contexts. These same semantic tools are
also the basis by which we can determine what unstructured content ‘means,’ thus
providing the structured data tags that also enable us to relate documents to conven-
tional data sources using semi-structured data. Semantic technologies are therefore
the enablers for making information understandable to both humans and machines
across sources. 

Semantic  technologies  expressly  address  these  heterogeneities,  some  more
strongly in some areas than others. However, to capture the scope of the hetero-
geneities listed, we need the technologies to mimic aspects of human language, sym-
bology, and logic. We express ourselves via the equation and the document, not to
mention jumping up and down and gesticulating. By accounting explicitly for the re-
lationships between things, we can use semantic technologies to better capture con-
text, essential for navigation and the reduction of ambiguity. We can use the richness
of relationships to group, classify, filter, or find things. The basic assertion in our se-
mantic languages declares relationships between and for things. These statements,
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when combined with the objects of some  statements being the subjects of others,
leads to a graph structure (see Chapter 1). We may apply various logics based on the
nature of our declarations to compute over the structure and understand or infer re-
lationships  between  things.  We can  use  the  graph  structures  for  novel traversal
mechanisms and network analysis.  No other information structure provides these
unique advantages.

Semantics and Graph Structures

The graph structures of semantic schema mean that any node can become an en-
try point to the knowledge space for discovery. The traversal of information rela-
tionships occurs from the selection of predicates or properties that we use to create
this graph structure in the first place. This richness of characterization and objects
also means we can query or traverse this space in multiple languages or via the full
spectrum by which we describe or characterize things. Semantic-based knowledge
graphs are potentially an explosion of richness in characterization and how those
characterizations get made and referred to by any stakeholder.10 We enable the user
community to determine our search structures, rather than some group of designers
or information architects. It should not be surprising that search offers one of the
quickest and most visible paths to gain the benefits of semantic technologies.

Existing IT assets represent massive sunk costs, legacy knowledge and expertise,
and (often) stakeholder consensus. These systems are still mostly stovepiped. Strate-
gies that counsel replacing existing IT systems risk wasting existing assets. We are
better served to leverage the value already embodied in these systems while promot-
ing interoperability  and integration.  The beauty of semantic  technologies  —  ade-
quately designed and deployed in a Web-oriented architecture — is that a thin inter-
operability layer may be placed over existing IT assets to achieve these aims. We can
use  the  knowledge  graph  structure  to  provide  the  semantic  mappings  between
schema, while we use a Web service framework to convert sources to the canonical
data model. Via these approaches, we may preserve prior investments in knowledge,
information, and IT assets while enabling interoperability. The existing systems can
continue to provide the functionality as  initially deployed. Meanwhile, we may ex-
pose and integrate the KR-related aspects with other knowledge assets on the physi-
cal network. Being able to manage semantic heterogeneity is the kickstarter to this
process. 

CARVING NATURE AT THE JOINTS

The embracing of semantics and the languages to express them is but the prereq-
uisite. Once we decide the rules of the game, we need to populate our domain. That
means we need to capture the concepts, instances, attributes, and relations of our
domain. This capturing forms our vocabulary, and how we group, classify and type
that vocabulary should reflect the reality of our domain and how we organize it.
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Stated in the abstract this sounds like a tall order. However, we help fulfill this order
if we seek to organize our domain in the most realistic way possible, what  Plato,
speaking as Socrates in the dialog with   Phaedrus  , says:11

SOCRATES

It seems to me that the discourse was, as a whole, really sportive jest; but in these
chance utterances were involved two principles, the essence of which it would be grat-
ifying to learn, if art could teach it.

PHAEDRUS

What principles?

SOCRATES

That of perceiving and bringing together in one idea the scattered particulars, that
one may make clear by definition the particular thing which he wishes to explain; just
as now, in speaking of Love, we said what he is and defined it, whether well or ill. Cer-
tainly by this means the discourse acquired clearness and consistency.

PHAEDRUS

And what is the other principle, Socrates? 

SOCRATES

That of dividing things again by classes, where the natural joints are, and not trying
to break any part, after the manner of a bad carver. As our two discourses just now
assumed one common principle, unreason, and then, just as the body, which is one, is
naturally divisible into two, right and left, with parts called by the same names, so
our two discourses conceived of madness as naturally one principle within us, and one
discourse, cutting off the left-hand part, continued to divide this until it found among
its parts a sort of left-handed love,  which it very justly reviled, but the other dis-
course, leading us to the right-hand part of madness, found a love having the same
name as the first, but divine, which it held up to view and praised as the author of our
greatest blessings.

PHAEDRUS

Very true.

SOCRATES

Now I myself,  Phaedrus, am a lover of these processes of division and bringing to-
gether, as aids to speech and thought; and if I think any other man is able to see
things that can naturally be collected into one and divided into many, him I follow af-
ter and «walk in his footsteps as if he were a god.»

The idea of ‘carving nature at the joints’ is a mindset we can apply to all of the major
divisions in our vocabulary; namely, things, concepts, relations, and attributes.
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Forming ‘Natural’ Classes

As we see, going back at least to Plato and Aristotle, how to properly define and
bound categories and concepts have been a topic of much philosophical discussion. If
we do not scope the organization of our knowledge and define it consistently, then it
is virtually impossible to construct a logical and coherent way to reason over this
structure. Aristotle set the foundational basis for understanding what we now call
natural kinds and categories (or ‘classes’). The universal desire to understand and de-
scribe our world has meant that philosophers have argued these splits  and their
bases  ever  since.  We  can  place  these  philosophical  arguments  into  three  broad
camps. First,  we have realists, who believe things have independent order and exis-
tence in the natural world, apart from thought. Second, we have nominalists, who be-
lieve that humans provide the basis for how things are organized in part by how we
name them. Third, we have idealists, or anti-realists, who believe ‘natural’ classes are
generalized ones that conform to human ideals of how the world is organized but are
not independently real.12 These categories shade into one another, such that these
beliefs become strains in various degrees for how any one philosophy might be de-
fined. 

The realist strain, also closely tied to the sciences and the scientific method, is
what most guides the logical basis of semantic technologies and our view of how to
organize the world.  Science and technology are producing knowledge in unprece-
dented amounts, and realism is the best approach for testing the trueness of new as-
sertions. We think realism is the most efficacious approach to knowledge representa-
tion designs. Being explicit about the philosophy in how we construct our knowledge
representations helps decide sometimes sticky design questions, as we will see multi-
ple times throughout this book.

Aristotle believed that the world fits into categories, that categories were hierar-
chical in nature, and what defined a particular class or category was its  essence or
the attributes that uniquely define what a given thing is. A mammal has the essences
of being hairy, warm-blooded, and live births. These essences distinguish mammals
from other types of animals such as birds or reptiles or fishes or insects. Essential
properties are different from accidental or artificial distinctions, such as whether a
man has a beard or not or whether he is gray- or red-haired or of a certain age or
country. We base a natural classification system on real differences of character and
not artificial or single ones. Hierarchies arise from the shared generalizations of such
essences amongst categories or classes. Under the Aristotelian approach, classifica-
tion is the testing and logical clustering of such essences into more general or more
specific categories of shared attributes. Because these essences are inherent to na-
ture, natural clusterings are an expression of real relationships in the real world, of-
ten hierarchical in structure.

By the age of the Enlightenment, some began to question these long-held philoso-
phies. Descartes famously grounded the perception of the world into innate ideas in
the human mind.  Descartes’  philosophy, built  upon that of  William of Ockham of
Occam’s razor fame,  maintained individuals populate the world;  no such things as
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universals exist. In various guises, thinkers from Locke to Hume questioned a solely
realistic organization of concepts in the world.13 While there may be ‘natural kinds,’
categorization is also an expression of the innate drive by humans to name and orga-
nize their world, was the dominant view of these emerging nominalists. 

Charles S. Peirce started a mighty swing back to realism. He was the first, by my
reading, who looked at the question of ‘natural classes’ sufficient to provide design
guidance, and which may sometimes be contraposed against what some call ‘artificial
classes’ (we also tend to use the term ‘compound’ classes). Natural classes were a key
underpinning to Peirce’s own efforts to provide a uniform classification system re-
lated to inquiry and the sciences. A natural class is a set  of members that share the
same set of attributes, though with different values (such as differences in age or
hair color for humans, for example). Some of those attributes are also more essential
to define the type of that class (such as humans being warm-blooded with live births
and hair and use of symbolic languages). Artificial classes tend only to add one or a
few shared attributes and do not reflect the essence of the type.18 Our use and notion
of ‘natural classes’ hews closely to how Peirce understood the concept:

“So then, a natural class being a family whose members are the sole offspring and ve-
hicles of one idea, from which they derive their peculiar faculty, to classify by abstract
definitions is simply a sure means of avoiding a natural classification. I am not decry-
ing definitions. I have a lively sense of their great value in science. I only say that it
should not be by means of definitions that one should seek to find natural classes.
When the classes have been found, then it is proper to try to define them; and one
may even, with great caution and reserve, allow the definitions to lead us to turn back
and see whether our classes ought not to have their boundaries differently drawn. Af-
ter all, boundary lines in some cases can only be artificial, although the classes are
natural ....” (EP 2:125)

Peirce’s ideas of a natural kind appear closely tied to his realism:

“Any class which, in addition to its defining character, has another that is of perma-
nent interest and is common and peculiar to its members, is destined to be conserved
in that ultimate conception of the universe at which we aim, and is accordingly to be
called ‘real.’” (1901, CP 6.384)

Another guideline that Peirce provides is that intension is also a means for determin-
ing a natural classification:

“The descriptive definition of a natural class, according to what I have been saying, is
not the essence of it. It is only an enumeration of tests by which the class may be rec-
ognized in any one of its members. A description of a natural class must be founded
upon samples of it or typical examples.” (1902, CP 1.223)

Peirce greatly  admired the natural  classification systems of  Louis  Agassiz and
used animal lineages in many of his examples. He was a strong proponent of natural
classification. Though we have replaced the morphological basis for classifying or-
ganisms in  Peirce’s  day with  genetic  ones,  Peirce  would  surely  support  this  new
knowledge, since he grounded his philosophy on a triad of primitive unary, binary
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and tertiary relations, bound together in a logical sign process seeking truth. 
For example, natural class instances, which are by definition intensional due to

the  differentia that  comprises their class, may be declared by assignment to a class
type. Once we define a type such as a hairless mammal that walks in a bipedal man -
ner as a  human,  we can  after that assign individual people to that class type and
thereby infer human properties (or characteristics). We need not specify all possible
human properties per individual under a strictly intensional approach nor enumer-
ate all human individuals under a strictly extensional approach. We can let the use of
type assignments bridge this divide. We can also see that, depending on context, we
may want to speak about human as a class (type) subsuming individual people or to
speak about human as an instance with particular kinds of properties (attributes). I
discuss further this ‘punning’ metamodeling technique in Chapter 9. 

Peirce’s concept of ‘natural kinds’ or ‘natural classes’ is not limited to things only
found in nature. Peirce's semiotics (theory of signs) also recognizes ‘natural’ distinc-
tions in areas such as social classes, the sciences, and human-made products.14 These
distinctions are important because they affirm essences and realities in the external
world. A ‘natural’ classification is not limited to the animate. ‘Natural’ classification
is premised on reason and subject to testing. Again, the key discriminators are the
essences of things that distinguish them from other things, and the degree of sharing
of attributes contains the basis for understanding relationships and hierarchies.

Menno Hulswit is one of the scholars who has studied Peirce’s concept of ‘natural
classes’ most closely.18 As he has observed:

“From the natural sciences, Peirce had learned that the forms of chemical substances
and biological species are the expression of a particular internal structure. He recog-
nized that it was precisely this internal structure that was the final cause by virtue of
which the members of the natural class exist.” (p. 759)

“... Peirce’s view may be summarized as follows: Things belong to the same natural
class on account of a metaphysical  essence and a number of class  characters. The
metaphysical essence is a general principle by virtue of which the members of the
class have a tendency to behave in a specific way; this is what Peirce meant by final
cause. This finality may be expressed in some sort of microstructure. The class charac-
ters which by themselves are neither necessary nor sufficient conditions for member-
ship of a class, are nevertheless concomitant. In the case of a chair, the metaphysical
essence is the purpose for which chairs are made, while its having chair-legs is a class
character. The fuzziness of boundary lines between natural classes is due to the fuzzi-
ness of the class characters. Natural classes, though very real, are not existing entities;
their reality is of the nature of possibility, not of actuality. The primary instances of
natural classes are the objects of scientific taxonomy, such as elementary particles in
physics, gold in chemistry, and species in biology, but also artificial objects and social
classes.

“By denying that  final causes are static,  unchangeable entities,  Peirce avoided the
problems attached to classical essentialism. On the other hand, by eliminating arbi-
trariness, Peirce also avoided pluralistic anarchism. Though Peircean natural classes
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only come into being as a result of the abstractive and selective activities of the peo-
ple who classify, they reflect objectively real general principles. Thus, there is not the
slightest sense in which they are arbitrary: ‘there are artificial classifications in profu-
sion, but [there is] only one natural classification.’ (1902, CP 1.275)” (pp. 765-6)

Though all of this sounds somewhat abstract and philosophical, these distinctions
are  not  merely  metaphysical.  The  ability  to  organize  our  representations  of  the
world into natural classes also carries with it the ability to organize that world, rea-
son over it, draw inferences from it, and truth test it. Indeed, as we may discover
through knowledge acquisition or the scientific method, this world representation is
itself mutable. Our understanding of species relationships, for example, has changed
markedly, especially most recently, as the basis for our classifications shifts from
morphology to DNA. Einstein’s challenges to Newtonian physics similarly changed
the ‘natural’ way by which we need to organize our understanding of the physical
world. 

A Mindset for Categorization

These points are not academic. The central weakness, for example, that I have
noted for Wikipedia over many years has been its category structure. Category in-
consistencies are the root source of the problem that Wikipedia can not presently act
as a computable knowledge graph.1 Categories  often do not conform to a natural
classification scheme, and many categories are ‘artificial’ in that they are compound
or distinguished by a single attribute. ‘Compound’ (or artificial) categories (such as
Films directed by Pedro Almodóvar or  Ambassadors of the United States
to Mexico) are not ‘natural’ categories, and including them in a logical evaluation
only acts to confuse attributes from classification. To be sure, we should decompose
such existing categories into their attribute and concept components, and possibly
only include the decomposed versions (if then) when constructing a schema of the
domain. ‘Artificial’ categories may be identified in the Wikipedia category structure
by both syntactical and heuristic signals. One syntactical rule is to look for the head
of a title; one heuristic signal is to select out any category with prepositions. Across
all  rules,  ‘compound’ categories account for most of what we remove to produce
‘cleaned’ categories. Including administrative and other problem categories, perhaps
half to two-thirds of Wikipedia’s categories do not meet the definition of natural cat-
egories, though Wikipedia’s editors continue to make improvements.15 Independent
actors have staged and processed Wikipedia multiple times to overcome these limits
to create usable knowledge bases.

Whatever  the  target  for  the  categorization effort  may  be,  Peirce  put  forward
some general execution steps:

“... introduce the monadic idea of »first« at the very outset. To get at the idea of a
monad, and especially to make it an accurate and clear conception, it is necessary to

1 Some reviewers have suggested the issue is a matter of scale. While I agree large scale causes its own chal-
lenges, I believe the problem is one more of coherence and lack of consistency.
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begin with the idea of a triad and find the monad-idea involved in it. But this is only a
scaffolding necessary during the process of constructing the conception. When the
conception has been constructed, the scaffolding may be removed, and the monad-
idea will be there in all its abstract perfection. According to the path here pursued
from monad to triad, from monadic triads to triadic triads, etc., we do not progress by
logical involution — we do not say the monad involves a dyad — but we pursue a path
of evolution. That is to say, we say that to carry out and perfect the monad, we need
next a dyad. This seems to be a vague method when stated in general terms; but in
each case, it turns out that deep study of each conception in all its features brings a
clear perception that precisely a given next conception is called for.” (1896, CP 1.490)

This quote is at the root of Peirce’s views concerning the universal categories, the
main topic of the next chapter. Triads figure prominently in this thinking. As we
weave the various threads in Peirce’s philosophy together, we also come to see the
logic of how the three components of inquiry work in a similar manner to categoriza-
tion, itself just a more structured view of what Peirce discussed as a generalization.
What we learn from Peirce in this investigation is that categorization, thankfully, is a
knowledge representation task, that  we can approach logically and systematically.
We can adopt a categorical mindset about how to think of the world. The assign-
ments should be defensible, but we should also be ready to change them when faced
with better evidence or logic. We learn more about how to think through categoriza-
tion in Chapter 6.

Connections Create Graphs

When representing knowledge, more things and concepts get drawn into consid-
eration. In turn, the relationships of these things lead to connections between them
to capture the inherent interdependence and linkages of the world. As still  more
things get considered, we make and proliferate more connections. This process natu-
rally leads to a graph structure, with the things in the graphs represented as nodes
and the relationships between them represented as connecting edges.1 More things
and more connections lead to more structure. Insofar as this structure and its con-
nections are coherent, the natural structure of the knowledge graph itself can help
lead to more knowledge and understanding.

Coherent and logical graphs first require natural groupings or classes of concepts
and entity types by which to characterize the domain at hand, situated to one an-
other with testable relations. We characterize entity types with a similar graph of de-
scriptive attributes. Concepts and entity types thus represent the nodes in the graph,
with relations being the connecting infrastructure. Relatedness of shared attributes
or types of relations can also create ontological structures that enable inference and
a host of graph analytics techniques for understanding meaning and connections.
For such a structure to be coherent, the nodes (classes) of the structure should also
be as natural as possible, applying the same categorization approaches.

Unlike traditional data tables, graphs have  some inherent benefits, particularly

1 See Figure 1-3.
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for knowledge representations. They provide:

 A coherent way to navigate the knowledge space; 

 Flexible entry points for each user to access that knowledge (since every node
or relation is a potential starting point); 

 Inferencing and reasoning structures about the space;

 Connections to related information; 

 Ability to connect to any form of information; 

 Concept mapping, and thus the ability to integrate external content; 

 A framework to disambiguate concepts based on relations and context; and 

 A common vocabulary to drive content ‘tagging.’

Graphs are the natural structures for knowledge domains if they follow a ‘natural’
classification and we test them for coherence. Once built, graphs offer some analyti-
cal  capabilities  not  available  through traditional  means  of  information structure.
Graph analysis is a rapidly emerging field, but we are already able to gauge some
unique measures of knowledge domains, such as influence, relatedness, proximity,
centrality, inference, clustering, shortest paths, and diffusion. As science is coming
to appreciate, graphs can represent any extant structure or schema.  The universal
character of graphs makes them an attractive target for many analytic tools.

The essence of knowledge is that it is ever-growing and expandable. New insights
bring new relations and new truths. The structures we use to represent this knowl-
edge must themselves adapt and reflect the best of our current, testable understand-
ings.  Keeping  in  mind  the  need  for  ‘natural’  classes  —  that  is,  consistent  with
testable, knowable truth — is a building block in how we should organize our knowl-
edge  graphs.  Through such guideposts  as  coherence,  inference,  and truthfulness,
these  structural  arrangements  become  testable  propositions.  As  Peirce,  I  think,
would admonish us, failure to meet these tests is grounds for re-jiggering our struc-
tures and classes. In the end, coherence and computability become the hurdles that
our knowledge graphs must clear to become reliable structures. 
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nowledge representation has the mission to capture human knowledge and
then be able to reason over it, in a form understandable to its designers, us

humans, and interpretable by a Turing complete computer. The ability to represent
natural (human) language and the ability to capture all basic logical premises and ar-
guments are core KR requirements. As in human language, where we split our words
into roughly nouns and verbs and modifiers and conjunctions of the same, we need a
similar  primitive  vocabulary  and  rules  for  constructing  statements.  These  basic
building blocks are known as the grammar of the KR language. We then need to em-
bed a well-considered grammar into formal, standardized languages that computers
can readily interpret, backed with tools and a user community capable of exercising
them to achieve our purposes. The three chapters in this  Part II specifically talk to
these needs.

K

Our KR language should represent how we, as humans, think about, organize, and
reason about our world. Our KR language needs to address, as discussed in Chapter 4,
the significant opportunities for data interoperability and artificial intelligence (ma-
chine  learning  and  reasoning).  To  achieve  these  purposes,  we  need  to  integrate
knowledge bases to provide the information pool and the testable bases upon which
the KR language operates. To reason over this knowledge, we need a logical founda-
tion that is consistent and coherent, for which we look to Peirce.1 We begin, in this
chapter, with a grounding based on Peirce’s universal categories, then introduce our
KR grammar in Chapter 7 and our KR languages and models in Chapter 8.

A FOUNDATIONAL MINDSET

Historically, Peirce is known as the father of  pragmatism (pragmaticism, his pre-
ferred term). The ideas behind Peircean pragmatism are how to: think about signs
and  representations  (semiosis);  logically  reason  and  handle  new  knowledge
(abduction)  and  probabilities  (induction);  make  economic  research  choices
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(pragmatic maxim); categorize; and let the scientific method inform our inquiry. All
of these contributions are grounded in Peirce’s universal categories of Firstness, Second-
ness, and Thirdness. Herein lies the key to being informed by Peirce when it comes to
representing new knowledge, categorization, or problem-solving. It is the mindset of
Thirdness and the nature of Firstness and Secondness that provides that guidance.

A Common Grounding in Peirce

The essence of knowledge is that it is ever-growing and expanding. New insights
bring new relations and new truths. The structures we use to represent this knowl-
edge must themselves adapt and reflect the best of our current, testable understand-
ings. We want a foundation to the KR language that can capture reality, from cosmol-
ogy to thought, process,  and action.  We need a grammar expressed in computer-
readable languages that can capture the possibilities and current facts of today, plus
new potentials arising from emerging knowledge. We want open and standard com-
puter-readable languages to encourage broader adoption and therefore greater avail-
ability of toolsets and expertise. For interoperability, the scaffolding, or knowledge
graph at the heart of the system, must have the flexibility to model any knowledge
domain, from math and philosophy to lifeforms, society, and technologies. Eventu-
ally,  we want to  express  these capabilities  in  cost-effective,  deployable platforms
with acceptable maintenance costs and long service lives.

We want to link or integrate existing knowledge bases. That requirement means
supporting formats and mapping methods to facilitate the exchange. More impor-
tantly, we need a knowledge representation framework and grammar for adapting or
growing the knowledge graph, matching objects, attributes, referents, and relations.
The framework needs to follow a grammar that enables making and testing logical
statements, along with inferencing and other reasoning. We want to construct this
entire scaffolding in such a way that we capture all relevant features to provide a
rich structure for machine learners.

Studying Peirce is hard. This difficulty is partly the result of Peirce. In his quest
for precision in terminology, Peirce has created a unique vocabulary, sometimes jaw-
breaking, often with multiple terms that change over time for specific concepts. The
difficulty partly comes from the cacophony of views about what Peirce did or in-
tended to say.  Complications also arise from the fragmentation of his manuscripts,
some still unpublished, and sometimes confused chronologies that have, at times, led
to questionable scholarship. I  do not doubt that scholars will continue to tease out
profound insights from Peirce, likely for centuries to come.1

Peirce believed in the real as that which is as it is apart from what anyone thinks
about it,  a refutation of Descartes’ view. He believed in  truth,  which  the scientific
method and social consensus (agreement of signs) can increasingly reveal, but cur-
rent belief as to what is ‘truth’ is fallible and can never be realized in the absolute (it
is a limit function). Distance and possible different understandings arise in the inter-

1 See Appendix A for further perspectives on Peirce.
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play of the object, its representation, and its interpretation.1 Better approximations
of truth come from questioning using the scientific method (via a triad of logics) and
from refining consensus within the community about how (via language signs) we
communicate that truth. Peirce termed this overall approach, pragmatism, in which
he firmly grounded his logics and theory of signs. Through the scientific method and
questioning, we may get closer to the truth and to an ability to communicate it to
one another, even though absolute ‘truth’ may require infinite inquiry by an infinite
community. At any point, new knowledge may change the basis of our truth-seeking.

The connections of Peirce’s sign theory, his three-fold logic of deduction-induction-
abduction,  the importance of the scientific method, and his understanding about a
community of inquiry have all fed my intuition that Peirce was on to some funda-
mental insights suitable to knowledge representation.  Peirce’s writings instruct us
that,  firstly, we need to embrace terminology that is precise for concepts and rela-
tions to communicate effectively within our communities. Secondly, we need to cap-
ture the right particular things of concern in our knowledge domain and connect
them using those relations.2 Thirdly, we need to organize our knowledge domain by
general types based on logical, shared attributes, and embrace a process for expand-
ing that structure with acceptable effort to deal with new or emergent information.

Truth is Testable and Fallible

Peirce’s time, as is our own, was one of great scientific advance and challenges to
conventional understanding. During Peirce’s professional lifetime, advances were oc-
curring in the knowledge of waves and fields, the chemical periodic table, evolution,
electricity,  and  thermodynamics  and  gases.  Given  this  ferment,  it  is  clear  why
Peirce’s  worldview supported  the  ideas  of  the  potential  fallibility  of  understood
‘truth,’ and the fact that truth itself stood upon a gradation of certainty.

Completeness of information and completeness of understanding are each, them-
selves, ideals. We strive for them, but we never can fully achieve them. While we may
reach sufficient certitude to bring about belief, itself an essential motivator in this
question, we will never entirely achieve it. ‘Truth,’ then, is ultimately (as a continu-
ous limit function) unachievable. However, ‘belief,’ which guides our actions, may be
achieved, and thus should be the objective of our inquiries. Any scientist spending
much time on Peirce’s writings would quickly affirm that, in nature, Peirce is a scien-
tist. His insights and attention are grounded in science. His understandings of mea-
surement and error and precision are those of a scientific practitioner.

Upper Ontologies, Context, and Perspective

Some form of conceptual schema governs every knowledge structure used for
knowledge representation (KR). In the semantic Web, such schema are known as on-

1 But this same logic provides the explanation for the process of categorization, also grounded in Firstness, 
Secondness, Thirdness; see Chapter 10.

2 This approach naturally leads to a knowledge graph structure.

109

https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Community_of_inquiry
https://en.wikipedia.org/wiki/Pragmaticism


A KNOWLEDGE REPRESENTATION PRACTIONARY

tologies, since they attempt to capture the nature or being (Greek , or ontós) ofὄντως, or ontós) of
the knowledge domain at hand. Because the word ‘ontology’ is a bit intimidating, a
better variant is the knowledge graph (because all semantic ontologies take the struc-
tural form of a graph). In general knowledge domains, we call such schema  upper
ontologies. However, one of the first things we see with existing ontologies is that
they are organized around a single, dyadic dimension, even though guided by a di-
versity  of  conceptual  approaches.  For  example,  in  the  venerable  Cyc knowledge
structure, one of the major divisions is between what is tangible and what is intangi-
ble. In BFO, the Basic Formal Ontology, the split is between a ‘snapshot’ view of the
world  (continuant)  and its  entities  versus  a  ‘spanning’  view that  is  explicit  about
changes in things over time (occurrent). Other upper ontologies have dyadic splits
such as abstract v. physical, perduant v. endurant, dependent v. independent, partic-
ulars v. universals, or determinate v. indeterminate.2 3 

Except for Sowa’s ontology,4 none of the standard upper ontologies embrace any
semblance of Peirce’s triadic perspective. Further, even Sowa’s ontology only par-
tially applies Peircean principles.2 Such Cartesian dichotomies become the basis for
arguments between their proponents. Moreover, a Cartesian and nominalistic view is
precisely what is wrong with these viewpoints. Our states and phenomena are not on
and off, but are probable or graded, likely or nuanced, or often shaded. Due to Carte-
sian thinking, we do not question why we continually apply a dichotomous schema
to real-world phenomena. Knowledge, Peirce tells us, is a Thirdness, and therefore
has context and perspective, continuity and generality.5 Peirce was not so much a su-
perhuman of intellect, but more that he rooted out what we need to question in our
premises, using sound logic to tease out insight and make questions simpler. 

We design ontologies for specific purposes, and the bases for these splits in other
ontologies have their rationales and uses. Where the design objective for the ontol-
ogy is  knowledge representation, as it is here, we need to model the nature of knowl-
edge explicitly. Knowledge, too, is not black and white, nor is it shades of gray along
a single dimension or lacking color. Knowledge is an incredibly rich construct inti-
mately related to context and perspective, with various degrees of vibrancy and nu-
ance. The minimum cardinality that can provide such a perspective is three. 

Being Attuned to Nature

The fierce realism that Peirce adopted and advocated, strongest in his later years,
was premised on a belief of natural evolution and how its tendencies express them-
selves in nature. He mostly thought and wrote regarding the symbolic world, but he
knew that was a continuation of the life and matter that precedes it. Nathan Houser,
the profound Peirce researcher and keeper of the flame for many years, astutely ob-
served:

“He [Peirce] had come to believe that attunement to nature was the key to the ad -
vancement of knowledge—as it was for life itself—and he thought that: the power to
guess nature's ways was one of the great wonders of the cosmos. Just as with animals,
whose instinct enables them to ‘rise far above the general level of their intelligence’ in
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performing  their  proper  functions,  so  it  is  with  humans,  whose  proper  function,
Peirce insisted, is to embody general ideas in art-creations, in utilities, and above all
in theoretical cognition. But if attunement to nature is the key to the advancement of
knowledge, it is at most a necessary condition; it puts thought on the scent of truth,
which, to attain, must be won by skilled reasoning.”6 

The importance of studying Peirce is to tease out those principles, design bases,
and mindsets that can apply Peircean thinking to the modern challenge of knowl-
edge representation. This knowledge representation is like Peirce’s categorization of
science or signs but is broader still in needing to capture the nature of relations and
attributes and how they become building blocks to predicates and assertions. In turn,
these constructs should be systematized and subjected to logical tests to provide a
defensible basis for what is knowledge and truth given current information. Then, all
of these representations should be put forward in a manner (symbolic representa-
tion) that is machine readable and computable.

Peirce had insights and guidance on every single aspect of these broader KR prob-
lems. The objective has been how to take these piece parts and recombine them into
a coherent whole that is  consistent with Peirce’s  architectonic.7 How can Peirce’s
thinking be decomposed into its most primitive assumptions to build up a new KR
representation? Knowledge representation by computers that does not explicitly ac-
count for perspective, meaning, and interpretation is doomed as wooden and unable
to handle context. We do not all need to agree on the specifics or any single interpre -
tation of what our domains of inquiry may be.  However, we do need a framework
that can respect and model those differences. One of Peirce’s most famous admoni-
tions is “there follows one corollary which itself deserves to be inscribed upon every
wall of the city of philosophy: Do not block the way of inquiry.” (1898, CP 1.135)
Knowledge representations based on dichotomous choices do just that. 

FIRSTNESS, SECONDNESS, THIRDNESS

“A very moderate exercise of this third faculty suffices to show us that the word Cate-
gory bears substantially the same meaning with all  philosophers. For Aristotle,  for
Kant, and for Hegel, a category is an element of phenomena of the first rank of gener-
ality. It naturally follows that the categories are few in number, just as the chemical
elements are. The business of phenomenology is to draw up a catalogue of categories
and prove its sufficiency and freedom from redundancies, to make out the character-
istics of each category, and to show the relations of each to the others.” (1903, EP
2:148)

Scholars of Peirce acknowledge how infused his writings on logic, semiosis, phi-
losophy, and knowledge are with the idea of ‘threes.’ His insights are perhaps most
studied regarding his semiosis of signs,1 with the triad formed by the object, repre-
sentation, and interpretation. Peirce studied and wrote on what makes ‘threes’ es-
sential and irreducible. His generalization, or abstraction if you will, he called simply

1 See further Chapter 2 and the section What is Representation?
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the ‘universal     c  ategories  ,’ and to reflect their fundamental nature, called each sepa-
rately as Firstness,  Secondness, and Thirdness. In his writings over decades, he related
or described this trichotomy in dozens of contexts.1 We have adopted this naming, so
also call the triad of the three categories of Firstness, Secondness, and Thirdness the
universal categories.8 

Constant Themes of Three

Trichotomies and triads permeate Peirce’s theories and writings in logic, realism,
categories, cosmology, and metaphysics.73 He termed this tendency and its applica-
tion in general as first, second, and third. In Peirce’s words:

“The first is that whose being is simply in itself, not referring to anything nor lying
behind anything. The second is that which is what it is by force of something to which
it is second. The third is that which is what it is owing to things between which it me-
diates and which it brings into relation to each other.” (1897, CP 2.356)

Peirce’s fascination with threes is  not unique.  S  cholastic philosophers  ,  ranging
from Duns Scotus and the Modists from medieval times to John Locke and Immanuel
Kant with his three formulations, and Hegel with his triad, expressed much of their
thinking in threes. As Locke wrote in 1690:9

“The ideas that make up our complex ones of corporeal substances are of three sorts.
First, the ideas of the primary qualities of things, which are discovered by our senses,
and are in them even when we perceive them not; such are the bulk, figure, number,
situation, and motion of the parts of bodies which are really in them, whether we take
notice of them or no. Secondly, the sensible secondary qualities which, depending on
these, are nothing but the powers these substances have to produce several ideas in us
by our senses; which ideas are not in the things themselves otherwise than as any-
thing is in its cause. Thirdly, the aptness we consider in any substance to give or re -
ceive such alteration of primary qualities, as that the substance, so altered should pro-
duce in us different ideas from what it did before.”

Summary of the Universal Categories

The first hurdle, I think, in attempting to understand Peirce’s universal categories
is the absolute abstractness of the terms Firstness, Secondness, and Thirdness. In this
case, I believe Peirce’s terminology fussiness is proper. Since, ultimately, according
to Peirce, all reality, all potential, and all emergence derives from these elements,
nothing other than one, two and three will do. Everything that is, may be, or could
surprise us arises from these elements.  Nothing further can be decomposed from
these elements, yet everything that is and is conceivable is built from these cate-
gories. 

Across  his  voluminous  writings,  summarized  across  the listings  in  Table  6-2,  I
glean this summary understanding of Peirce’s three categories from the standpoint

1 See later Table 6-2.
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of knowledge representation:

 Firstness [1ns] — these are possibilities, a ‘state’ of experience wholly in the abso-
lute present, which are basic ‘monadic’ qualities that may combine in various
ways to enable the real things we perceive in the world. They are unexpressed
potentialities,  the substrate  of  the real  and actual.  These are  the unrealized
essences or attributes or possible juxtapositions; indeed, “these” and “they” are
misnomers because,  once conceived,  the elements  of  Firstness  are no longer
Firstness.10 In the sense of categorization, think of Firstness as the universe of
ideas or possibilities that might be brought to bear for the new category of in-
quiry;

 Secondness [2ns] — these are the particular realized things, events or concepts in the
world, what we can perceive, point to and describe (including the idea of First -
ness and Thirdness). All  particulars are in Secondness and may be known as an
entity, event, instance or individual. In the sense of categorization, we can un-
derstand Secondness as the particular instances that may populate the informa-
tion space for the category, including the ideas of attributes and relations; and 

 Thirdness [3ns] — these are the  laws, habits,  thoughts,  regularities or  continuities
that may be generalized from particulars. All generals — what are also known as
classes, kinds or types — belong to this category, as do all regularities, patterns,
or logical groupings, or any combinations thereof. Changes in Firstness or Sec-
ondness  are  reasoned  over  in  Thirdness,  beginning  the  process  anew.  The
method of finding and deriving these generalities may also lead to new insights
or emergent properties, which, combined with absolute chance, are the source
of what Peirce called the ‘surprising fact.’  

We can summarize Peirce’s universal categories like this:

Name Characterization What Quantity How Defined Valence

Firstness Quality of feeling Ideas, chance, 
possibility

Vagueness, 
‘some’

Reference to a ground 
(pure abstraction of a 
quality)

Monadic

Secondness Reaction, resis-
tance, relation

Entities, 
events, 
brute facts, 
actuality

Singularity, 
discreteness, 
‘this’

Reference to a correlate
(by its relate) Dyadic

Thirdness Representation, 
mediation

Signs, habits, 
laws, necessity

Generality, 
continuity, 
‘all’

Reference to an inter-
pretant Triadic

Table 6-1: Peirce's Universal Categories1 11

Understanding, inquiry, and knowledge require this irreducible structure; con-
nections, meaning, and communication depend on all three components, standing in

1 Also called by Peirce the Ceno-Pythagorean categories (c.f., CP 2.87, 8.328).
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relation to one another and subject to interpretation by multiple agents in multiple
ways (Peirce’s semiosis of signs). Contrast this Peircean view with traditional classifi-
cation schemes, which have a dyadic or dichotomous nature and do not support such
rich views of context and interpretation.12

Once the basic structure of the trichotomy and the nature of its primitives were
in place, it was logical for Peirce to generalize the design across many other areas of
investigation and research. Because of the signs’ groundings in logic, Peirce’s three
main forms of deductive, inductive and abductive logic also flow from the same ap-
proach and mindset. How to think about categorization was another contribution.1

Using his terminology of the general triad, Peirce writes when the First and Second:

“... are found inadequate, the third is the conception which is then called for. The
third is that which bridges over the chasm between the absolute first and last, and
brings them into relationship. We are told that every science has its qualitative and its
quantitative stage; now its qualitative stage is when dual distinctions — whether a
given subject has a  given predicate or not  — suffice;  the quantitative stage comes
when, no longer content with such rough distinctions, we require to insert a possible
halfway between every two possible conditions of the subject in regard to its posses-
sion of the quality indicated by the predicate. Ancient mechanics recognized forces as
causes which produced motions as their immediate effects, looking no further than
the  essentially  dual  relation  of  cause  and effect.  That  was  why it  could  make  no
progress with dynamics. The work of Galileo and his successors lay in showing that
forces are accelerations by which [a] state of velocity is gradually brought about. The
words ‘cause’ and ‘effect’ still linger, but the old conceptions have been dropped from
mechanical philosophy; for the fact now known is that in certain relative positions
bodies undergo certain accelerations. Now an acceleration, instead of being like a ve-
locity a relation between two successive positions, is a relation between three .... we
may go so far as to say that all the great steps in the method of science in every de-
partment have consisted in bringing into relation cases previously discrete.” 
(1888, CP 1.359)

 Continuity is an aspect of Thirdness, what Peirce called synechism, and discovery
of new knowledge is itself a process. We may better understand concepts like space
and time when we embed them in the idea of continuity. Actions may also express
triadic relations, the classic example being ‘A gives B to C.’ (1903, EP 2 170-171) The
other classic triadic example is Peirce’s sign relation between object, sign, and inter-
pretant. The brilliance of Peirce’s mindset is that first, second and third are a suffi-
cient basis to bootstrap how to represent the world. 

The Irreducible Triad

Peirce saw the trichotomous parts of his sign logic as the fewest ‘decomposable’
needed to model the real world. Robert Burch has called Peirce’s ideas of ‘indecom-
posability’ the ‘reduction thesis.’13 The thesis is ternary relations suffice to construct
any arbitrary relation, but we cannot construct all relations from unary and binary

1 See the discussion on prescission in Chapter 7.
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relations alone. Threes are irreducible to capture the basis of knowledge. Peirce did
not provide a formal proof for his assertions; there was not yet a complete formalism
for predicate calculus at his disposal.14 Here are some of Peirce’s thoughts as to what
makes something ‘indecomposable’:

“It is a priori impossible that there should be an indecomposable element which is
what it is relatively to a second, a third, and a fourth. The obvious reason is that that
which combines two will by repetition combine any number. Nothing could be sim-
pler; nothing in philosophy is more important.” (1905, CP 1.298)

“We find then a priori that there are three categories of undecomposable elements to
be expected in the phaneron: those which are simply positive totals, those which in-
volve dependence but not combination, those which involve combination.” (1905, CP
1.299)

“I will sketch a proof that the idea of meaning is irreducible to those of quality and re-
action. It depends on two main premisses. The first is that every genuine triadic rela-
tion involves meaning, as meaning is obviously a triadic relation. The second is that a
triadic relation is inexpressible by means of dyadic relations alone .... every triadic re-
lation involves meaning.” (1875, CP 1.345)

“And analysis  will  show that  every relation which is  tetradic,  pentadic,  or  of  any
greater number of  correlates  is  nothing but  a  compound of  triadic relations.  It  is
therefore not surprising to find that beyond the three elements of Firstness, Second-
ness, and Thirdness, there is nothing else to be found in the phenomenon.” (1875, CP
1.347)

Peirce thus maintained that we could decompose all higher-order relationships
(polyadic with more than three terms) to monadic, dyadic or triadic relations. Fur-
ther, Peirce maintained that the triadic relation is primary, with monadic and dyadic
relations being degenerate forms of it. An interesting aspect of Peirce’s Thirdness is
how to treat relations between Firstness, Secondness, and Thirdness. Because of the
sort of building block nature inherent in a sign, we can not treat all potential dyadic
relations between the three elements equally. According to the ‘qualification rule,’ “a
First can be qualified only by a first; a Second can be qualified by a First and a Sec-
ond; and a Third can be qualified by a First, Second, and a Third.”15 Note that a Third
cannot be involved in either a First or Second.1

Researchers have now formally proven these assertions by Peirce.  Herzberger16

and then Burch13 were the first independent researchers to establish the irreducibil-
ity of the basic relations of threes in a constrained form, but this was later more
broadly proven using Peirce’s existential graphs in two different papers by Correira
and Pöschel17 and then Hereth and Pöschel.18

1 See the related discussion under the last section on ‘Representation’ in Chapter 2.
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THE LENS OF THE UNIVERSAL CATEGORIES

Still, the question remains: How can one apply Peirce and his ideas to today’s
challenges in knowledge representation? What is the essence of trying to approach
and solve problems by Peircean means? Is there a lens through which we can think
through contemporary problems in domains unheard of in Peirce’s time? 

One approach taken by scholars is to attempt to complete Peirce’s sign classifica-
tion system. As noted in Chapter 2, Peirce expanded his original three universal cate-
gories to six (three, plus the degenerate form of Secondness and the two degenerate
forms of Thirdness19); then to 10 in the fuller explication of the sign (see Table 2-1);
and then  to  incomplete 28- and 66-sign versions toward the end of  his career. Re-
searchers such as Borges,20 Burch,21 Faria et al. 22 and Jappy23 have attempted to ‘sign-
trace’ these late, incomplete versions. These are laudable attempts, and often cre-
ative and insightful. However, these later Peirce sign systems are incomplete, require
filling in the blanks for what Peirce intended, and are not directly relevant to model-
ing knowledge representation. My first attempts at using Peirce for KR tried to fol-
low this same path, but I abandoned it as being too removed and speculative.

An Aha! Moment

I was first attracted to Peirce’s universal categories because of my interest in rep-
resenting human language and its meaning. Only through context and perspective —
Thirdness — may we hope to capture and understand the nuances of meaning. When
I first saw this strength in Peirce’s worldview, that (and his writings) led me to look
at its applicability elsewhere. My Aha! moment, if I can elevate it as such, was when I
realized that trying to cram these insights into Peirce’s elaborate sign terminology
and other literal aspects of his writing were, at least for me, self-defeating. The Aha!
arose when I chose instead to understand the mindset underlying Peirce’s thinking
and the triadic nature of his universal categories and semiosis. 

I find it amazing and consistent how much Peirce himself relies on the universal
categories in his thinking and analysis. His method of thinking through to founda-
tions, prescission,1 is invaluable in deciding edge cases for categorization. I believe he
applied this approach, for example, to his later sign expansions. There must be some-
thing at the heart of these universal categories that make them such a powerful lode-
stone. The very generalizations Peirce made around the somewhat amorphous desig-
nations of Firstness, Secondness, and Thirdness seemed to affirm that what he was
genuinely getting at was a way of thinking, a  method of ‘decomposing’ the world,
that had universal applicability irrespective of domain or problem. Thus, to make my
Aha! moment useful, I needed to understand the essence of what lies behind Peirce’s
universal categories. 

Not only at the most fundamental level, but, at almost all levels of understanding
and logic,  Peirce articulated a  worldview built  around these universal  categories.

1 See Chapter 7.

116



THE UNIVERSAL CATEGORIES

Peirce uses this triadic structure to describe language, signs, logic, relations, growth,
emergence, science, truth, limits, meaning, community, categorization, and consen-
sus-building.  Though  Peirce  acknowledges  natural  classification  systems,  such  as
trees of life and dichotomous   keys   in taxonomy, in most areas of ideas and concepts
and metaphysics, he boils down his arguments into the three universal categories. As
noted, he argues that each alone is necessary, each is irreducible, and all three are
required to adequately represent any information space, which is, after all, a sign.

Peirce’s triadic approach to logic is  especially informative. The first leg of the
logic triad is speculative grammar, in which one strives to capture the signs that most
meaningfully and naturally describe the current and potential domain of discourse.
The second leg of the logic triad is the means of logical inference, be it deductive, in-
ductive or abductive (hypothesis generating). The third leg is the process or method
of inquiry, what Peirce most often called the methodeutic. The methods of research or
science, including the scientific method, result from the application of this logic.24

The ‘pragmatic’ part of Peirce’s pragmaticism arises from how to select what is es-
sential and economically viable to investigate among multiple hypotheses.

Though scholars widely discuss Peirce’s universal categories, most Peircean re-
search focuses on signs, a subset of the categories. Signs are more often the prism by
which scholars probe Peirce’s philosophy. My approach, instead, has been to broaden
my perspective to the universal categories and then to use Peirce’s methods to ex-
plore them. I have hoped to discern the mindset underlying them, which I could then
apply to the contemporary challenges of knowledge representation.

Grokking the Universal Categories

Peirce expressed his notions of the universal categories in many different ways
and contexts. Peirce’s students have further interpreted these notions. To get at the
purpose of the triadic concepts, I thought it useful to research the question in the
same way that Peirce recommends. After all, Firstness, Secondness, and Thirdness
should themselves be prototypes for what Peirce called the ‘natural classes.’1

I have assembled from Peirce’s writings as many examples of the three members
of the universal categories as I  could find. This assemblage is  ‘an enumeration of
tests’ to use Peirce’s phrase. The following table lists these more than 60 examples of
Firstness, Secondness and Thirdness, the contexts in which they arose, and a citation
where to find the supporting material in Peirce’s writings. I use lowercase for all as-
signments  to  the  universal  categories  to  put  the  listings  on  a  common  footing,
though Peirce often capitalized his terms. Please do not confuse the three modes of
the universal categories with the three entries in an RDF triple (see Chapters 1 and 8):

Context Firstness Secondness Thirdness

Moods or Tones first second third T1

Conceptions of First, independent relative ediating T2

1 See further Chapters 6 and 12.
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Context Firstness Secondness Thirdness

Second, Third

The Categories monads particulars generals T3

Time “present” “past” “future” T4

Cognition / Space point line triangle / sphere T5

Movement position velocity acceleration T6

Modes of Being possibility existence law T7

Seconds internal external --- T8

Thirds mixtures comparisons intelligibles T9

Modality possibility actuality necessity T10

Phenomena 1 sensations reactions generals T11

Phenomena 2 qualities of 
phenomena actual facts laws (and thoughts) T12

Phenomena 3 chance existents continuity T13

Active Elements chance law habit-taking T14

Realism form matter entelechy T15

Existence chaos regularity continuity T16

Continuity feeling effort habit T17

Mathematics quality facts laws T18

Ceno-Pythagorean 
Categories originality obsistence transuasion T19

Form tone token type T20

Being quality relation representation T21

Protoplasm sensibility motion growth T22

Natural Selection individual variation heritability elimination of unfa-
vored characters

T23

Modes of Evolution absolute chance mechanical necessity law of love T24

Doctrines of Evolution tychasticism anancasticism agapasticism T25

Consciousness 1 feeling sense of action/reaction sense of learning T26

Consciousness 2 feeling altersense medisense T27

Consciousness 3 immediate feeling polar sense synthetical con-
sciousness

T28

Thought 1 abstraction suggestion association T29

Thought 2 possibility information cognition T30
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Context Firstness Secondness Thirdness

Thought 3 thought-sign connected interpreted T31

Synthetical Con-
sciousness

association by conti-
guity

association by resem-
blance intelligibility T32

Mind feelings reaction-sensations conceptions T33

Logical Mind ideas ideas from prior ideas ideas from prior pro-
cesses

T34

Experiences simples recurrences comprehensions T35

Universe of Experi-
ences ideas brute activity sign T36

Information intensions extensions comprehensions T37

Knowledge Represen-
tation attributes individuals types T38

Characters or Predi-
cates internal external conceptual T39

Relations attributes external relations representations T40

Representation representamen object interpretant T41

Sign-Object icon index symbol T42

Nature of Signs qualisign sinsign legisign T43

Kinds of Characters singular characters dual characters plural characters T44

Symbols words (or terms) propositions arguments T45

Sign-Interpretant 1 emotional interpre-
tant energetic interpretant logical interpretant T46

Sign-Interpretant 2 rhemes dicisigns arguments T47

Signs 1 possibles things collections T48

Signs 2 abstractives concretetives collectives T49

Propositions hypothetical categorical relative T50

Logical Terms monads dyads triads T51

Separability of Ideas dissociation prescission determination T52

Assertions possible modality actual modality necessary modality T53

Reasoning what is possible what is actual what is necessary T54

Logical Thinking clearness of concep-
tions clearness of distinctions clearness of practical

implications
T55

Clarity doubt inquiry belief T56

Logic Methods abductions deductions inductions T57
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Context Firstness Secondness Thirdness

Logic speculative grammar logic and classified argu-
ments

methods of truth-
seeking

T58

Sciences of Discovery mathematics philosophy special sciences T59

Philosophy phenomenology normative science metaphysics T60

Normative Science esthetics ethics logic T61

Concepts of Meta-
physics spontaneity dependence mediation T62

Others

complete in itself,
freedom, free, mea-

sureless, variety,
freshness, multiplic-

ity, manifold of
sense, peculiar, idio-
syncratic, suchness,

one, new, sponta-
neous, vivid, sui

generis

otherness, comparison,
action, dichotomies, mu-
tual action, will, volition,

involuntary attention,
shock, sense of change,
here and now (hinc et

nunc), compulsion, state,
occurrence, negation

idea of composition,
intelligence, modera-

tion, comparative,
reason, sympathy,
intelligence, struc-
ture, regularities,

conduct, representa-
tion, middle, learn-
ing, conditional, dif-

fusion

T63

Table 6-2: Peirce’s Universal Categories in Relation to Various Topics25

The table spans from the potential or abstract, such as ‘first’ or ‘third,’ to whole
realms of science or logic. This spanning of scope reflects the genius of Peirce’s in-
sight wherein semiosis can begin literally at the cusp of Nothingness26 and then pro-
ceed to capture the process of sign-making, language, logic, the scientific method,
and thought abstraction to embrace the broadest and most complex of topics .27 I also
find this statement by Peirce is another powerful expression of the universal cate-
gories: “The starting-point of the universe, God the Creator, is the Absolute First; the
terminus of the universe, God completely revealed, is  the Absolute Second; every
state of the universe at a measurable point of time is the third.” (1888, CP 1.362) 

Because I have taken these examples from many contexts, it is important to re-
view this table on a row-by-row basis  when investigating the nature of the cate-
gories. Review of the columns helps elucidate the ‘natural classes’ of Firstness, Sec-
ondness, and Thirdness. Some items appear in more than one column, reflecting the
natural process of semiosis wherein more basic concepts cascade to the next focus of
semiotic attention. The last row is a kind of catch-all trying to capture other men-
tions of the universal categories in Peirce’s phenomenology.

It took me a while to realize that Firstness, Secondness, and Thirdness are not a
linear sequence, nor one in time. In fact, Peirce likens Firstness to the present, Sec-
ondness to the past, and Thirdness to the future (not in a predictive sense, but as
probabilities continuing from the past).28 All possibilities, Firstness, reside in the ab-
solute present, “for nothing is more occult.” (1902, CP 2.85) The instant at which
these possibilities act or are acted upon causes them to come into existence, or Sec-
ondness.  These  instances  exist  in  relation  or  contrast  with  other  instances  and
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events because what is real is past. The continuity of these instances through space
and time, the probable future, enables new generalities arising from what we can
learn from Secondness and Firstness, as well as to anticipate or plan. Chances or acci-
dents in Firstness may spring ‘surprises’ in Secondness that trigger new cognition or
mediation in Thirdness, which potentially predicates a new basis for categorization,
in the sense of knowledge representation, our chosen frame of reference.

My thesis is that studying these assignments  for the various contexts shown in
Table 6-2 is one way to internalize the mindset of the universal categories. At the
most fundamental level, we can see Firstness as the raw, unexpressed possibilities of
the current problem set, the building blocks for the new category, if you will. Chance
is the root aspect of Firstness, which means any of these possibilities may express
themselves in surprising ways, perhaps causing the need for new categorization. The
actual things or events of the new category, as made manifest by their interaction or
contact with what also exists in the domain at hand, provide the actual instances of
Secondness. The generalities or continuities among these instances, classed into nat-
ural types  as best we can, provide the Thirdness of this domain. We find much to
plumb in Peirce’s universal categories.

Applying the Universal Categories

The lens of the universal categories provides a framework for how we may orga-
nize and settle upon terminology for existing and emerging knowledge, the first task
of  a  knowledge  representation  system.  Peirce,  the  logical  categorizer,  concerned
with methods,  and interested in  pragmatic  approaches and solutions,  understood
that how we categorize our continually emerging world was fundamental. 

We see that the categorization effort may arise from one of three sources. We ei-
ther are trying to organize a knowledge domain anew; we are splitting an existing
category that has become too crowded and difficult to reason over; or we have found
a ‘surprising fact,’ which is new knowledge that emerges from chance or anomalies
observed when attempting to generalize or to form habits. The occasional surprising
fact alters what we think we know about reality, which causes us to re-inspect and
re-categorize  our  world.  Abductive  reasoning,  a  Peirce  contribution,  attempts  to
probe why the anomaly occurs. The possible hypotheses so formed constitute the
Firstness or potentials of the new categorization (identification of particulars and
generalization of the phenomena). We scope the category based on the domain and
the granularity of the categorization effort.

I think it is evident in Table 6-2, sometimes to multiple levels depending on con-
text (study some of the supporting material to the table),  that Peirce applied this
same method. As Peirce instructs, the dynamic universal categories, faced with the
unexpected chance arising in Firstness,  ripple through our awareness  (reality)  to
cause a new understanding of the state of existence (Secondness). The universal cate-
gories give us the primitive elements by which we can generalize our new world, a
factor of Thirdness. Peirce’s pragmatic maxim helps us decide among many possible
alternatives. So the cycle continues. Truth, understood as a limit function, gets con-
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tinuously exposed as we test and affirm these realities.
 Start with any subject domain. We know the things, and therefore the character-

istics, of the things that populate this domain. So, we first spend time enumerating
and describing the features of the things in this domain. We will call this category of
characteristics, Firstness. Then, we try to list and organize the actual things in this
domain. These, individually, are the events and entities, that we can imagine or spec-
ify about this domain. This list of particulars, what we call Secondness, is surely al-
ways going to grow, so from an operational viewpoint, we want input files for these
items that are easy to update and modify. The items in our domain also have general-
ities  and  shared  aspects  that  help  place  those  items  into  meaningful  categories.
These groupings, admittedly synthetic in one sense, are also real in another sense
when  the  groupings  make  logical  sense.  These  generalities  are  an  expression  of
Thirdness. This categorization into Thirdness is straightforward to do on purely logi-
cal grounds but is more difficult when we desire explanatory power. Where ques-
tions arise about which universal category to assign something, we look to Peirce and
later scholars to see if prior determinations have been postulated and argued. If so,
we test those assumptions and adopt or not those assignments, based on our logical
assessments. We continue this process as we get deeper and more specific in our cat-
egorizations. No matter what the assignment, each should be subject to questioning
and testing by the community of users, perhaps altering those assignments as better
information or better logic is applied.

This process is the one that we followed in developing the open source KBpedia
Knowledge Ontology (KKO), the knowledge graph of some 200 concepts that provides
the upper-level scaffolding for our knowledge representation efforts. KKO is the first
knowledge graph to embrace the universal  categories  explicitly.  We will  get  into
specifics about KKO in later chapters.

I earlier mentioned my epiphany from specifics to mindset in Peirce’s teachings.
This insight has not caused me to suddenly understand everything Peirce was trying
to say, nor to come to some new level of consciousness. However, what it has done is
to open the door to a new way of how to think about and look at the world. I am now
finding via the universal categories that prior, knotty problems of categorization and
knowledge representation are becoming (more) tractable, as I discuss in subsequent
chapters. Many of these problems, such as how to model events, situations, identity,
representation,  and continuity  or  characterization  through time,  may sound  like
philosophers’ millstones, but they often lie at the heart of the most challenging prob-
lems in knowledge modeling and representation. Even the tiniest break in the mental
and conceptual logjams around such issues feels like significant progress. 

The Categories and Categorization

The area of Secondness is where we surface and describe the particular objects or
elements that define this category. Peirce described it thus:

“So far Hegel is quite right. But he formulates the general procedure in too narrow a
way, making it use no higher method than dilemma, instead of giving it an observa-
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tional essence. The real formula is this: a conception is framed according to a certain
precept,  [then]  having  so  obtained  it,  we  proceed  to  notice  features  of  it  which,
though necessarily involved in the precept, did not need to be taken into account in
order to construct the conception. These features we perceive take radically different
shapes; and these shapes, we find, must be particularized, or decided between, before
we can gain a more perfect grasp of the original conception. It is thus that thought is
urged on in a predestined path. This is the true evolution of thought, of which Hegel’s
dilemmatic method is only a special character which the evolution is sometimes found
to assume.” (1896, CP 1.491)

In Thirdness we are contemplating the category, thinking about it, analyzing it,
using and gaining experience with it, such that we can begin to see patterns or laws
or ‘habits’ (as Peirce so famously put it) or new connections and relationships with it.
This contemplation or the occasional ‘surprising fact’ is where new knowledge arises,
New knowledge causes us to split and then codify new signs and categories useful to
the knowledge space. As domains are investigated to deeper levels or insights expand
the branches of the knowledge graph, we tackle each new layer via this three-fold in-
vestigation. Of course, context sets the perspectives at hand; the multiple listings in
Table 6-2 above can help stimulate these thoughts.

Firstness Secondness Thirdness

Symbols idea of; nature of; milieu; 
‘category potentials’ reference concepts standards

Generality cross-products of
Firstness

language (incl. domain);
computational

analysis; representation;
continua

Interpreters 
(human or ma-

chine)

What are the ingredients,
ideas, essences of the

category?

What are the new things or
relationships of the

category?

What are the laws,
practices, outputs
arising from the

category?

Table 6-3: Using the Universal Categories for Categorization

Interrelationships adhere to the Peircean Thirdness, and there continues  to be
growth and additions. Categories thus tend to fill themselves up with more insights
and ideas until the scope and diversity compel another categorization. In these ways,
categorization is not linear, but accretive and dynamic. Firstness, Secondness, and
Thirdness inform how to think about the idea of categorization. I  use the kind of
mental checklist provided in Table 6-3 when it comes time to split a concept or cate-
gory into a new categorization.

These Peircean ideas  of  the  universal  categories,  applied  against  basic  logical
principals, and subject to the understanding about fallibility and the limits to truth,
provide a basic set of methods of how to think about and categorize the world. When
the ‘surprising fact’ arises that causes us to question premises and regularities, we
can apply this same categorization logic to assess the next level of subject specificity.
Now, we are in a mediating portion of our information space, likely again requiring
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new categorization. Peirce’s universal categories provide a powerful unifying force
for organizing and categorizing knowledge domains.

“Taking any class in whose essential idea the predominant element is Thirdness, or
Representation, the self development of that essential idea — which development, let
me say, is not to be compassed by any amount of mere ‘hard thinking’, but only by an
elaborate process founded upon experience and reason combined — results in a tri -
chotomy giving rise to three sub-classes, or genera, involving respectively a relatively
genuine thirdness, a relatively reactional thirdness or thirdness of the lesser degree of
degeneracy, and a relatively qualitative thirdness or thirdness of the last degeneracy.
This last may subdivide, and its species may even be governed by the three categories,
but it will not subdivide, in the manner which we are considering, by the essential de-
terminations of its conception. The genus corresponding to the lesser degree of de-
generacy, the reactionally degenerate genus, will subdivide after the manner of the
Second category, forming a catena; while the genus of relatively genuine Thirdness
will subdivide by Trichotomy just like that from which it resulted. Only as the division
proceeds, the subdivisions become harder and harder to discern.” (1903, CP 5.72, EP
2:162)

The way I interpret this passage (in part) is that categories in which new ideas or
insights have arisen — themselves elements of Thirdness for that category — are tar-
gets for new categorization. That new category should focus on the idea or insight
gained, such that each new category has a character and scope different from the
one that spawned it. Of course, depending on the purpose, some ideas or insights
have a more substantial potential effect on the domain, and those should get priority
attention. As a practical matter, this means that categories of more potential impor-
tance to the sponsor receive the most focus.

Peirce’s contributions can make a notable difference in how knowledge represen-
tation efforts move forward. I think that it is possible to codify and train others to
use this mindset, one purpose of this book. Peirce stood on the shoulders of the gi -
ants before him. We can now stand on Peirce’s shoulders to mount the next rung on
the ladder of knowledge. I believe Peirce’s universal categories and what they imply
offer the next adaptive climb upward for knowledge representation.
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chart, that Peirce himself employs many different terms for his universal categories. We have chosen these 
to be the three main categories in the KBpedia Knowledge Ontology for these reasons. See further CP 1.300-
338. ; T4 - CP 2.84-86; see also 2.146; it is NO; T 1 –> 2 –> 3 present v hic et nunc ; CP 5.459-463 ; T5 - CP 5.263 ;  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
T6 - CP 1.337 ; T7 - CP 6.343-344 ; T8 - CP 1.365; these are the two degenerate forms; there is no Thirdness ;  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
T9 - CP 1.366; This is an example of what Peirce called “degenerate” categories of the category. Degenerate 
means that it is a component of the category, but not sufficient as a concept in the 1o and 2o ; T10 - CP  ; T2 - See CP 6.32-
5.454 ; T11 - CP 1.418-420 ; T12 - CP 5.121 ; T13 - Per the discussion in  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32- Appendix A ; T14 - CP 1.409 ; T15 - NEM  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
4:295 ; T16 - CP 1.411 and CP 1.175 ; T17 - CP 6.201-202; also called ; Tritism or Synechism (or “all that there  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
is”) ; T18 - CP 1.417-420 ; T19 - CP 2.87-89; Peirce using his obscure labels in seeking exactitude ; T20 - CP  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
4.537 ; T21 - CP 1.555 and CP 2.418; the initial categories were actually bracketed by Being and Substance (5  ; T2 - See CP 6.32-
categories total). In CP 4.3 Peirce re-named these labels as quality, reaction and mediation. However, in that 
same passage he says, “How the conceptions are named makes, however, little difference.” I have chosen to 
retain his earlier names because they are more commonly referenced and it retains the idea of “representa-
tion”, more allied with the idea of knowledge representation; T22 - CP 1.393 ; T23 - CP 1.398 ; T24 - CP 6.302 ;  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
T25 - CP 6.302 ; T26 - CP 1.378 ; T27 - CP 7.551; thought is taken to be as equivalent to medisense ; T28 - EP  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
1.260 ; T29 - The analysis of the labels and relations is provided in these two articles: M.K. Bergman, 2017.  ; T2 - See CP 6.32-
“KBpedia Relations, Part III: A Three-Relations Model,” AI3:::Adaptive Information blog, May 24, 2017; and 
M.K. Bergman, 2017. “KBpedia Relations, Part IV: The Detailed Relations Hierarchy,” AI3:::Adaptive Informa-
tion blog, June 27, 2017. ; T30 - CP 1.537 ; T31 - CP 5.283-284 ; T32 - EP 1.261 ; T33 - CP 6.18-20 ; T34 - CP 7.348 ;  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
T35 - CP 7.528 cf ; T36 - CP 6.455 ; T37 - Peirce did not explicitly list these terms, but they can be readily and  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
logically derived from CP 2.419-421. ; The idea of information being a product of depth (1o, intensionality)  ; T2 - See CP 6.32-
times breadth (2o, extensionality) is quite insightful ; T38 - Though “general type” is a common term for  ; T2 - See CP 6.32-
Thirdness in Peirce’s writings, he rarely used “attribute” and preferred particulars to “individuals”. “At-
tributes” and “individuals” are now in modern usage, and clearly refer to 1ns and 2ns, respectively. We 
have chosen these two terms for use in the KBpedia Knowledge Ontology for these reasons. ; T39 - Some ; T2 - See CP 6.32- -
what modified from CP 5.469 cf, with external and conceptual replacements supported by the senses of the 
accompany text ; T40 - Taken from the analysis of Peirce documented in T50; these are the terms chosen for  ; T2 - See CP 6.32-
use in terms for use in the KBpedia Knowledge Ontology ; T41 - CP 1.339; “representation” is also called a  ; T2 - See CP 6.32-
“sign” ; T42 - CP 1.191; can also be called “speculative grammar” or “nature of signs”; in Jappy 2017 this is  ; T2 - See CP 6.32-
called “Sign-Object”, ; Table 1.2 A Synthesis of MSS R478 and R540, 1903 ; T43 - CP 4.537 fn 3; called simply  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
“Sign” in Jappy 2017, ; Table 1.2 A Synthesis of MSS R478 and R540, 1903. ; T44 - CP 1.370-371; can substitute  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
“facts” for “characters” ; T45 - CP 2.95, also CP 8.337; CSP also expresses “arguments” as inferences or syllo ; T2 - See CP 6.32- -
gisms ; T46 - CP 5.475-6 ; T47 - From Jappy 2017, ; Table 1.2 A Synthesis of MSS R478 and R540, 1903 ; T48 - CP  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
8.366, with respect to the nature of dynamical objects ; T49 - CP 8.366, with respect to the nature of dynami ; T2 - See CP 6.32- -
cal objects ; T50 - CP 2.325 ; T51 - CP 1.293 ; T52 - CP 1.353 ; T53 - CP 4.57 ; T54 - CP 1.369 ; T55 - CP 3.457 ; T56 -  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
From Max H. Fisch 1986, Ken L. Ketner and Christian W. Cloesel, eds., Peirce, Semiotic, and Pragmatism: Essays 
by Max H. Fisch, Indiana University Press, p. 327 ; T57 - CP 2.98; in an earlier version, I listed “abduction” as a  ; T2 - See CP 6.32-
Thirdness, but I was corrected on the Peirce-L mailing list. On the other hand, abduction is at the interface 
between ; Thirdness and Firstness, since it is the source of the possibilities that need to be considered for a  ; T2 - See CP 6.32-
given category. ; The dynamic nature of Peirce’s semiosis is part of the sign-making and -recognition  ; T2 - See CP 6.32-
process. ; T58 - CP 1.191 ; T59 - CP 1.239-242; the “special sciences” include the physical (physics, chemistry,  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
biology, astronomy, geognosy, and whatever may be like these sciences) and the psychical (psychology, lin-
guistics, ethnology, sociology, history, etc.) sciences ; T60 - CP 1.280-282 ; T61 - CP 1.281 ; T62 - CP 3.422; also, ; T2 - See CP 6.32-  ; T2 - See CP 6.32-  ; T2 - See CP 6.32-
Forms of Rhemata (singular, dual or plural) ; T63 - occasional mentions taken from various Peirce writings.’ ; T2 - See CP 6.32-

28. Edwina Taborsky prefers to define Thirdness in this context as “past-future.” Thirdness is a continuity of 
past laws into the future. In her 2006 paper, ‘The Nature of the Sign as a WFF—A Well-Formed Formula,’ 
(AIP Conference Proceedings, vol. 839, pp. 303-313), the three types of time are present, perfect and progres-
sive, aligned with Firstness, Secondness and Thirdness.
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peculative grammar, the theory of the nature and meaning of signs, is the
first of the three branches of logic according to Peirce. The basic idea of a

speculative grammar is simple when applied to a new concept or domain, such as
knowledge representation. What is the terminology — vocabulary and relations
— that may be involved in understanding the questions or concepts at  hand?
What is the ‘grammar’ for relating this terminology to the logics we need to help
increase our understanding of the domain? How shall we split and organize these
concepts? That  is,  how shall  we categorize our domain? How do we combine
these elements into assertions and statements and then test them for truth and
accuracy? Through this grammar, in the KR context, can we maximize the struc-
tural features within our focus of inquiry useful to machine learners?

S

The term ‘semiosis’ most often brings to mind Peirce’s theory of signs.1 However,
for Peirce semiosis was a broader construct still, representing his overall theory of
logic and truth-testing. Signs, symbols, and representation are the first part of this
theory, the speculative grammar about how to formulate and analyze logic. Though
he provides a unique take on it, Peirce’s idea of speculative grammar, which he as-
cribed to Duns Scotus, perhaps should be traced back to the 1300s and the writings of
Thomas of Erfurt, one of the so-called Modists of the medieval philosophers.2 Here is
how Peirce placed speculative grammar within his theory of logic:

“All thought being performed by means of signs, logic may be regarded as the science
of the general laws of signs. It has three branches: (1) Speculative Grammar, or the gen-
eral theory of the nature and meanings of signs, whether they be icons, indices, or
symbols; (2) Critic, which classifies arguments and determines the validity and degree
of force of each kind; (3) Methodeutic, which studies the methods that ought to be pur-
sued in the investigation, in the exposition, and in the application of truth.” (1903, CP
1.191, EP 2:260)

In terms of the logic triad, speculative grammar is thus a Firstness in Peirce’s cat-
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egory structure. Firstness is meant to capture the possibilities of the domain at hand.
Secondness is meant to capture the particular facts or real things of the domain at
hand, the critic in terms of the logic triad. Thirdness is meant to capture methods for
discovering the generalities, laws or new knowledge arising from the domain, the
methodeutic branch of the triad. We may apply this construct to any topic, from signs
to logic and science. The ‘surprising fact,’ or new insight arising from Firstness or
Thirdness, points to potentially new topics that may themselves become new targets
for this logic of semiosis.

Without the right concepts, terminology, or bounding — that is, the speculative
grammar — it is impossible to understand or compose the  objects (conceptual and
material) within Secondness that populate the domain at hand. Without the right
language and concepts to capture the connections and implications of the domain at
hand — again, part of its speculative grammar — it is not possible to discover the
generalities  or  the  ‘surprising  fact’  or  Thirdness  of  the  domain.  The  speculative
grammar is thus needed to provide the right constructs for describing, analyzing,
and reasoning over the given domain. Our logic and ability to understand the focus
of our inquiry  require that we describe and characterize the domain of discourse
with  proper scope and relationships. How well we bound, characterize, and signify
our problem domains — again, the speculative grammar — directly relates to how
well we can reason and inquire about that space.

Let’s take a couple of examples to illustrate this. First, imagine van Leeuwenhoek
first discovering ‘animalcules’ under his early microscope. Over the ensuing years,
new terms and concepts like flagella, cells, and vacuoles were coined and system-
atized to enable a further understanding of microorganisms, requiring careful in-
spections and consensual vocabulary. Second, imagine ‘action at a distance’ phenom-
ena such as magnetic repulsion or static electricity causing hair to stand on end. For
centuries these phenomena were assumed caused by atomistic particles too small to
see or discover. Only when Hertz was able to prove Maxwell‘s equations of electro-
magnetism in the mid-1800s were the concepts and vocabulary of waves and fields
sufficiently  developed  to  begin  to  unravel  electromagnetic  theory  in  earnest.
Progress required the right concepts and terminology.

For Peirce, the triadic nature of the sign — and its relation between the represen-
tamen, its object, and its interpretant — was the speculative grammar breakthrough
that then allowed him to better describe the process of  sign-making and its role in
the logic  of  inquiry  and truth-testing (semiosis).  Because he recognized it  in  his
work, Peirce understood a conceptual grammar appropriate to the inquiry at hand is
essential to further discovery and validation. As Peirce says in his first paper outlin-
ing his early logic of relatives:3 

“The fundamental principles of formal logic are not properly axioms, but definitions
and divisions; and the only facts which it contains relate to the identity of the concep-
tions resulting from those processes with certain familiar ones.” (1870, CP 3.149)

We begin our analysis of a speculative grammar suitable to knowledge represen-
tation with the relevant ‘things’ (nouns) that populate our world and how we orga-
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nize them in relation to one another.4 We then expand our discussion of relations to
include actions and perceptions (verbs) between these things, as well as how we talk
about or describe those things.  Things and relations combined enable us to make
statements and  assertions.  In  the aggregate,  multiple  statements  interact  to  create
many kinds of information structures, some with  impressive analytical properties
discussed in later chapters. In knowledge representation, terminology can be a tricky
business, since different approaches to KR adopt different terms, sometimes overlap-
ping or in conflict with other schemes. I try to point out some of these conflicts for
key terms in the three chapters of this Part II on grammar. Throughout this chapter
— indeed, this book — we italicize the basic KR terminology we have adopted for this
book and KBpedia. The Glossary consolidates this terminology in one location.

THINGS OF THE WORLD

We watch our children first learn the names of things as they begin mastering
language. The learning focus is on nouns and building a vocabulary about the things
that populate the tangible world. By the time we start putting together our first sen-
tences, typified in books such as Dick and Jane and the dog Spot, our nouns get in-
creasingly numerous and rich, though our verbs remain simple. We acquire terms in
our early language more about different kinds of objects than different kinds of ac-
tions (though concepts such as ‘More’ or ‘Want’ or gesturing to the mouth to signify
‘Eat’ are learned early!). Our early verbs are fewer in number and much less varied
than the differences of form and circumstance we can see from objects. Our knowl-
edge artifacts reflect this imbalance. 

Entities, Attributes, and Concepts

Entities and concepts dominate most knowledge graphs. For example, knowledge
base constituents of KBpedia, such as Wikidata, Wikipedia or GeoNames, have mil-
lions of concepts or entities within them, but fewer than a few thousand predicates
(approx. 2500 useful in Wikidata and 750 or so in DBpedia and schema.org).

Entities  are the individual, real things in our domain of interest; they are name-
able things or ideas that have an identity, are defined in some manner, can be refer-
enced, and may be related to  types.  Entities are most often the bulk of an overall
knowledge base. An entity is an individual object or instance, a Secondness, of a class,
a Thirdness. When affixed with a proper name or label, we term it a  named entity
(thus, named entities are a subset of all entities). Attributes describe and characterize
entities. We connect or relate entities to one another through external relations. How
we refer to, signify or index these things is what we call  representations. An entity
may be independent or separate or can be part of something else, such as parts of a
whole. Entities cannot be topics or types or datatypes.5

We look to separate the existence of some things different from other things by
the nature of their characteristics, what we can observe and describe for that given
thing.  So,  we  describe  shapes,  sizes,  weights,  ages,  colors  and  characteristics  of
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things with increasingly nuanced vocabularies. We note that grasses have linear or
simple leaves, oaks have serrated or wavy-shaped leaves, and carrots have branched
or compound leaves. We distinguish hair color, eye color, place of birth, current loca-
tion and a myriad of factors. Each one of these factors becomes an attribute for that
object, with the specific values (simple v wavy v compound) distinguishing instances
from one another. We can also assign values to attributes, such as having an age of 7
years or a height of 120 cm. Attributes do not exist independently from the things
they characterize.1 For example, ‘round’ or ‘blue’ are not things unto themselves but
are  modifiers  or  qualifiers  or  characteristics  of  particular  things.  Attributes in
Peirce’s universal categories are a Firstness. Chen described similar entity-attribute
distinctions in his attempt to find common ground across the network, relational
and entity set models in today’s commonly used E-R model.6 

A concept is something we conceive in the mind, such as an idea or a grouping of
like things. When we organize these things according to their shared and natural at-
tributes, a topic we discuss in more detail in Chapter 10, we call them a type.7 Concepts
and types are not discrete, tangible things, but are constructs of thought. Topics are
a form of a concept, but as used herein are more of a complex of concepts, ideas, and
entities. Note this use of topic contrasts to that used in topic maps, which subsumes
the terms of concepts, entities, and events used herein.8 Concepts and types are gen-
erals, a Thirdness in Peirce’s universal categories.

Here are some other terms you may encounter in other grammars or knowledge
representations for these terms:

KBpedia Terminology Terminology Used Elsewhere

entity

▪ object 
▪ instance 
▪ exemplar 
▪ element
▪ particular 

 member 
 record 
 individual 
 dependent variable
 token 

attribute

 property 
 predicate 
 relationship 
 feature 
 facet 

 dimension 
 characteristic 
 field 
 header 
 independent variables 

type
 concept 
 kind 
 set 

 collection 
 type 
 class 

Table 7-1: Comparison of Common Noun Terms

 The distinctions between entities and concepts are often murky in the real world.
For example, let’s consider the ‘toucan’ bird, which we may refer to by word or pic-

1 Though Peirce, as do we, came to believe that Firstness (and Thirdness, for that matter) was real. For some-
thing to exist, it must be actual, which is Secondness.
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ture. When we inspect what might be a description of   a   toucan   on Wikipedia, we see
that the term more broadly represents the family of  Ramphastidae,  which contains
five genera and forty different species. The picture we use to refer to toucan may be,
say, that of the  keel-billed toucan (Ramphastos sulfuratus).  However, if we view the
images of a list of toucan species, we see just how physically divergent various tou-
cans are from one another. Across all species, average sizes vary by more than a fac-
tor of three with great variation in bill sizes, coloration, and range. Further, if I as-
sert that the picture of the toucan is that of my pet keel-billed toucan,  Pretty Bird,
then we can also understand that this representation is for a specific individual bird,
and not the physical keel-billed toucan species as a whole. The point is not a lesson
on toucans, but an affirmation that distinctions between what we think we may be
describing occur over multiple levels. The meaning of what we call a ‘toucan’ bird is
not embodied in its label or even its name, but in the accompanying referential infor-
mation that places the referent into context. Without such accompanying context,
the standalone word or picture of ‘toucan’ may represent either an individual entity
or one of perhaps multiple types. I discuss further the importance of context and
‘things, not strings’ in Chapter 10.

What is an Event?

Events are like entities, except they have a discrete time beginning and end. Are
events  entities,  and,  if  not,  what are they?  Events are part of time, occupy some
length of time, and sometimes are so notable as to get names, either as types or
named events, such as germination or World War II.  Events are undoubtedly different
from tangible objects which occupy some space, have physicality, exist over some
length of time, and also get names as types or named instances.  Moreover, both of
these are different still than concepts or ideas that are creatures of thought. How to
place the notion of  events  within  a  consistent  worldview is  one test  for  the co-
herency of a given knowledge representation.

The philosophical question of What is an event? is readily traced back to Plato and
Aristotle.  One place to start is the Stanford Encyclopedia of Philosophy, which offers a
kind of Cliff Notes version overviewing various views on events9 (among many other
articles in philosophy). At least five or six strains of thought  argue the nature of
events. The fact we have no real intellectual consensus as to  What is an event?  after
2500 years suggests both that, it is a good question, but also that any answer is un-
likely to find consensus. Nonetheless, the question of what is an event provides a
good microcosm for understanding Peirce’s worldview. For Peirce, “We perceive ob-
jects brought before us; but that which we especially experience — the kind of thing
to which the word ‘experience’ is more particularly applied — is an event. We cannot
accurately be said to perceive events.” (1897, CP 1.336) He further states that “If I ask
you what the actuality of an event consists in, you will tell me that it consists in its
happening then and there. The specifications then and there involve all its relations to
other existents. The actuality of the event seems to lie in its relations to the universe
of existents.” (1903, CP 1.24) 
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Though events are said to occur, to happen, or to take place, entities are said to
exist. From Peirce again:

“The event is the existential junction of states (that is, of that which in existence cor-
responds to a statement about a given subject in representation) whose combination in
one subject would violate the logical law of contradiction. The event, therefore, con-
sidered as a junction, is not a subject and does not inhere in a subject. What is it, then?
Its mode of being is existential quasi-existence, or that approach to existence where
contraries can be united in one subject. Time is that diversity of existence whereby
that which is existentially a subject is enabled to receive contrary determinations in
existence.” (1896, CP 1.494)

As Peirce says, “individual objects and single events cover all reality ....” (1905, CP
5.429)1 

The event represents a juxtaposition of states, the comparison of the subject prior
and after the event providing the basis for the nature of the event. Each change in
state represents a new event, which can trigger new actions and reactions leading to
still further events. Simple events represent relatively single changes in state, such
as turning off a light switch or a bolt of lightning. More complicated events may in -
volve multiple processes and potentially long durations, such as epoch, ages, or even
geological eras. Havel insists that we should distinguish  things and events  only by
differences in time scale: “In the world of all scales there is no essential difference:
things are just long-lasting events and events are just short-lived things, where -
long- and -short are relative with respect to our temporal scale perspective.”11

How to characterize events provides a kind of Rorschach test for how one views
reality. Events are like the spark that leads us to understand actions better and what
emerges from them, which in turn helps us better understand predicates and rela-
tions.  What we learn from Peirce  is  that  events are  quasi-entities,  based on time
rather than space, and, like entities, are a Secondness. Like entities, we can name
events and intrinsically inspect their attributes. Events may also range from the sim-
ple to the triadic and durative.12 Events are the first portions of activity and process
cascades,  and  can  stimulate such  seemingly  non-energetic  actions  like  thought.
Thought, itself, may be a source of further events and action, as may be the expres-
sions of our thought, symbols. Actions always carry with them a reaction, which can
itself be the impetus for the next action in the event cascade. Events are the real trig-
gering and causative factors  in reality.  Entities  are  a  result  and manifestation of
events. Events, like entities, are Secondness, or what we call particulars.

HIERARCHIES IN KNOWLEDGE REPRESENTATION

The human propensity to categorize is an attempt to make sense of the world. We
base the act of categorization on how to group things and how to relate those things

1 Here, Peirce uses a different sense for reality than his later belief that the universal categories are real. 
Also, there are many other useful statements by Peirce regarding events; see10.

132

https://en.wikipedia.org/wiki/Rorschach_test


A KR TERMINOLOGY

and groups to one another. Categorization demands that we characterize or describe
the things of the world using what we have termed attributes to find similarities.1 We
may also categorize based on the relationships of things to external things.2 No mat-
ter the method, the results of these categorizations are often hierarchical, reflective
of what we see in the natural world. We see hierarchies in  Nature based on bigger
and more complex things built from simpler things, sometimes based on fractals or
cellular automata or based on the evolutionary relationships of lifeforms. According
to Annila and Kuismanen, “various evolutionary processes naturally emerge with hi-
erarchical organization.”23 Hierarchy — and its intimate connection with categoriza-
tion and categories —  is thus fundamental to the why and how we can represent
knowledge for computable means.

Depending on context, we can establish hierarchical relationships between types,
classes or sets, with instances or individuals, with characteristics of those individu-
als, and between all of these things. The terminology differs by context, and some-
times the syntax may also carry a formal understanding of how we can process and
compute these relationships. Nillson provides a general overview of these kinds of
considerations with a useful set of references.14 

Types of Hierarchical Relationships

As early as 1997 Doyle noted in the first comprehensive study of KR languages,
“Hierarchy is an important concept. It allows economy of description, economy of
storage and manipulation of descriptions, economy of recognition, efficient planning
strategies, and modularity in design.”4 He also noted that “hierarchy forms the back-
bone in many existing representation languages.”15 

The basic idea of a hierarchy is that some item (‘thing’) is subsidiary to another item.
Categorization, expressed both through the categories themselves and the process of
how one splits and grows categories, is a constant theme in this book. The idea of hi-
erarchy is central to a category or other such groupings and how we tie those cate-

1 The most common analogous terms to attributes are properties or characteristics; in the OWL language used 
by KBpedia, we assign attributes to instances (called individuals) via property (relation) declarations.

2 The act of categorization may thus involve intrinsic factors or external relationships, with the correspond-
ing logics being either intensional or extensional, as discussed further in Chapter 8.
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gories or groupings together. A hierarchical relationship is shown diagrammatically
in Figure 7-1 with A or B, the ‘things,’ shown as nodes. All this diagram is saying is that
A has some form of superior or superordinate relationship to B (or vice versa, that B is
subordinate to A). This hierarchical relationship is a direct one, but one of unknown
character. Hierarchies can also relate more than two items: 

In this case, the labels of the items may seem to indicate the hierarchical relation-
ship, but relying on labels is wrong. For example, let’s take this relationship, where
we show the mixed nature of primary and secondary colors:16

Yet perhaps our intent was  instead to provide a category for all colors lumped to-
gether, as instances of the concept ‘color’ show in Figure 7-4 below.

The point is not to focus on colors – which are, apparently, more complicated to
model than first blush – but to understand that hierarchical relations are of many
types and what one chooses about a relation carries with it logical implications, the
logic determined by the semantics of the representation language used and how we
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represent it. 

Peirce’s concept of prescission captures the most fundamental expression of a hi-
erarchical relationship, stated as the relation, prescind.17 Here are some quotes of how
Peirce described the somewhat tricky method of prescission:

“There are three distinct kinds of separation in thought. They correspond to the three
categories. Separation of Firstness, or Primal Separation, called Dissociation, consists in
imagining one of the two separands without the other. It may be complete or incom-
plete. Separation of Secondness, or Secundal Separation, called Precission, consists in
supposing a state of things in which one element is present without the other, the one
being logically possible without the other. Thus, we cannot imagine a sensuous quality
without some degree of vividness. But we usually suppose that redness, as it is in red
things, has no vividness; and it would certainly be impossible to demonstrate that ev-
erything red must have a degree of vividness. Separation of Thirdness, or Tertial Sep-
aration, called discrimination, consists in representing one of the two separands with-
out representing the other.” (1903, EP 2:270)

And,

“But prescission, if accurately analyzed, will be found not to be an affair of attention.
We cannot prescind, but can only distinguish, color from figure. But we can prescind
the geometrical figure from color; and the operation consists in imagining it to be so
illuminated that its hue cannot be made out (which we easily can imagine, by an exag-
geration of the familiar experience of the indistinctness of hues in the dusk of twi-
light). In general, prescission is always accomplished by imagining ourselves in situa-
tions in which certain elements of fact cannot be ascertained. This is a different and
more complicated operation than merely attending to one element and neglecting the
rest.” (1903, CP 2.248)

Prescission is an asymmetrical separation of two elements objectively considered;
it is a logical operation that does not make any ontological or epistemological as-
sumptions about the two elements being considered.18 The process works by examin-
ing the two elements in isolation and then asking whether one might be possible or
exist without the other. We can dissociate red from blue or a triangle from a square,
but we can not  prescind different colors or shapes. However, we  can prescind color
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from shape because color is not possible without having a spatial aspect, but we  can
not prescind shape from color because a shape may exist without color. These dis-
tinctions  are  not  grounded  in  experience,  nor  are  they  subjective,  important  to
Peirce in finding a realistic logic. Prescission carries no connotation of meaning.

We can apply this same process to the ideas of generals and particulars. The gen-
eral type of ‘man’  cannot be prescinded from a single, individual ‘man’ because we
cannot conceive of a general type of ‘man’ without conceiving of individual ‘men.’ On
the other hand, I can prescind the individual ‘man’ from the general type of ‘man’
since the idea of the general ‘man’ does not depend on the existence of any individ-
ual ‘man.’  Peirce uses the  same process of prescission to prescind the concepts of
First,  Second and Third.  Then, through a method  he termed  hypostatic  abstraction
(e.g., CP 4.235), which is how to turn sign predicates into subjects (such as turning the
predicate ‘collect’ into a general, singular of ‘collection’), Peirce names the universal
categories of Firstness, Secondness, and Thirdness.1

In use, we may see a variety of hierarchical relationships.  Table 7-2 shows some
(vernacular) examples one might encounter. Again, though we have now labeled the
relationships, which in a graph representation are the edges between the nodes, it is

1 ‘Prescind’ is often more clearly stated as ‘prescinded from.’ Roughly equivalent phrases are to ‘leave out of 
consideration,’ ‘separate from something,’ or ‘withdraw attention from.’
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A subsumes B

A prescinds B

A is more basic than B

A is a superClassOf B

A is more fundamental than B

A is broader than B

A includes B

A is more general B

B is-a A

A is parent of B

A has member B

A has an instance of B

A has attribute B

A has part B

Table 7-2: Example Hierarchical Relationships
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still unclear the populations to which these relations may apply and what their exact
semantic relationships may be. 

Table 7-3 shows some hierarchical relations that one might want to model, and
whether  the  item  resides  in  the universal  categories  of  Firstness,  Secondness  or
Thirdness: 

Note that, depending on context, some of the items may reside in either Second-
ness or Thirdness (depending on whether the  referent is a particular instance or a
general). Also note the familial relationships shown: child-parent-grandparent and
child-child relationships occur in actual families and as a way of talking about inheri-
tance or relatedness relations. The idea of type or is-a is another prominent one in
ontologies and knowledge graphs. Natural classes or kinds, for example, fall into the
type-token  relationship.  Also  note  that  mereological  relationships,  such  as  part-
whole, may also leave open ambiguities. We also see specific pairs, such a sub-super,
child-parent, or part-whole, need context to resolve the universal category relation.

Reliance on item labels  alone for the edges and nodes,  even for something as
seemingly straightforward as color or pairwise relationships, does not give us suffi-
cient information to determine how to evaluate the relationship nor how to organize
properly. We thus see in knowledge representation that we need to express our rela-
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Firstness Secondness Thirdness

attribute ― token (instance)

sibling

|

sibling

child ― parent

|

parent

token ― type

part ― whole

|

whole

sub ― super

|

sub

Table 7-3: Possible Pairwise (―) Hierarchical Relationships
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tionships explicitly. Labels are merely assigned names that, alone, do not specify the
logic mode, what populations are affected, or even the exact nature of the relation-
ship. Without these basics, our knowledge graphs cannot be computable.  Well  over
95% of the assignments in contemporary knowledge bases have this item-item char-
acter. We need interpretable relationships to describe the things that populate our
domains of inquiry to categorize that world into bite-sized chunks.

Salthe categorizes hierarchies into two types: compositional hierarchies and sub-
sumption hierarchies.16 17 A subsumptive hierarchy  ‘subsumes’  its  children,  and a
compositional hierarchy is ‘composed’ of its children. Mereological and part-whole
hierarchies are compositional, as are entity-attribute. Subsumption hierarchies are
ones of broader than, familial, or evolutionary. Cottam et al. believe hierarchies are
so basic as to propose a model abstraction over all hierarchical types, including lev-
els of abstraction.18 

These discussions of structure and organization are helpful to understand the
epistemological bases underlying various kinds of hierarchy. We should also not ne-
glect recursive hierarchies, such as fractals or cellular automata, which are also sim-
ple, repeated structures commonly found in nature. Fortunately, Peirce’s universal
categories provide a powerful and consistent basis for us to characterize these varia-
tions, and his notion of prescission also helps adjudicate logical hierarchical relation-
ships. When paired with logic and the KR languages discussed in Chapter 8, and with
“cutting Nature at its joints” in Chapter 5, we end up with an expressive grammar for
capturing all kinds of internal and external relations to other things.

So far we have learned that most relationships in contemporary knowledge bases
are of a noun-noun or noun-adjective nature, which I have loosely lumped together
as hierarchical relationships. These relationships span from attributes to instances
(individuals) and classes21 or types, with and between one another. We have learned
Peirce’s logical concept of how to prescind a superordinate concept from a subordi-
nate one. We have further seen that labels either for the subjects (nodes) or their re-
lationships (edges) are an insufficient basis for computers (or us!) to reason over.
Mostly, we have come to see that we need to ground our relationships in specific se-
mantics and logics for reasoning machines to process our representations without
ambiguity. 

Structures Arising from Hierarchies

Structure is a tangible part of thinking about a new KR installation since we may
apply many analytic choices against the knowledge artifact. Different kinds of struc-
ture are best for various tools or kinds of analysis. The types of relations chosen for
the  artifact  affects  its  structural  aspects.  These  structures  can  be  as  small  and
straightforward as a few members in a list, to the entire knowledge graph fully linked
to its internal and external knowledge sources. Knowledge structures arise from the
various hierarchical relationships just discussed.  Here are some of the prominent
types of structures that may arise from connectedness and characterization hierar-
chies:
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 Lists — unordered members or instances, with or without gaps or duplicates,
useful for bulk assignment purposes. Lists occur through a direct relation as-
signment (e.g., rdf:Bag);

 Neural networks (graphs) — graph designs based on connections modeled on bio-
logical neurons, still in the earliest stages for relations and KR formalisms;22

 Ontologies (knowledge graphs) — sometimes ontologies are treated as synonymous
with knowledge graphs, but more often as a superset that may allow more con-
trol and semantic representation.1 Ontologies are a central design feature of KB-
pedia;23

 Parts-of-speech — a properly designed ontology has the potential to organize the
vocabulary of the KR language itself into corresponding parts-of-speech, which
aids some methods of natural language processing;

 Sequences — ordered members or instances, with or without gaps or duplicates,
useful for bulk assignment purposes. Sequences occur through a direct relation
assignment (e.g., rdf:Seq);

 Taxonomies (trees)— trees are subsumption hierarchies with single or multiple
class inheritance for instances; most knowledge graphs allow  multiple inheri-
tances; or

 Typologies — are essentially multi-inheritance taxonomies, with the hierarchical
organization of types as natural as possible. Natural types (classes or kinds) en-
able us to make the  largest number of disjoint assertions, leading to efficient
processing and modular design. Typologies are a central design feature of KBpe-
dia; see Chapter 10.

Typically KR formalisms and their internal ontologies (taxonomy or graph struc-
tures) have a starting node or root, often called ‘thing,’ ‘entity’ or the like. Close in-
spection of the choice of the root may offer important insights into different KR lan -
guage philosophies. ‘Entity’ as a root, for example, is not compatible with a Peircean
interpretation, since all entities are within Secondness, one of the three subsidiary
branches in our main KR structure.

KBpedia’s foundational structure is the subsumption hierarchy shown in the KB-
pedia Knowledge Ontology (KKO) — that is, KBpedia’s upper ontology — and its nodes
derive from the universal categories. The terminal, or leaf, nodes in KKO each tie into
typologies. Types are the constituents of a typology. Types, which are generals along
with typologies, are the classification of natural kinds of instances as determined by
shared attributes (though not necessarily the same values for those attributes). Most
of the types in KBpedia are composed of entities, but attributes and relations also
have aggregations of types. In turn, a  typology is a hierarchical classification of re-
lated types as determined by the essence or characteristics of its root. Subsequent
chapters discuss these items in some detail; Appendix B describes KKO. 

1 RDF graphs are more akin to the first sense; OWL 2 graphs more to the latter; see next chapter.
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Of course,  choice of a KR formalism and what structures it  allows must serve
many purposes. We desire uses of the KR formalism and the knowledge graph to in-
clude knowledge extension and maintenance,  record design,  querying,  reasoning,
graph analysis, logic and consistency tests, planning, hypothesis generation, ques-
tion and answering, and subset selections for external analysis. We are often best
supporting other tasks such as machine learning, natural language processing, data
wrangling, statistical and probabilistic analysis, search indexes, and other data- and
algorithm-intensive applications using dedicated external applications. We have as a
goal to build structures into the KR installation to support these kinds of uses, or to
export data suitable to external applications.  Chapter 12  expands on these platform
considerations.

A THREE-RELATIONS MODEL

If hierarchy provides the basis for the scaffolding in a knowledge graph, then ac-
tions offer the means to make a knowledge system dynamic. Moving beyond static
knowledge representations is the way for these systems to support active learning,
respond to sensors, plan, hypothesize, and solve problems. Peirce’s universal cate-
gories  and  these  hierarchical  perspectives  dovetail  nicely  into  a  three-relations
model that captures all aspects of knowledge representation to support the full slate
of anticipated artificial intelligence applications. Relations are the way we describe
connections among things, including attributes which we only express for subjects. 

Guarino, in some of the earliest (1992) writings leading to semantic technologies,
had posited knowledge bases split into concepts, attributes, and relations.24 This split
was close to my thinking and provided comfort since it arose in the earliest days of
the semantic Web.25 Some of the impressive work by Sekine26 extending the concept
of entity types influenced me greatly. Still, I was confused by the mixing of attributes
and entities; indeed, most practitioners do not appreciate or employ the purposeful
separation of  attributes  from other relations,  let  alone entities.  It  was only after
study of Peirce that I realized he had a way to untangle the knot of attributes, events,
relations, actions, perceptions, thoughts, and belief. His ‘architectonic’ began provid-
ing answers to epistemological questions across the board. It still does.

Besides Peirce, I studied thinkers across history who may have tackled fundamen-
tal concepts in knowledge organization.  Aristotle’s categories were influential, and
have mostly stood the test of time and figured prominently in my thinking, as they
did  for  Peirce.  Peirce  was  a  student  of  Kant  and  Hegel (as  well,  in  contrast,
Descartes), and the logicians DeMorgan, Boole and Venn, but he created a unique
synthesis. I also reviewed efforts such as Sarbo’s to apply Peirce to knowledge bases,27

as well  as most other approaches discussing Peirce  with some correspondence to
KBs.28 29 30

Our  resulting  three-relations  model  is  consistent  with  Peirce’s  thinking,  even
though he never had today’s concepts of digital knowledge representation as an ob-
jective. For example, he labeled one of his sections “The Conceptions of Quality, Rela-
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tion and Representation, Applied to this Subject” (“Upon Logical Comprehension and
Extension”; 1867, CP 2.418). Thirty-five years later, Peirce still held to this split,”...
there are but three elementary forms of predication or signification, which as I origi-
nally named them (but with bracketed additions now made to render the terms more
intelligible) were qualities (of feeling), (dyadic) relations, and (predications of) repre-
sentations.” (1903, EP 2:424; CP 1.561)

Thirdness is the sauce that gives meaning to what is different in Peirce’s architec-
tonic over standard knowledge representations. Too many pivotal problems we can-
not address with dichotomous worldviews. Disambiguation is made difficult without
context. The world is  probabilistic. Chance happens. New information is a barrage,
we  continuously seek knowledge,  and beliefs evolve and change. Though we may
partially describe context with nouns related to perception, situations, states, and
roles, we ultimately require an understanding of events, actions, and relations. Until
these latter factors are better captured and understood, our ability to establish con-
text remains limited. Peirce elaborates:

“Now every simple idea is composed of one of three classes; and a compound idea is in
most cases predominantly of one of those classes. Namely, it may, in the first place, be
a quality of feeling, which is positively such as it is, and is indescribable; which at-
taches to one object regardless of every other; and which is sui generis and incapable,
in its own being, of comparison with any other feeling [attributes], because in compar-
isons it is representations of feelings and not the very feelings themselves that are
compared. Or, in the second place, the idea may be that of a single happening or fact,
which is attached at once to two objects, as an experience, for example, is attached to
the  experiencer  and to  the  object  experienced [external  relations].  Or,  in  the  third
place, it is the idea of a sign or communication conveyed by one person to another (or
to himself at a later time) in regard to a certain object well known to both [representa-
tions].” (1905, CP 5.7) (labeling brackets added.)

We now have the basis to define the three modes of relations within KBpedia. The
first of these is the grouping of attributes, the relationship of a subject with its intrin-
sic qualities or characteristics, which are a Firstness within Peirce’s universal cate-
gories. The second of these modes is external relations, which are all of the ways a par-
ticular or general may relate to another particular or general. These include hierarchi-
cal  relations  other  than attributes  (which are  monadic).1 Relations  of  action (one
thing affecting another) or  perception (one thing experiencing an external change)
are external relations, which are a Secondness within the universal categories. The
third mode of relations we call representations since these are the ways we describe,
point to, or otherwise indicate the thing at hand. These relations give our subjects
perspective and meaning, though we cannot easily reason over these relations. They
are a Thirdness within Peirce’s universal categories. These constructs are central to
our approach to knowledge representation.

1 However, we can type attributes, so it is possible to organize and reason over them.
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Attributes, the Firstness of Relations

Attributes  are  the  intensional  characteristics  of  an  object,  event,  entity,  type
(when viewed as an instance), or concept. The relationship is between the individual
instance (or particular) and its attributes and characteristics, in the form of A:A. At-
tributes may be intrinsic characteristics or essences of single particulars, such as col-
ors, shapes, sizes, or other descriptive characteristics. Attributes may be adjunctual
or accidental happenings to the particular, such as birth or death. Attributes may be
contextual for placing the particular within time or space or external circumstances,
absent having a direct relationship (in that case it is an external relation).

Attributes are specific to the individual, and only include events that are notable
for the individual. They are a Firstness, and in totality try to capture the complete
characteristics of the individual particular, which is a Secondness. Since attributes
are the properties of an entity, we can better interoperate entity data by concentrat-
ing on those aspects that let us match data in one set of records to similar data in dif-
ferent records. In the next chapter, we will discuss building a new vocabulary and
structure upon RDF to provide more sophisticated handling of ‘properties’ than RDF
or OWL alone can offer in their native forms.

Calling out attributes for such attention is not new. The attributes-relation split
has not been an uncommon one in the KB literature,28 32 though it is not accepted
canon and is infrequent in other knowledge representations. Philosophers draw dis-
tinctions about intrinsic  v extrinsic properties33 or intensionality  v  extensionality.34

For conceptual models with specific reference to ontologies,  Wand  et  al.35 in 1999
were making the distinction between  intrinsic properties (akin to what we term at-
tributes herein) and  mutual properties between things (what we term external rela-
tions).  Unfortunately,  at  that  time,  the  conventions  of  RDF  had  not  yet  become
prevalent, and the idea of annotation properties had not yet emerged (from OWL).
These later distinctions are important, but the Wand et al. discussion still is helpful to
elucidate the same pragmatic and theoretical considerations.

With all of this discussion of attributes the attentive reader might be confused:
Are attributes not nouns or adjectives that seem similar to objects as we discussed
for hierarchies? Alternatively, are attributes a more verb-like relation? The answer,
naturally, is that it depends. When we think about an attribute as some quality of
something, we reify it as a noun and make it its object. Considered in this manner,
the ‘idea’ of an attribute makes it a real thing, and a Secondness in that reified state
(which, of course, is not the same as the underlying thing). Without that relation to
the something, it does not exist, which makes it only an ephemeral quality, a First-
ness. We can both describe and relate attributes, depending on context. It is this kind
of contextual lens that makes Peirce’s universal categories so powerful.

External Relations, the Secondness of Relations

External relations are actions or assertions between an event, entity, type, or con-
cept and another particular or general. An external relationship has the form of A:B.
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External relations may be simple ones of a direct relationship between two different
instances. External relations may be copulative by combining objects or asserting
membership, quantity, action or circumstance. External relations may be mediative
to provide meaning, context, relevance, generalizations, or other explanations of the
subject vis-à-vis the external world. External relations are extensional.

All  actions  are  external  relations.  Actions  may be  reactions  to  perceptions  or
stimuli. Actions may be energetic, arising from the subject and affecting the external
environment in some way.  We may understand some actions as a basis of thought,
which results in new actions or modified concepts or thought. External relations are
by definition a Secondness. Notice how these three groupings of external relations
are themselves an example of the universal categories. It is in this manner that big -
ger, more abstract notions may be broken down into more manageable pieces by em-
ploying the universal categories.

Representations, the Thirdness of Relations

The third category in our model of relations is the least used and, perhaps, the
most confused regarding how other KR systems treat their scope. Representations are
signs (1905, CP 8.191) and the means by which we point to, draw attention to, or des-
ignate, denote or describe a particular object, entity, event, type or general. A repre-
sentational relationship has the form of re:A (about A). Representations can be desig-
native of the subject, that is, be icons or symbols (including images, labels, defini-
tions, and descriptions). Representations may be indexes that more-or-less help situ-
ate or provide a traceable reference to the subject. Representations may be associa-
tions, resemblances, and likelihoods about the subject, more often of indeterminate
character (such as a probability assignment). Representations are the Thirdness of
relations. Representations cannot be deductively reasoned over, but some character-
istics may be derived or analyzed through inductive or abductive inferential means.

For example,  annotations are  representations.  Annotations capture the circum-
stances or conditions or contexts or observations for the thing at hand. Where did we
discover or find it? When did we find or elaborate  on it? By whom or when was it
found or elaborated? What is our commentary about it? While these are all external
elaborations of the thing at hand, and not intrinsic to the nature of the thing, they
are all characterizations about a given thing. In these regards, annotations have as
their focus a given object, similar to what is  valid for attributes. We cannot deduc-
tively reason over annotations, though annotations play pivotal roles. Annotations
are an essential means for tagging, matching and slicing-and-dicing the information
space. Metadata is a similar concept, more oriented to provenance and description.

Labels,  which  are  also  representations  as  are  definitions,  are  the  means  to
broaden the correspondence of real-world reference to match the true referents or
objects in the knowledge base.1 Broader reference enables us not to limit referents to
any given label or string. In best practice, labels should reflect all of the various ways
a given object may be identified (synonyms, acronyms, slang, jargon, all by language

1 See the discussion of semsets in Chapter 10.
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type). These considerations improve the means for tagging, matching, and slicing-
and-dicing, even if we can not reason over the annotations.

The Basic Statement

We now have a starting grammar to talk about the things of the world, and the re-
lations that place them into context with the external world. We have our subjects
and objects (nodes) and our model of how to relate them (edges). The combination of
these parts gives us the basis for making basic statements about the world, what we
assert as statements of fact.1 Practitioners call this primary construct a triple. Triples
are statements in the RDF language that relate a subject and object through a connect-
ing  property (or  predicate). Triples take the form of  s –  p  -  o,  with the subject and
property (and object optionally) referenced by an IRI (Web link). I expand on the con-
struct of triples in the next chapter; see also the discussion related to Figure 1-2. 

A proposition captures a relation, an assertion about the subject. “Any portion of
a proposition expressing ideas but requiring something to be attached to it in order
to complete the sense, is in a general way relational. But it is only a relative in case
the attachment of indexical signs will suffice to make it a proposition, or, at least, a
complete general name.” (1897, CP 3.463)  “But the Logic of Relations has now re-
duced logic to order, and it is seen that a proposition may have any number of sub -
jects but can have but one predicate which is invariably general.” (1903, CP 5.151)

We now have a much clearer way for how to build up the assertions in our knowl-
edge representations. We now know that attributes are a Firstness in the universal
categories,  that  Secondness  captures  all  events,  entities,  and  relations,  and  that
Thirdness provides the context, meaning, and ways to indicate what we refer to in
the world. We see how context is operative: relations as a construct, for example, are
in Secondness, but within relations the mode of representations is in Thirdness. We
now have a framework of triadic relations in attributes, external relations and repre-
sentations for how to describe things and relate them to one another. Peirce and his
architectonic provides the richest, most expressive basis for capturing human lan-
guage and conducting logical reasoning, both for individuals (particulars) and con-
cepts (generals). This starting grammar sets the foundation for us to compute and
reason over human language for modern KR purposes.2

Chapter Notes
1. Some material in this chapter was drawn from the author’s prior articles at the AI3:::Adaptive Information 

blog: “Conceptual and Practical Distinctions in the Attributes Ontology” (Mar. 2015); "KBpedia Relations, 
Part I: Smarter Knowledge Graphs” (May 2017); “KBpedia Relations, Part II: An Event-Action Model” (May 
2017); “KBpedia Relations, Part III: A Three-Relations Model” (May 2017).

1 If validated, they are indeed fact assertions. However, as discussed elsewhere, facts are subject to question 
and have some degree of fallibility; acceptance of an assertion as fact is a matter of belief

2 Additional Peirce quotes may be found in my initial article.36
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KR VOCABULARY AND LANGUAGES

e  have  now  armed  ourselves  with  basic  terminology  and  a  framework
around which to express a starting vocabulary for knowledge representa-

tion.  However, we have one question to answer before we can adopt the languages
(or symbol systems) we need to convey that vocabulary: What current languages can
capture Peirce’s theory of logic while being consistent, coherent, and practical for
our needs in knowledge representation? To resolve that question, we need to delve
deeper into Peirce’s logic  and options provided by current language choices.  The
practical choices resulting from these intersecting forces will then enable us to spec-
ify our starting KR vocabulary into a working language suitable for computers.

W

A vocabulary, in the sense of knowledge systems or ontologies, may and should be
expandable, but it is also a controlled vocabulary.1 That is, we declare new terms and
relations  to  the  system  and  define  them  at  levels  required  by  the  formalism  to
achieve the vocabulary’s purpose. Terminology is  a social process,  driven by user
needs and the occasional ‘surprising fact,’ such as the emergence of the Internet or
smartphones, that requires our terms to adapt and our knowledge to grow. Our vo-
cabularies also serve other purposes, such as providing consistent labels to user in-
terfaces or helping interoperate with other knowledge sources. 

Early in my exposure to semantic technologies, I encountered the phrase ‘onto-
logical commitment.’1 This phrase was common in the early literature, and, for some
reason, I found the idea off-putting. It seemed to me it conveyed buying into one on-
tology versus another, and I did not like the idea of boxing myself in. There is a sig -
nificant plurality within the semantic technology community that does not like the
idea of a governing schema. what is sometimes pejoratively called “one ring to rule
them all.”3

I have come to embrace a very different view when it comes to the idea of repre-
senting knowledge representation. If one believes in reality and truth, and that the
purpose of knowledge is to further the understanding of truth, then a knowledge
representation  system  must  be  based  on  logics  and  formalisms that  can capture
knowledge of every sort and can provide coherent and testable means for discover-
ing and testing new knowledge. 

1 See, for example, Davis et al.2 from 1993.
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As we will see in the context of the logics and the languages we have chosen for
this task, the idea is not to decide what is true and what is false. Our primary objec-
tive is not to pass judgment on such topics as fake news. Instead, the design is to test
new information we introduce to the system — a system which we deem already to
be correct and true within the limits of our assertions — as to whether that new in-
formation is  consistent and coherent.  We first  test  for consistency in syntax and
grammar, and for minimally acceptable completeness. If the new information meets
the threshold and does not violate the knowledge graph already in place — that is,
we deem it  coherent  — we accept that new information. If  the new information
meets the threshold but violates what we already have, we either reject it as incoher-
ent, or we revise the existing assertions to reflect this new information. In this way,
new information may cause us to change the knowledge graph in the system. True,
we could extend this basis to test for the falsity of news or other information. How-
ever, the more technical point is  that we premise our starting basis on ‘open’ as-
sumptions consistent with the nature of knowledge, as I discuss in the next chapter. 

These absolute groundings are further essential to provide a consistent and logi-
cal basis for computers to test and analyze current and new assertions. We want the
representations available (that is, features) for machine learning to reflect and adapt
to truth as we test it. While I dislike the phrase ‘ontological commitment,’ its very
scariness  helps  cement  the importance  of  inspecting  (and  re-inspecting)  the  for-
malisms upon which we base our knowledge representation systems.

In creating a feature-rich logic machine for AI, we, of course, want a system that
is  sound,  consistent,  coherent, and relatively  complete.  Sound is an evaluative criterion
where all provable statements are valid in all models. Consistent is where all axioms1

in the knowledge base (domain), subject to deductive reasoning, are true (or, at least,
exhibit no contradictions). Coherent is where the knowledge base (domain) is consis-
tent and has a high degree of conjunction for non-deductive assertions.2 Complete is
an evaluative criterion where all statements that are true in the model are provable
and meet minimum standards. 

Our interpreters are both artificial agents and humans. We need us, as humans, to
scope the domain and provide the vocabulary,  then to construct and oversee the
knowledge graph, and then to maintain and extend the system, and lastly to review
tests and tentative assignments before we agree to commit to the knowledge base.
These aspects must be suitable for direct translation into any human language. Hu-
mans will  also have many non-AI uses for the knowledge system, reinforcing the
need for understandability and usability. To complete the speculative grammar leg of
Peirce’s theory of logic, we also need to capture factors relevant to the Secondness of
critic, the methods of logic, and to the Thirdness of the methodeutic, the application of
these methods to practical problems addressed with practical means.

1 An axiom is a premise or starting point of reasoning. In an ontology, each statement (assertion) is an axiom.

2 Coherence has a long history within epistemic logic,4with more recent trends toward accommodating proba-
bilistic measures, though specific methods lacking broad consensus. Peirce’s views would tend to align co-
herence with abduction and pragmatism. Researchers that embrace aspects of Peirce’s approach include 
Roche5 and Douvan and Meijs.6 
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LOGICAL CONSIDERATIONS

KR practitioners know that the choice of a formalism (i.e., syntax and language)
for knowledge representation involves a trade-off in expressivity and practicality.7

Knowledge graphs and knowledge bases should be scoped based on their anticipated
domain of use and populated with ‘vivid’ knowledge.8 We cannot feasibly specify all
aspects  of all  items while remaining computationally tractable.  We need to  infer1

connections,  properties,  and  relationships  without  explicitly  stating  all  of  them.
When we do make assignments, we need to know what those statements entail based
on prior statements.2 We base inference and entailment on the underlying KR lan-
guage, as applied through its defined and understood vocabulary and semantics.9 

We could derive the logic that governs our semantics from multiple logic families.
One option is propositional logic, but unfortunately  this logic evaluates  statements
such as “Aristotle is a philosopher” and “Plato is a philosopher” as unrelated. An-
other option is set theory, with its basis in sets and members and strong mathemati-
cal background. However, set theory lacks predication and ideas of identity and can
be problematic for the largest of sets. Advances have continued in set theory, such
that the basis for a complete KR language may be at hand.10 But these limitations led
mathematicians and logicians in the 19th century, noted previously, to work out the
new logic of relations. We now call this field predicate calculus or first-order logic
(FOL). Paternal rights to FOL are granted to both Peirce7and Frege, though both ap-
parently worked without the others knowledge.12

Peirce attempted to explicate the basis, applicability and interpretation of deduc-
tive,  inductive,  and abductive logic,  the latter of which he introduced to modern
logic. Peirce’s primacy of logic proceeds as follows: Decompose every statement into
its fundamental premises. Conduct all logical tests, including the implications result-
ing from inference. Single out anomalies or ‘surprising facts’ for special attention
subject to the pragmatic maxim. Every bit of Peirce’s logical work has applicability to
knowledge representation.

First-order Logic and Inferencing

First-order logic is superior to propositional logic in that it allows variables and
quantifiers. FOL enables us to say ‘x is a philosopher,’ where we treat the subject as a
variable and turn ‘is a  philosopher’ into a predicate. We can establish relations be-
tween these predicates with logical connectors, such as AND, OR, NOT and IF-THEN
statements. We may base class membership on intensional13 or  extensional14 grounds.
We can apply quantifiers to statements using universal (‘for every’) and existential

1 Inference is the act or process of deriving logical conclusions from premises known or assumed as true. The 
logic within and between statements in an ontology is the basis for inferring new conclusions from it, using 
software applications known as inference engines or reasoners.

2 Entailment is a consequence arising from a statement deemed true based on some underlying logic. The logi-
cal consequence is said to be necessary and formal; necessary, because of the rules of the logic (the conclu-
sion is the consequent of the premises); and formal because the logical form of the statements and argu-
ments hold true without regard to the specific instance or content.
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(‘there exists’) quantifiers, as well as use negation. FOL is  sound (all provable state-
ments are true in all models) and complete (all statements which are true in all mod-
els are provable). Moreover, Peirce based his ‘beta’ version of existential graphs on
FOL plus identity. Because of these efforts, we view Peirce as one of the founders of
first-order logic.

FOL  is  a  powerful  and  expressive  formalism  for  knowledge  representation.15

Gödel's completeness theorem proved that deduction in FOL is sound and complete.
Still, Alonzo Church and Alan Turing proved independently, in 1936 and 1937, that
FOL under certain conditions, notably the halting problem or quantification over in-
finite  sets,  was undecidable.  What this  means is  a  computer may never calculate
some problems to a final result. Various options that reduce the expressivity of FOL
have been formulated to overcome the problem of reliably computing to completion.
We will speak of one of them, descriptive logics, shortly.

One of the KR formalisms, conceptual graphs, is a complete expression of FOL and
is patterned on Peirce’s existential graphs.16 Some proponents call for KR formalisms
that  can  handle  higher-order  logics,  such  as  predicates  of  predicates.  Recent  at-
tempts to bridge description logics to category theory using underlying ideas are in-
triguing and redolent of Peirce.17 KR and its logical and formal underpinnings, I be-
lieve, are set to undergo a renaissance.

Inferencing is the drawing of new facts, probabilities or conclusions based on rea-
soning over existing evidence. Inferencing is a common term heard in association
with semantic  technologies.  Inference engines (also  known as  reasoners,  semantic
reasoners,  reasoning  engines,  or  rules  engines)  are  the  application  components.
Peirce classed inferencing into three modes: deductive reasoning, inductive reason-
ing, and abductive reasoning. Deductive   reasoning   extends from premises known as
true and clear to infer new facts. Inductive reasoning looks at the preponderance of
evidence to infer what is probably true. A  bductive   reasoning   poses possible explana-
tions or hypotheses based on available evidence, often winnowing through the possi-
bilities based on the total weight of evidence at hand or what is the most practical
explanation. Though we may apply all three reasoning modes to knowledge graphs,
the standard and most used form is deductive reasoning. Knowledge base comple-
tion, a new field, sometimes uses inductive reasoning. Abductive reasoning, to my
knowledge, has not been applied to knowledge graphs. Inductive and abductive log-
ics offer much additional leverage for a knowledge system, and I expect to see their
use increase given their potential usefulness.

We can use inferencing to broaden and contextualize search, retrieval, and analy-
sis.  We can create inference tables  in advance and layer them over existing  data
stores for speedier use and the automatic invoking of inferencing. More complicated
inferencing means that models can also perform as complete conceptual views of the
world or knowledge bases. Quite complicated systems are emerging in such areas as
common sense and biological systems, as two examples.

We can apply inference engines at the time of graph building or extension to test
the consistency and logic of the new additions. Additionally, we may apply semantic
reasoners to a current graph to expand queries for semantic search or other reason-
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ing purposes. As noted, as inductive and abductive reasoners become available, they
will expand this list of capabilities to include question answering, hypothesis genera-
tion and testing, forecasting, decision making, and real-time systems in robotics. The
contributions these types of tools will make is dependent upon the method of logic
inference. Based on their syllogistic form, here is a comparison of the three meth-
ods:18

Deduction Induction
Hypothesis/
Abduction1

All M is P (Rule) S is M (Case) S is P (Result)

S is M (Case) S is P (Result) All M is P (Rule)

S is P (Result) So, All M is P (Rule) So, S is M (Case)

Table 8-1: Syllogistic Forms for Inference Methods

Peirce explicated deductive and inductive reasoning in the clearest of ways and
corrected erroneous views of what constituted inductive reasoning. He most impor-
tantly recognized that, just as many problems are distributive in nature, so are many
of the logical questions. For this, Peirce decomposed the basic syllogism of the Greek
philosophers to articulate a third kind of inference, abductive reasoning. “Deduction
proves that something must be, Induction shows that something actually is operative,
Abduction merely suggests that something may be.” (1903, EP 2:216)

Deductive Logic

Deduction is the “tracing out the consequences that would ensue upon the truth
or falsity of that hypothesis” (nd, MS [R] S64). “By Deduction, or mathematical rea-
soning, I mean any reasoning which will render its conclusion as certain as its Pre-
misses, however certain these may be.” (1911, MS [R] 856:2) 

Deduction is the most common logic in knowledge representations in their cur-
rent form. We use deductive logic to infer hierarchical relationships, create forward
and backward chains, to check if domains and ranges are consistent for assertions, as-
semble attributes applicable to classes based on member attributes, conform with
transitivity  and  cardinality  assertions,  and  check  virtually  all  statements  of  fact
within  a  knowledge  base.  In  backward  chaining,  we  conduct  the  reasoning  tests
‘backward’ from a current consequent or ‘fact’ to determine what antecedents can
support that conclusion, based on the rules used to construct the graph. (“What rea-
sons bring us to this fact?”) In  forward chaining the opposite occurs; namely, we
state a goal or series of goals, and then existing facts (as rules) are checked to see
which ones can lead to the goal (“A goal X may be possible because of?”). The rea-
soner iterates the process until the goal is reached or not; if reached, we may add

1 In his later years Peirce revised his views about abduction; see Chapter 15.
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new knowledge  using  heretofore unstated connections to the knowledge base. We
base consistency tests solely on deductive logic. Either an asserted statement satisfies
specifications, or it fails. 

Like  so  much  Peirce  did,  he  continued  to  refine  his  understanding  of  things
through inspection and categorization. Here is one of his later formulations for de-
duction: 

“A Deduction is an argument whose Interpretant represents that it belongs to a general
class of possible arguments precisely analogous which are such that in the long run of
experience the greater part of those whose premisses are true will have true conclu-
sions.  Deductions  are  either  Necessary or  Probable.  Necessary Deductions  are  those
which have nothing to do with any ratio of frequency, but profess (or their interpre-
tants profess for them) that from true premisses they must invariably produce true
conclusions. A Necessary Deduction is a method of producing Dicent Symbols by the
study of a diagram. It is either Corollarial or Theorematic. A Corollarial Deduction is one
which represents the conditions of the conclusion in a diagram and finds from the ob-
servation of this diagram, as it is, the truth of the conclusion. A Theorematic Deduc-
tion is one which, having represented the conditions of the conclusion in a diagram,
performs an ingenious experiment upon the diagram, and by the observation of the
diagram, so modified, ascertains the truth of the conclusion. Probable Deductions, or
more accurately, Deductions of Probability, are Deductions whose Interpretants rep-
resent them to be concerned with ratios of frequency. They are either  Statistical De-
ductions or Probable Deductions Proper. A Statistical Deduction is a Deduction whose In-
terpretant represents it to reason concerning ratios of frequency, but to reason con-
cerning them with absolute certainty. A Probable Deduction proper is a Deduction
whose Interpretant does not represent that its conclusion is certain, but that precisely
analogous reasonings would from true premisses produce true conclusions in the ma-
jority of cases, in the long run of experience.” (1903, EP 2:297-298; CP 2.267-268)

At present, most current knowledge approaches only use what Peirce calls the ‘nec-
essary’ deduction. Peirce placed deductive reasoning in Secondness, though he did
consider other placements early in his career.1 The placement in Secondness, how-
ever, does make sense because it is the logic of actualness, and whether actual things
conform to the premises asserted for them. 

Inductive Logic

Induction is  “any reasoning from a  sample to  the whole sampled” (1911,  NEM
3:178),  with  the  sample  taken  at  random.  Induction  is  the  probabilistic form  of
Peirce’s reasoning triad. Peirce placed the inductive form of reasoning in Thirdness,
consistent with its nature of potential. 

Peirce wrote much on induction. One succinct summary is that “Induction con-
sists in starting from a theory, deducing from it predictions of phenomena, and ob-
serving those phenomena to see how nearly they agree with the theory.” (1903, EP

1 Staat19 concurs that the placement of the three types of inferential logic into Firstness, Secondness and 
Thirdness is the order of abduction, deduction and induction, though, when considered in the order of in-
quiry, it is abduction, induction, deduction. This has been a matter of some confusion to scholars. 
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2:216) And, “... observe that neither Deduction nor Induction contributes the smallest
positive item to the final conclusion of the inquiry. They render the indefinite defi -
nite; Deduction Explicates; Induction evaluates: that is all.” (1908, CP 6.475) Some of
his longer passages from his later career expound further on this nature:

“The validity of Induction consists in the fact that it proceeds according to a method
which though it may give provisional results that are incorrect will yet, if steadily
pursued, eventually correct any such error. The two propositions that all Induction
possesses this kind of validity, and that no Induction possesses any other kind that is
more than a further determination of this kind, are both susceptible of demonstration
by necessary reasoning.” (1906, NEM 4:319)

And:

“The true guarantee of the validity of induction is that it is a method of reaching con-
clusions which, if it be persisted in long enough, will assuredly correct any error con-
cerning future experience into which it may temporarily lead us. This it will do not by
virtue of any deductive necessity (since it never uses all the facts of experience, even
of the past), but because it is manifestly adequate, with the aid of retroduction and of
deductions from retroductive suggestions, to discovering any regularity there may be
among experiences, while utter irregularity is not surpassed in regularity by any other rela-
tion of parts to whole, and is thus readily discovered by induction to exist where it does
exist,  and the  amount  of  departure  therefrom  to be  mathematically  determinable
from observation where it is imperfect.” (1908, CP 2.769)

Consistent with the universal categories, Peirce also saw three subdivisions, or
types, within inductive reasoning, with the first being crude induction:

“The first and weakest kind of inductive reasoning is that which goes on the presump-
tion that future experience as to the matter in hand will not be utterly at variance
with all past experience. Example: ‘No instance of a genuine power of clairvoyance has
ever been established: So I presume there is no such thing.’ I promise to call such rea-
soning crude induction.... Crude induction is the only kind of induction that is capable
of inferring the truth of what, in logic, is termed a universal proposition.” (1908, CP
2.756-7)

The second type of induction is the strongest of the three, what Peirce called quanti-
tative induction:

“This [type] investigates the interrogative suggestion of retroduction,  ‘What is  the
‘real probability’ that an individual member of a certain experiential class, say the S’s,
will have a certain character, say that of being P?’ This it does by first collecting, on
scientific principles, a ‘fair sample’ of the S’s, taking due account, in doing so, of the
intention of using its proportion of members that possess the predesignate character
of being P. This sample will contain none of those S’s on which the retroduction was
founded. The induction then presumes that the value of the proportion, among the S’s
of the sample, of those that are P, probably approximates, within a certain limit of ap-
proximation, to the value of the real probability in question. I propose to term such
reasoning Quantitative Induction.” (1908, CP 2.758)
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Lastly, the third type, intermediate between the prior two:

“The remaining kind of induction, which I shall call  Qualitative Induction, is of more
general utility than either of the others, while it is intermediate between them, alike
in respect to security and to the scientific value of its conclusions. In both these re-
spects it is well separated from each of the other kinds. It consists of those inductions
which are neither founded upon experience in one mass, as Crude Induction is, nor
upon a collection of numerable instances of equal evidential values, but upon a stream
of experience in which the relative evidential values of different parts of it have to be
estimated according to our sense of the impressions they make upon us.” (1908, CP
2.759)

In the first type, crude induction, we may only only detect falsity if we persist the
inference long enough. In the strongest second type, quantitative induction, the sam-
ple is a sub-collection of a population of units; its inductive strength arises from be-
ing able to apply the theory of errors. The third type,  qualitative induction, does not
have the advantage of definite populations, but, as we enlarge the sample, the infer-
ential evidence gets stronger. (1904, EP 2:302)

Inductive logic is only at the beginning phases of application to knowledge sys-
tems, with a leading computational approach for general purposes being inductive
logic programming (ILP).20 Induction has been used for question answering and to ex-
pand search21 and in areas like knowledge base completion, learning,22 and schema
induction.23 These  thrusts  deserve  more  attention,  particularly  in  light  of  the
Peircean bases emphasized throughout this book. Most machine learning involving
knowledge bases is a form of inductive reasoning.

Abductive Logic 

One of Peirce’s signal achievements was to bring the idea of abduction to modern
logic. Peirce wrote and revised his views on abduction* over his entire working life.
A consistent thread in his characterization was that abduction is a kind of inference
that originates a hypothesis by concluding in an explanation, though an indetermi-
nant one for a given observation, often of a curious or surprising nature. Peirce stud-
ied abduction because of his belief in its essential role in the scientific method, as
well as the unique inferential and logical possibilities it allowed. Peirce went so far as
to state that pragmatism is the “logic of abduction” (1903, CP 1.595 ff.). He also called
the combination of abduction with induction an ‘analogy’ (1896, CP 1.65). In 1903 he
offered the following syllogistic form for abduction (CP 5.189, EP 2:231):

“The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.”

This part of the inference chain begins with the ‘surprising fact’ or an event or ques-
tion. By 1911, however, Peirce wrote, “I do not, at present, feel quite convinced that
any logical form can be assigned that will cover all ‘Retroductions’ [abductions]. For
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what I mean by a Retroduction is simply a conjecture which arises in the mind.”
(NEM 3:203-4) However, he also claimed that abduction is the “only kind of reasoning
that opens new ground.” (NEM 3:206) Though the syllogistic form still works, Peirce
came to believe there was a qualitative and ‘guessing’ or ‘instinctual’ aspect to some
abductions, which we need in any case to subject to the pragmatic test. In that same
year of 1911 he more broadly stated:

“By Retroduction [abduction1] I mean that kind of reasoning by which, upon finding
ourselves confronted by a state of things that, taken by itself, seems almost or quite
incomprehensible, or extremely complicated if not very irregular, or at least surpris-
ing;  we are led to suppose that  perhaps there is,  in fact,  another definite  state of
things, because, though we do not perceive any unequivocal evidence of it, nor even
of a part of it, (or independently of such evidence if it does exist,) we yet perceive that
this supposed state of things would shed a light of reason upon that state of facts with
which we are confronted, rendering it comprehensible, likely (if not certain,) or com-
paratively simple and natural.” (1911, MS [R] 856:3-4)

One way to understand Peirce's insight on abduction, though unclear this was his
actual method, is to split the idea of hypothesis generation and testing into two parts
and re-think their roles. In abduction, the conscious and unconscious mind when
faced with a choice rapidly screens and mentally evaluates possible explanations for
possible outcomes to test. Multiple possible pathways may explain the diverse poten-
tial results. Since the actual testing of a hypothesis using inductive logic incurs time
and expense, we try to weigh, in our minds, the potential importance of the hypothe-
sis and its likelihood of results against the time and cost to generate them. A careful
weighing in our mind of potentials and costs invokes other signals and perceptions,
some  perhaps  unconscious,  such  that  we  may  often  express  our  selections  as  a
'guess.' As part of his belief in the continuity of nature, however, Peirce also noted
how often guesses are correct compared to random likelihood.

“Abduction and induction have, to be sure, this common feature, that both lead to the
acceptance of a hypothesis because observed facts are such as would necessarily or
probably result as consequences of that hypothesis. But for all that, they are the oppo-
site poles of reason, the one the most ineffective, the other the most effective of argu -
ments. The method of either is the very reverse of the other's. Abduction makes its
start  from the facts,  without,  at  the outset,  having any particular  theory in view,
though it is motived by the feeling that a theory is needed to explain the surprising
facts. Induction makes its start from a hypothesis which seems to recommend itself,
without at the outset having any particular facts in view, though it feels the need of
facts to support the theory. Abduction seeks a theory. Induction seeks for facts. In ab-
duction, the consideration of the facts suggests the hypothesis. In induction, the study
of  the hypothesis  suggests  the experiments  which bring to light  the very facts  to
which the hypothesis had pointed. The mode of suggestion by which, in abduction,
the facts suggest the hypothesis is by resemblance, -- the resemblance of the facts to
the consequences of the hypothesis. The mode of suggestion by which in induction
the hypothesis suggests the facts is by contiguity, -- familiar knowledge that the con-

1 Alternate terms used by Peirce for abduction included retroduction, hypothesis, and presumption.
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ditions of the hypothesis can be realized in certain experimental  ways.” (1901,  CP
7.218)

In succinct terms, and Peirce's definition (1908) for retroduction, it is “the pas-
sage of  thought from experiencing something,  E,  to  predicating a concept of  the
mind’s creating; the subject of the predication being a specified class to which E be-
longs, or an indefinite part of such class.” (MS [R] 842: 29-30) In more modern terms,
we can define abduction (or abductive reasoning) as a mode of symbolic inference
that involves the screening and selection from a domain D of the possible explana-
tion paths to an outcome O, possibly involving any element E of D, with the selection
of candidate paths for inductive testing based on plausibility, economy and potential
impact.  Abduction  does  not  produce  probable  results,  only  qualified  candidates
(most often called hypotheses).

Redux: The Nature of Knowledge

Having discussed the three types of inferential logic, let’s now turn our attention
to the logical context for knowledge, which was a third of the emphasis in Chapter 2.
Knowledge, after all, is not merely counting peas or tallying results but is the discov-
ery and verification of ‘facts’ about the world sufficient to generate belief. A useful
framework for evaluating this context goes under the ideas of closed or open worlds.

The closed world assumption, or CWA, is the presumption that what is not currently
known as true is false. CWA also has a logical formalization. CWA is the most com -
mon logic applied to relational database systems and is particularly useful for trans-
action-type systems. In knowledge management, for which OWA is most often the
best choice, we may use the closed world assumption in two situations: 1) when the
knowledge base is known as complete (e.g., a corporate database containing records
for every employee); or 2) when the knowledge base is known as incomplete, but we
must derive a ‘best’ definite answer from incomplete information.

The  open world assumption, or  OWA, is a formal logic assumption that the truth-
value of a statement is independent of whether or not any single observer or agent
know it. OWA directly conforms to Peirce’s view of reality, knowledge, and truth.
Missing values are expected and do not falsify what is there. A corollary assumption
is  that we will always be adding  more information to the system, and the design
should promote that fact. OWA is used in knowledge representation to codify the in-
formal notion that in general no single agent or observer has complete knowledge,
and therefore cannot make the closed world assumption. The OWA limits the kinds of
inference and deductions an agent can make to those that follow from statements
that are known to the agent as true (or probably true).

OWA is useful when we represent knowledge within a system as we discover it,
and where we cannot guarantee that we have discovered or will discover complete
information. Of course, this is the very essence of knowledge. In OWA, we may con-
sider statements about knowledge that are not explicitly stated or inferred as un-
known, rather than wrong or false.
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Besides this contextual perspective, logic constructs may bring other expressive
properties. Here are some of the more important ones that warrant consideration for
a KR language:

 Cardinality — is where the number of members in a class or type is set or limited,
such as hasBiologicalParent set to a cardinality of two;

 Disjoint — is where membership in one class excludes membership in another;
this is a useful property in that it  allows us to ‘slice-and-dice’ large, well-de-
signed knowledge bases for more effective processing or analysis;

 Domain (property) — a statement that declares the classes or types from which
to draw the subject of the assertion;

 Function — is any algebraic or logical expression allowable by the semantics and
primitives used in the KR language where an input is related to an output;

 Inverse — is  when a property,  say,  hasParent,  can be defined as the inverse
property of hasChild;

 Negation — is a unary operation that produces a value of true when its operand is
false and a value of false when its operand is true; 

 Range  (property)  — a statement that declares  the classes  or  data types from
which to draw the object data or types of an assertion;

 Reflexivity — is when every element of X is related to itself, every class is its own
subclass, such as every person is a person;

 Rules — we may supplement the underlying logic with rules engines (if-then, ex-
clusions, inclusions) that may add further to the specifications allowed;

 Symmetric — is when A relates to B exactly if it relates B with A; and

 Transitivity — is when item A is related to item B, and item B is related to item C,
then A is also related to C; this is the critical property for establishing inheri-
tance chains.

The use or not of these constructs both may affect how reasoners operate in a knowl-
edge base and may add to the feature pool available to machine learners. An optimal
KR language would provide all of these capabilities.

In operating KR and knowledge management systems, closed world applications
can interface with the open world graph of the KR system via agreed, canonical data
transfer models. Proper design can readily integrate simulation models, search en-
gines,  forecasting software,  language processors,  or transaction systems with the
knowledge representation, enabling all parts to contribute to their strengths. Given
the importance of context to knowledge representation, we devote much of Chapter 9
to the open world topic. We discuss architectures and platform designs that enable
integrating closed and open systems in Chapter 13. 
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Particulars, Generals, and Description Logics

We began our logic discussion centered on first-order logic, and its suitability to
our KR needs, save for its lack of decidability. Early researchers in knowledge repre-
sentation developed description logics specifically to overcome this lack, as well as
other pragmatic considerations around KR.24 Description logics are one of the under-
pinnings to the semantic Web. They grew out of earlier  frame-based logic systems
from Marvin Minsky and also semantic networks. Description logics (DLs) as a term
and discipline  were first defined in the 1980s by  Ron Brachman, among many oth-
ers.24 DLs or fragments thereof are quite akin to FOL, but slightly less expressive,
lacking negation or the unique name assumption, as examples. DLs can (usually) be
made decidable, that is, able to resolve all mathematical expressions in the language,
while FOL is not. Description logics firmly embrace the open world assumption, a
central aspect of knowledge systems, as we continue discussing in the next chapter. 

One aspect of description logics and their semantics is that they traditionally split
concepts and their relationships from the different treatment of instances and their
attributes and roles. This split corresponds nicely to the split between generals and
particulars, respectively, that we have adopted from Peirce. In description logics, we
know the concept split as the TBox (for terminological knowledge, the basis for T in
TBox) and the instance split as the ABox (for assertions, the basis for A in ABox). A
TBox is a conceptualization associated with a set of facts. TBox statements describe
this conceptualization through a set of concepts and relationships between them. In
its entirety, a TBox specifies the schema for the conceptualization; that is, an ontol-
ogy. All generals, from a Peircean perspective, belong to the TBox.

The ABox is the complement that describes the instances (or instance records) and
their attributes that populate that conceptualization. In these regards,  extensional
relationships dominate in the TBox, intensional ones in the ABox.1 Though no formal
or actionable  difference exists  between the ABox and TBox in  description logics,
keeping them separate is often a practical design choice.

Of course,  the choice of KR logic and formalism must consider how to handle
other types of relations and the whole panoply of trade-offs incurred during actual
implementation, including importantly usability, toolsets and maintenance. None of
these logical  options prevents,  in  and of  themselves,  making inconsistent  assign-
ments or perhaps introducing cycles or other errors into our knowledge bases. What-
ever logic or formalism we choose, it is essential to test for internal consistency and
coherence. Keeping proven reasoners at the ready while developing is but one exam-
ple of best practices when building or maintaining knowledge bases. I discuss these
and related best practices in Chapter 14.

1 One confusing aspect is that some computer science database textbooks use the term 'intension' to refer to 
the schema of a database, and 'extension' to refer to particular instances of a database,25 an unfortunate use
also by one of the major textbooks in description logics.24 Peirce noted similar confusions long ago (c.f., CP 
2.393), and as a result tended to use the term comprehension over intension. 

158

http://en.wikipedia.org/wiki/Ronald_J._Brachman
http://en.wikipedia.org/wiki/Semantic_network
http://en.wikipedia.org/wiki/Marvin_Minsky
http://en.wikipedia.org/wiki/Semantic_frames
https://en.wikipedia.org/wiki/Description_logic


KR VOCABULARY AND LANGUAGES

PRAGMATIC MODEL AND LANGUAGE CHOICES

The preceding discussion on logic has informed us about how to select a desirable
knowledge representation language. We want a language that can model and capture
intensional and extensional relations; one that potentially embraces all three kinds
of inferential logic; that is decidable; one that is compatible with a design reflective
of particulars and generals; and one that is open world in keeping with the nature of
knowledge. We want this KR language, or languages, to accommodate Peirce’s guid-
ance, especially that related to practicality and various use and adoption criteria. In
short,  we  seek  pragmatic  choices  that  balance  the  trade-off  in  expressivity  and
tractability.

Many, especially in the semantic Web community, have chosen topic maps or the
Resource Description Framework (RDF) as their sole modeling basis. At the more ex-
pressive  end of  the  spectrum,  others  have  advocated  conceptual  graphs  and the
more powerful constructs of first-order logic. We have chosen more of a middle path:
we use RDF as our data model language while using the Web Ontology Language, OWL
2, as our language for the knowledge graph, and the basis for mapping to external in-
formation sources. Both RDF and OWL 2 conform to description logics, and both are
open, standardized efforts from the World Wide Web Consortium. Via these choices,
we also gain access to many other standards and tools from the W3C, as the remain-
der of this section describes.

RDF: A Universal Solvent

RDF (Resource Description Framework) is a family of World Wide Web Consortium
(W3C) specifications originally designed as a metadata model. In practice, RDF has be-
come a general method  for modeling information through a variety of syntax for-
mats.  In RDF, we make statements about resources in the form of subject-predicate-ob-
ject expressions, called triples.

A triple may sound fancy, but substitute verb for predicate and noun for subject and
object. In other words: Dick sees Jane; or, the ball is round. It may sound like a kinder-
garten reader, but it is how we can easily represent data and build it  up into more
complex vocabularies and structures.  We combine multiple statements  to flesh out
our understanding of individual things. Since subjects or objects may act as ‘nodes’ to
one another (the predicates act as connectors or ‘edges’), we may create hierarchical
and relationship structures as we add statements (see  Figure 1-2). As we aggregate
these node-edge-node triple statements, a network structure emerges, known as the
RDF graph.

The referenced ‘resources’ in RDF triples have unique identifiers,  IRIs, that are
Web-compatible  and  Web-scalable,  such  as  http://mkbergman.com/me/about.rdf.
These identifiers can point to precise definitions of predicates or refer to specific
concepts or objects, leading to less ambiguity and clearer meaning or semantics.

We can apply RDF triples equally to  unstructured (say, text),  semi-structured (say,
HTML documents) or structured data sources (say, standard databases). This flexibility
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makes RDF almost a ‘universal solvent’ for representing data structure.1 By defining
new types and predicates, we can create more expressive vocabularies within RDF.
This expressiveness enables RDF to define controlled vocabularies with exact seman-
tics.26 These features make RDF a powerful data model and language for data federa-
tion and interoperability across disparate datasets.

We represent instance data simply as key-value pairs (also known as a name–value
pairs or attribute–value pairs), where the subject is the instance (particular) itself, the
predicate is the attribute, and the object is the value. We may express all or part of the
data model as a collection of tuples <attribute name,value> where each element is
a key-value pair. The key is the defined attribute, and the value may be a reference to
another object or a literal string or value. In the base form of the RDF data model,
useful in describing static things or basic facts, we keep it simple: no range or do-
main constraints; no existence or cardinality constraints; and no transitive, inverse
or symmetrical properties. A combination of these for the same subject forms an in-
stance record, part of the ABox as noted above. A dataset is a combination of one or
more records, transmitted as a single unit (though we may break it into parts due to
size), including simple text files. 

Because of RDF’s universality and open standards, a  vibrant ecosystem exists of
translators  to  alternate  syntaxes,  languages,  and  serializations,  with  JSON  and
straight text (through comma-separated value and RDF formats) being the most pop-
ular. Because of its diversity of serializations and its simple data model, it is also easy
to  create  new  converters  using  RDF.  Generalized  conversion  languages  such  as
GRDDL provide framework-specific conversions, such as for microformats. Once in a
standard RDF representation, it  is  straightforward to incorporate new datasets or
new attributes, and to aggregate disparate data sources as if they came from a single
source. This universality enables meaningful composition of data from different ap-
plications regardless of format or serialization. 

RDFS (RDF Schema) is the next layer in the RDF stack designed to overcome some
of the baseline limitations. RDFS introduces new predicates and classes that bound
these semantics. Importantly, RDFS establishes the basic constructs necessary to cre-
ate new vocabularies, principally through adding the class and subClass declarations
and adding domain and range to properties (the RDF term for predicates). RDFS supplies
the basic data types used in the vocabulary, which are pre-defined ways that attribute
values may be expressed, including various literals and strings (by language), URIs,
Booleans, numbers,  and date-times.2 Many useful  RDFS vocabularies exist,  and it is
possible to apply limited reasoning and inference support against them. We can also
use this intermediate canonical form, now with a bit of added schema, to communi-
cate queries, context selections, and labels and forms for user interfaces.  The RDFS
structure and label properties allow us to populate context-relevant dropdown lists
and auto-complete entries in user interfaces solely from the input data and struc-
ture. This ability is generalizable using a reasonably straightforward input schema.

1 See Chapter 10.

2 See, for example, XSD (XML Schema Definition) for more information
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Thus, RDF is a framework for modeling all forms of data, for describing that data
through vocabularies, and for interoperating that data through shared conceptual-
izations and schema. We can represent, describe, combine, extend and adapt data
and their organizational schema flexibly and at will using the HTTP protocol. Impor-
tantly, via existing or easily constructed converters, we can do this without the need
to change what already exists. We can augment our existing relational data stores,
and transfer and represent our current information as we always have. The RDF data
model provides an abstract, conceptual framework for defining and using metadata
and metadata vocabularies, as well as for our primary purpose of representing a mes-
sage or data in a readily consumable form. In our design, RDFS is the language mostly
focused on the ABox.

OWL 2: The Knowledge Graph Language

We need something more expressive and powerful for the conceptual and reason-
ing aspects of the TBox. Our choice, again a W3C standard, is OWL 2, the Web Ontol-
ogy  Language  designed  for  defining  and  instantiating  formal  Web  ontologies,  or
knowledge graphs.  An OWL ontology may include descriptions of  classes,  along with
their related properties and instances. A variety of OWL dialects may be employed, spe-
cialized to process more quickly for different specific needs, such as rule testing or
querying. OWL 2 is the primary formalism used in KBpedia.1 OWL 2 provides nearly
complete capabilities  from description logics and  offers some tricks of its  own in
metamodeling. An inspection of OWL’s standardized direct semantics provides fur-
ther detail in these regards.27

Before OWL 2, the initial version of OWL was more challenging to ensure decid-
ability. The earlier version also did not allow users to treat classes as instances de-
pending on context. Fortunately, OWL 2 added a metamodeling technique called pun-
ning. When used for ontologies, it means to treat a thing as both a class and an instance,
with use depending on context.

While we are using OWL 2 as our standard KBpedia language, we are not relying
on OWL’s distinction of object and datatype properties for external relations and at-
tributes, respectively. External relations, it is true, by definition are object proper-
ties,  since both subject  and object  are  identifiable  things.  However, attributes,  in
some cases such as rating systems or specific designators, may also refer to con-
trolled vocabularies, which can (and, under best practice, should) be object proper-
ties. So, while most attributes use datatype properties, not all may. Relations and at-
tributes are a better cleaving since we can use relations as patterns for fact extrac-
tions and the organization of attributes gives us a cross-cutting means to understand
the characteristics of things independent of the entity type. So while the splits most
often conform to object properties for external relations and datatype properties for
attributes, relying on this split is not dependable.2 In any case, all of these assign-

1 References herein to OWL refer to OWL 2 unless otherwise noted.

2 For interoperability with external datasets where our logic model and vocabulary provides, we allow as-
signment of either object or datatype properties, which we reconcile at the schema level.
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ments become valuable potential features for machine learning, in addition to the
standard text structure.

OWL provides  sufficient  expressive  richness  to  describe  the  relationships  and
structure of entire  worldviews, or the so-called terminological (TBox) construct in
description logics. Thus, we see that the complete structural spectrum of description
logics can be satisfied with RDF and its schematic progeny, with a bit of an escape
hatch for combining poorly defined or structural pieces using undecidable OWL frag-
ments.

W3C: Source for Other Standards

We can use  many other  W3C standards in  the system for  graphics  standards,
rules, selected vocabularies, translators and validators, and the like.28 I will mention
only three of the prominent ones we use. The first capability is  the RDF query lan-
guage, SPARQL,29 which provides querying of either the ABox or TBox or driving re-
ports and templated data displays. Utilizing RDF’s simple triple structure, SPARQL
can also be used to query a dataset without knowing anything in advance about the
data,  which is  a  useful  discovery mode.  The second contributor  is  the Simplified
Knowledge Organizational System (SKOS) vocabulary, which we use as a concept clas-
sification language;30 see further discussion of SKOS below. The last notable contribu-
tion is linked data, which is a set of recommended techniques and guidelines for ex-
posing RDF resources to the Web. It is the right technique to use if open sharing. The
Linking Open Data movement that is promoting this pattern has become highly suc-
cessful, with billions of useful RDF statements now available for use and consumption
online. 

THE KBPEDIA VOCABULARY

In  Chapter  7 we discussed the main terminological  aspects  to  our approach to
knowledge  representation,  grounded  in  Peirce’s  universal  categories  of  Firstness,
Secondness, and Thirdness, the topic of Chapter 6. We then added commentary about
logical and inferencing needs, with pragmatic choices being made for the W3C lan-
guages to implement these design considerations. We are now in a position to pro-
vide a working introduction to the KBpedia vocabulary and the upper structure of its
knowledge graph, the KBpedia Knowledge Ontology, or KKO. We supplement these
materials with online resources and further KBpedia details; see Appendix B.

By design, this introduction is only a summary. KBpedia is under active use and
development as of the time of this writing, and we expect details to change, perhaps
in material respects. As a result, I try to keep the summary and explanations general
enough to retain some longevity. Again, for the current specifications, see the online
resources.1

1 KBpedia and its documentation are available for free under open source licensing; for current specifications
and downloads see http://kbpedia.org.
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Structured on the Universal Categories

In keeping with the universal categories, we organize KBpedia under the standard
RDF root of ‘Thing’1 into the three main and sole branches of Monads (Firstness, 1ns or
1),  Particulars  (Secondness, 2ns or 2), or Generals (Thirdness, also called SuperTypes,
3ns or 3). We also tend to categorize the upper structure of KBpedia, formally known
as the KBpedia Knowledge Ontology, or KKO, in a triadic manner. This triad follows
the senses of possible building blocks (1ns), actual things in the category (2ns), and
generalizations about the category (3ns).  Applicable categories in the upper struc-
ture may be prefixed with 1, 2, or 3 to keep track of these splits. We list the features
available for machine learning in Appendix C.

The  Monads branch (1ns) captures the qualities, constituents, characteristics, or
attributes of the actual things or general realities that comprise human knowledge.
We can talk about these things, but, once we do, we instantiate the quality, so that
our  actual  statements  and  assertions  about  these  things  occur  in  the  other  two
branches. Nonetheless, from a modeling standpoint, it is still possible to relate state-
ments about monads to their placements in the knowledge graph, enabling some rea-
soning, if desired, by proxy, using this branch. The  Particulars branch (2ns) repre-
sents all individual, real things across which knowledge may pertain. Entities and
events are the two main sub-branches of the particulars, with the third sub-branch
being the instantiation of monads. The Generals branch (3ns), the third of the three,
comprises all concepts, types, and generalizations we may make about the things to
which knowledge may refer, as well as the concepts and generalizations that apply to
knowledge itself and how it is represented and communicated. Its three main sub-
branches represent constituents of reality, relations (predications), and manifesta-
tions, including matter, life, and symbols. KBpedia’s upper triadic structure is the do-
main of discourse for knowledge representation and its potential scope. Naturally,
since it is absurd to capture all instances or all generalities related to knowledge, KB-
pedia is not a complete representation. Instead, it is a scaffolding of the more pivotal
joints in the knowledge skeleton, which provide reference tie-ins for specific knowl-
edge domains to expand coverage using similar construction methodologies.

By comparison, please note that most existing KR graphs or ontologies  corre-
spond to the Generals branch in our design, with the data or ABox corresponding to
the  Particulars branch in KBpedia and KKO. However, none of these other existing
systems are triadic, and none are explicit about modeling meaning or context.

Three Main Hierarchies

We embed three hierarchical backbones within the KKO structure. One is for in-
stances (particulars) that correspond to the ABox. One is for relations.  The third is
for classes, types, and generalities, corresponding to the TBox. I overview these three
backbones under the instances, relations, and generals vocabulary sections below.

1 ‘Thing’ is the same as ‘resource’ in RDF and is the existential starting node for an OWL knowledge graph.
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 The Instances Vocabulary 

More than 95% of the knowledge items in KBpedia are instances, either entities or
events.  The constituent knowledge bases for these include Wikipedia and Wikidata,
described in Chapter 11. All instances in KBpedia belong to one or more types, which
are the subject of the Generals branch. However, we may use different characteristics
to describe and compare instances to one another, as shown in Table 8-2 below. These
descriptions relate to how we characterize the instances, not where they occur in the
general conceptual schema. These items may be discovered and inspected using the
online KBpedia browser.1 Hopefully, most of these items are pretty clear. You may
obtain full definitions and other contextual specifications from the open source KKO
artifact. 

The Monoidal Dyads sub-branch captures the items in the Monad main KKO branch,
previously noted, as reified as actual instances. Its triadic splits follow the general
form. Events were discussed at length in Chapter 7, and capture the span from Peirce’s
absolute chance (tychism, or spontaneity) to his Thirdness of synechism.

2-Particulars
1-Monadic Dyads

1-Monoidal Dyad
2-Essential Dyad
3-Inherential Dyad

2-Events
1-Spontaneous
2-Action

1-Exertion
2-Perception
3-Thought

3-Continuous
1-Triadic Action
2-Activities
3-Processes

3-Entities
1-Single Entities

1-Phenomenal
2-States

Situations
3-Continuants

Time
1-Instants
2-Intervals
3-Eternal

Space

1 See http://kbpedia.org/knowledge-graph/; links for how to use are provided on that same page. 
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Points
Areas

2D-Dimensions
Space/Regions

3D-Dimensions
2-Part Of Entities

1-Members
2-Parts
3-Functional Components

3-Complex Entities
1-Collective Stuff
2-Mixed Stuff
3-Compound Entities

Table 8-2: Full, Upper Hierarchy of the KBpedia Particulars1

Actions are the actual instances of action and may arise from perception, exertion or
thought, as previously discussed. Entities span from single ones, according to the uni-
versal categories, to parts of entities and then combinations of entities, again in cor-
respondence with the categories. Complex entities may span from simple collections to
mixtures to compound ones, the latter best exemplified by the constituent entities
comprising the whole universe.

To my knowledge, no existing knowledge graph or ontology other than KBpedia
provides a similar classification scheme for the nature of instances, likely  because
none of the other systems are modeled using Peircean perspectives.

The Relations Vocabulary

I provided a fairly detailed introduction to the Relations vocabulary in  Chapter 7.
We model these relations as  abstract possibilities under the relational monads (2ns
and 3ns) in the  Monads main branch. We model these relations as concepts used in
knowledge representation according to the  Predications branch of 2ns in  Table 10-2.
Note KKO represents the concepts of these relations, in addition to the relational ex-
pressions themselves. In KKO, we provide the specific relations as object or datatype
properties  (or  both),  depending.  We  include  the  separate  listing  of  relations  as
classes so that we may talk about and reason over them as concepts. Using them in ac-
tual triples requires the properties.

Since we already introduced the top-level of the relations in Chapter 7, let’s move
on to the next two levels. The next Table 8-3 shows the second level of the relations
hierarchy, with the following Table 8-4 showing the third-level. I will highlight some
aspects of these tables where they may not be entirely evident, according to the 1ns,
2ns, and 3ns relation sub-branches.

1 Various downloads of KKO and KBpedia may be obtained from https://github.com/Cognonto/kko. To view 
the KKO artifact, you will need an ontology editor, such as the open source Protégé ontology development 
environment.
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ATTRIBUTES RELATIONS (1NS)

Attributes are  the  intensional  characteristics  of  an  object,  event,  entity,  type
(when viewed as an instance), or concept. We split  attributes into three categories.
The  intrinsic relations  are  innate  characteristics  or  essences  of  single  entities  or
events (particulars). Example concepts include oneness, qualities, feelings, inherent,
negation, is, has, intensional, naturalness, internal, innateness. Qualities, one intrin-
sic sub-branch, are an internal characteristic or aspect of an object; collectively these
define intensionally what types to which the object belongs, though that relationship
is not intrinsic. Elementals are a contributing part of or integral input or aspect that
adds to the understanding  of the subject.  Configurations, or forms or arrangements,
are of the nature or perceivable of the subject.  The adjunctual are occurrences that
may occur to single entities or events (particulars) that help characterize it. Example
concepts  include birth,  death,  marriage,  events  for the individual,  accidents,  sur-
prises, happenings, extrinsic, adjunctual. Though Peirce used ‘accidental’ much, he
applied it in most cases to ‘accidental actuals’; thus, ‘adjunct’ better captures poten-
tiality. Within adjunctuals we have quantities, characteristics of a subject that we ex-
press as a  numerical quantity;  eventuals, chance, accidental or planned occurrences
that directly involve a subject; or  extrinsics,  which are external events or circum-
stances that directly involve the subject or help define the nature or reality of it.

The  contextual relations  are  circumstances  or  placements  of  single  entities  or
events (particulars) that help characterize it. Example concepts include space, time,
continuity, and classificatory. These relations include anything that has gradation
over space and time, including ideas and concepts that also shade. The three sub-
branches of the contextual relations are: situants (1ns), which are attributes or char-
acteristics that help situate, or place the subject in a locational or time context; rat-
ings (2ns), which are an assigned value or characterization that orders the subject in
relation to other subjects; or  classifications (3ns), which are characterizations of the
subject in  regard to multi-factor typing, coding or value in relation to a given at-
tribute or set of attributes. 

EXTERNAL RELATIONS (2NS) 

External relations are assertions between an object, event, entity, type, or concept
and another particular or general.  External relations also have three sub-categories,
with the first (1ns) being  direct, which are simple relationships (no intermediaries)
between two different objects considered as instances. Example concepts include is a,
simple without parts, part of, members in types or classes, or genealogical roles (par-
ent,  child,  brother).  Direct  relations,  in turn,  have three sub-branches,  including:
equivalences, a simple relationship that asserts  equality or sameness;  parts, a simple
relationship where the object is a part or component of the subject; or descendants,
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which are a simple relationship where the object has a genealogical, subsumption, or
supersumption relationship to the subject.

The Copulative relations are the 2ns sub-branch of the External Relations. They con-
vey combination, membership, quantity, action, or joins.31 The three sub-branches
include typings, all of the is-a relations to types; actions; and conjoins, relations that in-
volve the joining of a subject to an object via an intermediate object. We should note
that the two sub-branches of external relations to this point, the direct and copulative,
represent the simple relations according to Peirce’s logic of relatives.32

The last sub-branch in Thirdness of the External Relations is the Mediative relations,
which are the true, triadic external relations, such as ‘A gives B to C.’  These are the
relationships of relevance, meaning, explanation, or cognition. Sub-branches of the
mediative relations are comparisons;  performances, which are relations of quantity or
rank for how a subject performed in relation to an object; or cognitives, which relate
to thinking, knowing or representing. While we might consider thoughts as some-
thing that occurs internally, thoughts are not innate and are internal representa-
tions of the external world.

REPRESENTATION RELATIONS (3NS)

The Thirdness branch of relations is the  Representations,  which are signs (1905, CP
8.191) and the means by which we point to, draw or direct attention to, or designate,
denote or describe a particular object, entity, event, type or general. The first Repre-
sentation sub-branch is the denotatives, icons or symbols that name or describe the
subject. Its three sub-branches are: media, iconic images or sounds that invoke the
identification with a given object or representation; labels, symbolic text strings that
help name or draw attention to a particular object; or descriptions, text strings that
may be longer than labels and provide additional or contextual information or spec-
ify attributes about the object, beyond drawing attention.

The second branch of  the  Representations is  the  indexes,  indirect  references  or
pointers that help draw attention to the subject. Indexes are references or attention-
directors to a subject.33 The three sub-branches of  indexes are:  pointers,  physical or
symbolic indicators of a given thing and which draw attention to it;  identifiers, such
as URIs, which are generally (unique) symbols or strings that provide a key to a given
subject, often within some conventional scheme for generating and recognizing the
token assigned; and codes, an assigned symbolic token or string that groups the ob-
ject with similar items. 

The last branch (3ns) of the  Representations is the associatives,  contextual asser-
tions of  proximity,  affiliation or adjacency of  the subject to any contiguity.34 The
three sub-branches are: lists,  either ordered or unordered aggregations of objects
similar to one another with respect to given characters or types;  relateds (see also),
which are indicators of some nature to other objects similar or related to it; or aug-
ments, which are an external indicator that leads to still further explanations. 

Current practice rarely incorporates any of these vocabulary aspects — discussed
in the sections above on monads, particulars, and relations — in knowledge graphs and
ontologies.  The Peirce-inspired design of  these first  and second branches of KKO
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demonstrate a logical, recursive approach to organizing knowledge domains. These
aspects provide a deeper, more abstract pool of features of possible use to machine
learners. Reasoning tasks should also see a jump-step up in capabilities.

The Generals (KR Domain) Vocabulary

The core of KBpedia, as it is for most current knowledge graphs, is the TBox, or
the conceptual schema for the domain. This KKO branch is populated entirely with
generals and is where most current reasoning with knowledge graphs occurs. This
central schema is also the point at which it is best to link external knowledge bases
into the system.1 Because of this mapping role, we term the nodes in the  Generals
branch as reference concepts (or RefConcepts or RCs). All RCs are OWL classes. More than
95% of the 55,000 current base concepts in KBpedia are RCs. These RCs provide a rich
pool of tie-in points for enabling integration with external sources.

The RCs are organized into natural hierarchies of related kinds or types, what we
term typologies.2 Typologies are multi-instance hierarchies; each one has a top-level
node called a SuperType. The distribution of typologies in KBpedia covers the scope of
substantive human knowledge, and all of the SuperTypes, by design, are part of the
upper KKO knowledge graph. Also, we design the typologies as disjoint (non-overlap-
ping) with one another where possible, which promotes efficiency in reasoning and
other analyses. Typologies are explained further in Chapter 10.

We provide a complete view of the upper  Generals branch in  Table 10-1,  in the
chapter on typologies. The structure of the Generals branch follows our understanding
of Peirce’s universal categories. Note the structure enables us to organize and rea-
son over predicates and attributes, as well as the more standard classes of things
that encompass the knowledge domain. Further, via ties to the other two main KB-
pedia branches, Monads and Particulars, we can also significantly expand the abstract
characterization and reasoning of all things within that domain.

Other Vocabulary Considerations

Before we close out discussion of the KBpedia vocabulary, we need to touch upon
two further considerations: the vocabulary terms provided by W3C standards and the
vocabulary  for  mapping  external  sources  to  KBpedia.  As  the  following  Table  8-5
shows, we rely much on the SKOS vocabulary in KBpedia for various annotation la-
bels and some conceptual relationships. We use RDFS for SKOS, property range and
domain declarations, and property hierarchies. OWL is used to declare classes and to
split our properties into annotations, object properties, and datatype properties. 

SKOS, or the Simple Knowledge Organization System,30 is a formal language and
schema  designed  to  represent  such  structured  information  domains  as  thesauri,
classification  schemes,  taxonomies,  subject-heading  systems,  controlled

1 While instance mappings are possible, it is more effective to define relationships at the class level, since 
member instances can then be inherited without direct assignment.

2 These are a critical design component of our approach, which we discuss at length in Chapter 11.
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vocabularies, or others; in short, most of the ‘loosely defined’ ontology approaches
discussed herein. It is a W3C initiative more fully defined in its SKOS Core Guide. As
an RDF Schema, SKOS adds some language and defined relationships to the RDF base-
line. SKOS also has a rich set of annotation and labeling properties to enhance the
human readability of schema developed in it. 

RDFS rdfs:domain
rdfs:range
rdfs:subClassOf 
rdfs:subPropertyOf

OWL owl:AnnotationProperty
owl:Class
owl:DatatypeProperty
owl:disjointWith
owl:equivalentClass 

SKOS-Preferred skos:altLabel 
skos:broaderTransitive
skos:definition
skos:hiddenLabel 
skos:narrowerTransitive 
skos:prefLabel

SKOS-Optional skos:broader 
skos:changeNote 
skos:editorialNote 
skos:example 
skos:historyNote 
skos:narrower
skos:note
skos:related
skos:scopeNote

Table 8-5: External Mapping and Annotation Properties

As noted, the Generals branch is the target for mapping to external sources. The
design approach is to define the classes in KBpedia broadly and to consider external
mappings of the subClassOf nature. What this means is that the parental concept in
KBpedia tends to subsume the concepts in the contributing external sources, and to,
therefore,  inherit  the instances brought in by external  classes.1 However,  not all
mappings  represent  class-to-class  relationships.  Further, some  mappings  may  be
more of the nature of intersections or partial overlaps, rather than complete inheri-
tance. As a result, KBpedia has adopted multiple mapping predicates, some approxi-
mate, as shown in Table 8-6:

1 Due to OWL 2 and punning (c.f., Chapter 9), depending on context, we can talk about the classes in the Gener-
als branch as instances and characterize them, while they can still act as classes for mapping and logical in-
heritance purposes.
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correspondsTo The property correspondsTo is used to assert a close correspondence between an exter-
nal class, named entity, individual or instance with a Reference Concept class. corre-
spondsTo relates the external class, named entity, individual or instance to the class 
by both its subject matter and intended scope. This predicate should be used where 
the correspondence between the two entities is felt to be nearly equivalent to a 
sameAs assertion and is reflexive, but without the full entailments of intensional class 
memberships. In these cases, both entities are understood to have the same type and 
intended scope, but without asserting a full class-level or sameAs individual relation-
ship. 

This predicate is for aligning two different ontologies or knowledge bases based on 
node-level correspondences, but without entailing the actual ontological relation-
ships and structure of the object source. For example, the correspondsTo predicate 
may be used to assert close correspondence between Reference Concepts and 
Wikipedia categories or pages, yet without entailing the actual Wikipedia category 
structure. This property asserts a different and stronger relationship than isAbout. 

isAbout The property isAbout is used to assert the relation between an external named entity, 
individual or instance with a Reference Concept class. isAbout relates the external 
named entity, individual or instance to the class by its subject matter. The relation 
acknowledges that the scope of the class cannot be determined solely by the aggrega-
tion or extent of its associated individual entity members and that the nature of the 
Reference Concept class may not alone bound or define the individual entity. This 
property is therefore used to create a topical assertion between an individual and a 
Reference Concept. 

isRelatedTo Check the definition of isAbout for the definition of this property; isRelatedTo is the in-
verse property of isAbout. 

relatesToXXX The various properties designated by relatesToXXX are used to assert a relationship 
between an external instance (object) and a particular (XXX) SuperType. There may 
be as many relatesToXXX properties as there are numbers of SuperTypes. The asser-
tion of this property does not entail class membership with the asserted SuperType. 
Rather, the assertion may be based on particular attributes or characteristics of the 
object at hand. For example, a British person might have a relatesToXXX asserted rela-
tion to the SuperType of the geopolitical entity of Britain, though the actual thing at 
hand (person) is a member of the Person class SuperType. This predicate is used for 
filtering or clustering, often within user interfaces. Multiple relatesToXXX assertions 
may be made for the same instance. 

isLike The property isLike is used to assert an associative link between similar individuals 
who may or may not be identical, but are believed to be so. This property is not a gen-
eral expression of similarity, but rather the likely but uncertain same identity of the 
two resources. 
This property is an alternative to sameAs where there is not a certainty of sameness, 
and when it is desirable to assert a degree of overlap of sameness via the hasMapping 
reification predicate. This property can and should be changed if the certainty of the 
sameness of identity is subsequently determined. 

isLike has the semantics of likely identity, but where there is some uncertainty that 
the two resources indeed refer to the same individual with the same identity. Such 
uncertainty can arise when, for example, we use common names for different individ-
uals (e.g., John Smith). 
It is appropriate to use this property when there is strong belief the two resources re-
fer to the same individual with the same identity, but that association cannot be 
made at present with full certitude. 
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hasMapping The hasMapping property is used to reify isAbout, isRelatedTo or an isLike property as-
sertion with a statement as to its degree of mapping or relationship between subject 
and object. The hasMapping property may be expressed as a mapping percentage 
value, some quantitative metric value, or a qualitative descriptor characterizing the 
linkage degree or overlap between the two classes, predicates, individuals or 
datatypes. This value might be calculated from some external utility, may be free 
form, or may be based on some defined listing of mapping values expressed as liter-
als. 

hasCharacteristic The property hasCharacteristic is used to assert the relation between a Reference Con-
cept, or any other classes, and external properties that may be used in external on-
tologies to characterize, describe or provide attributes for data records associated 
with that concept or that class. It is via this property or its inverse, isCharacteristicOf, 
that external data characterizations may be incorporated and modeled within a do-
main ontology based on the KBpedia vocabulary. 

isCharacteristicOf The property isCharacteristicOf is used to assert the relation between a property and a 
Reference Concept (or its punned individual), or any other classes, to which it applies.
Such properties may be used in external ontologies to characterize, describe, or pro-
vide attributes for data records associated with that concept or that class. It is via this
property or its inverse, hasCharacteristic, that external data characterizations may be 
incorporated and modeled within a domain ontology. 

Table 8-6: Mapping and Alignment Relations

We cover the general topic of mapping in some detail in Chapter 13.
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KEEPING THE DESIGN OPEN

t the time of my high school years,  Alfred Wegener‘s theory of  continental
drift was still a question mark for many mainstream scientists. In my college

years, a young American biologist,  Lynn Margulis, postulated and was ridiculed for
the theory of endosymbiosis; that is, that certain cell organelles originated from ini-
tially  free-living  bacteria.  In  1980  the  Alvarez's  hypothesized that  the  age  of  di-
nosaurs  was  ended  by  an  asteroid  strike  near  the  Yucatan  at  the  end  of  the
Cretaceous. In the 1990s we were just starting to get a glimmer the Helicobacter bacte-
ria had been the cause of misdiagnosed peptic ulcers for decades. Today, we widely
accept all of these then-revolutionary hypotheses as scientific truth.1 

A

We now see continental drift as a major explanation for the geographic dispersal
of plant and animal families across the globe. Margulis’ theory is understood to em-
brace cell organelles from mitochondria to chloroplasts, informing us that the funda-
mental unit of all organisms — the cell — is itself an amalgam of archaic symbionts
and bacteria-like lifeforms. We now correlate asteroid strikes to historical extinction
events through geologic time. Though the native human genome has some 23,000
genes, researchers estimate more than 3 million genes arise from bacterial fellow
travelers in our gut and skin ‘microbiomes.’ We know that our ecosystem of bacteria
is involved in nutrition and digestion, contributing perhaps as much as 15% of the
energy value we get from food. Besides ulcers, researchers have implicated symbiotic
bacteria in heart disease, Type II diabetes, obesity, malnutrition, multiple sclerosis,
other auto-immune diseases, asthma, eczema, liver disease, bowel cancer and autism,
among others. Within my professional life, major aspects of science, geology, and bi-
ology have undergone massive and fundamental shifts in understanding. Concomi-
tant changes have swept through society. Such is the nature of knowledge, with the
seeming rapidity of advances steadily increasing. 

This  chapter  begins  our  Part  III.  All  three  chapters  cover  the  components  of
knowledge representation design responsive to  such fast-moving changes.  In  this
chapter, we  discuss  the  importance  of  open  design  to  capture  rapid  changes  in
knowledge, indeed to capture the broad trends toward openness across all aspects of
human  informational  and  economic  activity.  These  imperatives  help  inform  the
structural considerations that go into how to federate and interoperate data from
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multiple sources in multiple formats. In the following Chapter 10, we discuss our ty-
pology design, the basis by which we can adapt our overall design to new domains or
expand the knowledge we capture for any given domain. In  Chapter 11, we explain
how these open components naturally also lead to a design founded on knowledge
bases and graphs, as the proper structural expressions of this open and connected
nature. Think of  Part III, combined with the three earlier chapters of  Part II, as de-
scribing all of the design and building block inputs needed for a responsive knowl-
edge representation system, the topic of Part IV that follows.

THE CONTEXT OF OPENNESS

Since ancient times, an exemplar being the Library of Alexandria, humans have
used libraries to collate documents and to provide access to knowledge. Repositories
and books sometimes threaten authoritarian regimes or close-minded orthodoxies,
as does information and knowledge in general. Book burnings and the ransacking of
libraries are some of the saddest events of human history.

Fortunately, a notable and profound transition is underway. This transition is not
something we can tie to a single year or event. It is also something that is quite com-
plex in that it is a matrix of forces, some causative and some derivative, all of which
tend to reinforce one another to perpetuate the trend. The trend that I am referring
to is openness, and it is a force that is both creative and destructive, and one that in
retrospect is also inevitable given the forces and changes underlying it. It is hard to
gauge exactly when the blossoming of openness began, but by my lights, the timing
corresponds to the emergence of  open source software and the Internet. Over the
past quarter-century, the written use of the term ‘open’ has increased more than 40%
in frequency in comparison to terms such as ‘near’ or ‘close,’ a pretty remarkable
change in usage for a more-or-less common term.2 

An Era of Openness

Though the term of ‘openness’ is less common than ‘open,’ its change in written
use has been even more spectacular, with its frequency more than doubling (112%)
over the past 25 years. The change in growth slope appears to coincide with the mid-
1980s,2 consistent with my thesis of being linked to open source software and the In-
ternet. Because ‘openness’ is more of a mindset or force — a point of view, if you will
— it is not itself a discrete thing, but an idea or concept. 3 In contemplating this world
of openness, we can see quite a few separate, yet sometimes related, strands that
provide the weave of the ‘openness’ definition:

 Open source   — refers to a computer program in which the source code is avail-
able to the general public for use or modification from its original design. Open-
source code is typically a collaborative effort where programmers improve upon
the source code and share the changes within the community so that other
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members can help improve it further;

 Open standards   — are standards and protocols, some informal or put forward by
individuals, that are fully defined and available for use without royalties or re-
strictions; stakeholders often suggest and modify these open standards in public
collaboration, with adoption subject to some open governance procedures;

 Open content   — is a creative work, generally based on text, that others can copy
or modify; open access publications are a particular form of open content that
provides unrestricted online access to peer-reviewed scholarly research;

 Open data   — is the idea that specific data should be freely available to everyone
to use and republish as they wish, without restrictions from copyright, patents
or other mechanisms of control; open data is a special form of open content;

 Open knowledge   — is  what open data becomes when it is  useful,  usable and
used; according to the  Open Knowledge Foundation, the key features of open-
ness are availability and access wherein the data must be available as a whole
and at no more than a reasonable reproduction cost, preferably by downloading
over the Internet;

 Open  knowledge  bases —  are  open  knowledge  packaged  in  knowledge-base
form; 

 Open access   to communications — is non-discriminatory access to communica-
tions networks, allowing new models such as crowdsourcing (obtaining content,
services or ideas from a large group of people), citizen science, or crowdfunding
(raising funds from a large group of people) to arise;

 Open rights — are an umbrella term to cover the ability to obtain content or
data without  copyright restrictions and gaining use and access to software or
intellectual property via open licenses;

 Open  logics  —  are  the  use  of  logical  constructs,  such  as  the  open  world
assumption, which enable us to add data and information to existing systems
without the need to re-architect the underlying data schema; such logics are es-
sential to knowledge management and the continuous addition of new informa-
tion;

 Open architectures — are means to access existing software and platforms via
such means as  open APIs (application programming interfaces),  open formats
(published specifications for digital data) or open Web services;

 Open government   — is a governing doctrine that holds that citizens have the
right to access the documents and proceedings of the government to allow for
effective public oversight; online access to government data and information is
one goal;

 Open education   — is an institutional practice or programmatic initiative that
broadens access to the learning and training traditionally offered through for-
mal education systems, generally via educational materials, curricula or course
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notes at low or no cost without copyright limitations;

 Open design   — is the development of physical products, machines, and systems
through the use of publicly shared design information, often via online collabo-
ration;

 Open research   — makes the methodology and results of research freely avail-
able via the Internet, and often invites online collaboration; we  refer to it as
open   science   if the research is scientific in nature; and 

 Open innovation   — is the use and combination of open and public sources of
ideas and innovations with those internal to the organization. 

In looking at the factors above, we can ask two formative questions.  First,  is  the
given item above primarily a causative factor for ‘openness’ or is it a derivative due to
a more ‘open’ environment? Second, does the factor have an overall high or low im-
pact on the question of openness. Figure 9-1 plots these factors and dimensions.

Early expressions of ‘openness’ helped cause the conditions that lead to openness
in  other  areas.  As  those areas  also  become more open,  positive  reinforcement  is
passed back to earlier open factors, all leading to a virtuous circle of increased open-
ness. Though perhaps not strictly ‘open,’ other various and related factors such as
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the democratization of knowledge, broader access to goods and services, more com-
petition, ‘long tail’ access and phenomenon, and in  genuinely open environments,
more diversity and more participation, also could be plotted on this matrix.

Once viewed through the lens of ‘openness,’ it starts to become clear that all of
these various ‘open’ aspects are remaking information technology and human inter-
action and commerce. The impacts on social norms and power and governance are
just as profound. Though many innovations have uniquely shaped the course of hu-
man history — from literacy to mobility to communication to electrification or com-
puterization — none appear to have matched the speed of penetration nor the im-
pact of ‘openness.’  So, what is driving this phenomenon? Where did the concept of
‘openness’ arise?

The matrix in Figure 9-1 helps us hypothesize one foundational story. Look at the
question of what is causative and what might be its source. One conclusion is the In-
ternet — specifically the Web, as reinforced and enabled by open-source software —
is a primary causative factor. Relatively open access to an environment of connectiv-
ity guided by standard ways to connect and contribute began to fuel still further con-
nections and contributions. The positive values of access and connectivity via stan-
dard means, in turn, reinforced the understood value of ‘openness,’ leading to still
further connections and engagement. More openness is like the dropped sand grain
that causes the entire dune to shift. The Web with its open access and standards has
become the magnet for open content and data, all working to promote derivative and
reinforcing factors in open knowledge, education and government.

The fruits of ‘openness’ tend to reinforce the causative factors that created ‘open-
ness’ in the first place. More knowledge and open aspects of collaboration lead to still
further content and standards that lead to further open derivatives. In this manner,
‘openness’ becomes a kind of engine that promotes further openness and innovation.
A kind of open logic (premised mainly on the open world assumption, see next sec-
tion) lies at the heart of this engine. Since new connections and new items are con-
tinually arising and fueling the openness engine, we bolt on new understandings to
original starting understandings. This accretive model of growth and development is
similar to the  deposited layers of pearls or the growth of crystals.  The structures
grow according to the factors governing the network effect, and the nature of the
connected growth structures may be represented and modeled as graphs. In general,
as might be expected, the greater the degree of structure, the  higher its potential
contribution to interoperability.

‘Openness,’ like the dynamism of capitalism, is both creative and destructive.4 The
effects are creative — actually transformative — because of the new means of collab-
oration that arise based on the new connections between new understandings or
facts. ‘Open’ graphs create entirely new understandings as well as provide a scaffold-
ing for still further insights. The fire created from new understandings pulls in new
understandings and contributions, all sucking in still more oxygen to keep the inno-
vation cycle burning. However, the creative fire of openness is also destructive. Pro-
prietary  software,  excessive  software  rents,  silo-ed  and  stovepiped  information
stores, and much else are being consumed and destroyed in the wake of openness.
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Older business models — indeed, existing suppliers — are in the path of this open
conflagration. Openness is sweeping private and ‘closed’ solutions into the firestorm.
The massive storehouse of legacy kindling appears likely to fuel the openness flames
for some time to come.

‘Openness’ becomes a form of adaptive life, changing the nature, value and dy-
namics of information and who has access to it. Though much of the old economy is
— and, will be — swept away in this destructive fire, new and more fecund growth is
replacing it. From the viewpoint of the practitioner on the ground, I have not seen a
more fertile innovation environment in  information technology.  Once the proper
conditions for ‘openness’ were in place, it now seems inevitable that today’s open cir-
cumstances would unfold. The Internet, with its (generally) open access and stan-
dards, was a natural magnet to attract and promote open-source software and con-
tent.  A hands-off,  unregulated environment has allowed the Internet to innovate,
grow, and adapt at an unbelievable rate. 

Of course, coercive state regimes can control the Internet to varying degrees and
can limit innovation. Cybersleuths and hackers may access our information stores
and private data, unknown or undetected by us. Any change in the Internet from
‘open’ to more ‘closed’  may also act over time to starve the openness fire. Examples
of such means to slow openness include imposing Internet regulation, walled gar-
dens like  Facebook,  limiting access  (technically,  economically  or by fiat),  moving
away from open standards, or limiting access to content. Any of these steps would
starve  the  innovation fire  of  oxygen.  Access  to  information wins  out  over  risks,
though we do need to self-impose restrictions to guard privacy. Openness reduces
the ability of authoritative regimes or close-mindedness to threaten our knowledge.

The forces impelling openness are strong. Still, these observations  are  no proof
for  cause-and-effect.  The  correspondence  of  ‘openness’  to  the  Internet  and  open
source may be a coincidence. However, my sense suggests a more causative role. In
all of these regards ‘openness’ is a woven cord of forces changing the very nature and
scope of information available to humanity. ‘Openness,’ which has heretofore largely
lurked in the background as some unseen force, now emerges as a criterion by which
to judge the wisdom of various choices. ‘Open’ appears to contribute more and be
better aligned with current forces. Business models based on proprietary methods or
closed information appear, at least for today’s circumstances, on the losing side of
history.

The Open World Assumption

The open world assumption (OWA) is a different logic premise for most organiza-
tions. Relational database systems, for example, embrace the alternate  closed world
assumption (CWA). OWA is a formal logic assumption that the truth-value of a state-
ment is independent of whether or not it is known as true by any single observer or
agent. OWA is used in  knowledge representation to codify the informal notion that in
general no single agent or observer has complete knowledge, and therefore cannot
make the closed world assumption. The OWA limits the kinds of inference and deduc-
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tions an agent can make to those that follow from statements known to the agent as
true. OWA is useful when we represent knowledge within a system as we discover it,
and where we cannot guarantee that we have discovered or will discover complete
information. In the OWA, statements about knowledge that are not included in or in-
ferred from the knowledge explicitly recorded in the system may be considered un-
known, rather than wrong or false. Semantic technology languages such as OWL and
RDF make the open world assumption. In contrast to the closed-world approach of
transaction systems, IT systems based on the logical premise of the open world as-
sumption (OWA) mean:

 Lack of a given assertion does not imply whether it is true or false; it merely is
not known;

 A lack of knowledge does not imply falsity;

 Everything is permitted until it is prohibited;

 Schema can be incremental without re-architecting prior schema (‘extensible’);
and 

 Information at various levels of incompleteness can be combined. 

Some enterprise circumstances — say a complete enumeration of customers or
products or even controlled engineering or design environments — may warrant a
closed world approach. CWA is the presumption that what is not currently known as
true is false. Engineering an oil drilling platform or launching a rocket, in fact, de-
mands  that.  A closed-world  assumption  performs well  for  transaction operations
with easier data validation. The number of negative facts about a given domain is
typically larger than positive ones. So, in many bounded applications, the number of
negative facts is so large that their explicit representation can become practically
impossible. In such cases, it is simpler and shorter to state known ‘true’ statements
than to enumerate all ‘false’ conditions. 

On the other hand, the relational model is  a paradigm where the information
must be complete, and a single schema must describe it. Traditional databases re-
quire we agree on a schema before data can be stored and queried. The relational
model assumes that only explicitly represented objects and relationships exist in the
domain. It assumes names are unique, and it is how we identify objects in the do-
main. The result of these assumptions is that relational systems have a single (canoni-
cal) model where objects and relationships are in a one-to-one correspondence with
the data in the database.5

It is natural to take a successful approach and try to extend it to other areas.
However,  beginning with data warehouses in the 1980s,  business  intelligence (BI)
systems in the 1990s, and the general  issue of most enterprise information being
bound up in documents for decades, the application of the relational model to these
areas has been disappointing. CWA and its related assumptions are a poor choice
when we attempt to combine information from multiple sources, to deal with uncer-
tainty or incompleteness in the world, or to try to integrate internal, proprietary in-
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formation with external data. Irregularity and incompleteness are toxic to relational
model design. In the open semantic Web, we can share data that is structured differ-
ently via RDF triple statements (subject – predicate – object). For example, OWA allows
storing information about  suppliers  without  cities  and names alongside suppliers
with that information. Information can be combined with similar objects or individu-
als even though they have different or non-overlapping attributes. We now check du-
plicates based on the logic of the system and not unique name evaluations. Data vali-
dation in OWA systems can both become more complicated (via testing against re-
striction statements) or partially easier (via inference).

It  is  interesting to  note that the theoretical  underpinnings of  CWA by Reiter 6

arose about the same time (1978) that data federation and knowledge representation
(KR) activities also started to come to the fore. CWA and later work on (for example)
default reasoning appeared to have informed early work in description logics and its
alternative OWA approach. However, the initial path toward KM work based on the
relational model also seems to have been set in this timeframe.

We are still reaping the whirlwind from this unfortunate early choice of the rela-
tional model and CWA for knowledge representation, knowledge management, and
business intelligence purposes. Moreover, while much theoretical and logical discus-
sion exists for alternative OWA and CWA data models, surprisingly few discussions
occur for the implications of these models. We may couple the data models behind
these approaches (Datalog or non-monotonic logic in the case of CWA; monotonic in
the case of OWA; OWA is also firmly grounded in  description logics)  with other as-
sumptions.  From  a  theoretical  standpoint,  I  have  found  the  treatment  of  Patel-
Schneider and Horrocks5 useful in comparing these approaches. However,  the  De-
scription Logics Handbook and some other varied sources are also helpful.6 7 

I think it is fair to assert that the closed world assumption and its prevalent mind-
set in traditional database systems have hindered the ability of organizations and the
vendors that support them to adopt incremental, low-risk means to knowledge sys-
tems and management. CWA, in turn, has led to over-engineered schema, too-com-
plicated architectures and massive specification efforts that have led to high deploy-
ment costs, blown schedules, and brittleness.

In limited cases, the relational model can embrace the open world assumption,
such as the  null in SQL. Similarly, semantic Web approaches can be closed world,
such as  frame l  anguages   or Prolog or other special considerations.  We can also use
relational systems for managing our instance data, while we rely on open world sys-
tems for the knowledge graph.

In most real-world circumstances, much we do not know, and we interact in com-
plex and external environments. Knowledge management inherently occupies this
space. Ultimately, data interoperability implies a global context. Open world is the
proper logic premise for these circumstances. Via the OWA framework, we can read-
ily change and grow our conceptual understanding and coverage of the world, in-
cluding the incorporation of external ontologies and data. Since this can comfortably
co-exist  with  underlying  closed-world  data,  a  design  based  on  OWA  can  readily
bridge both worlds. Open world frameworks provide some incredible benefits where
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open world conditions apply:

 Domains can be analyzed and inspected incrementally;

 Schema can be incomplete and developed and refined gradually; 

 The data and the structures within these open world frameworks can be used
and expressed in a piecemeal or incomplete manner; 

 We can readily combine data with partial characterizations with other data hav-
ing complete characterizations;

 Systems built with open world frameworks are flexible and robust; as we gain
new information or structure, we can  incorporate without negating the infor-
mation already resident; and 

 Open world systems can readily bridge or embrace closed world subsystems. 

Open world does not necessarily mean open data, and it does not necessarily mean
open source. OWA technologies are neutral to the question of open or public sources.
We can apply the techniques equivalently to internal, closed, proprietary data and
structures. Moreover, we can use the same technologies as a basis for bringing exter-
nal information into the organization. Open world is a way to think about the infor-
mation we have and how we act on it. An open world assumption accepts that we
never have all necessary information and lacking that information does not itself
lead to any conclusions. 

In the past, there have been questions about performance and scalability with
open semantic technologies. Progress on these fronts has been rapid, with billion
triple systems now common and improvements steady. Fortunately, the incremental
approach that  we advocate  herein  dovetails  well  with  these rapid  developments.
There should be no arguing the benefits  of  a successful  incremental  project  in a
smaller domain, perhaps repeated across multiple domains, in comparison to previ-
ous, large, costly initiatives that never produce (even though their underlying tech-
nologies  are  performant).  Architecture  considerations  are  also  inherent  in  these
OWA designs, which we discuss in Web-oriented architectur  es   in Chapter 12.

It is perhaps not surprising that one of the fields most aggressive in embracing
ontologies and semantic technologies is the life sciences. Biologists and doctors expe-
rience daily the explosion in new knowledge and understandings. Knowledge work-
ers in other fields would be well-advised to follow the lead of the life sciences in re-
thinking their foundations for knowledge representation and management. It is good
to remember that if your world is not open, then your understanding of it is closed.

Open Standards

Open standards provide a different kind of openness. The rationale for open stan-
dards is not the logic or nature of knowledge, but rather the desire to adopt lan-
guages and systems that have the highest likelihood of being shared with others. We
employ open standards and best practices in KBpedia to 1) obtain the most accurate
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results, and 2) facilitate interoperability with external data and systems.8 We mostly
base  our  open standards on those from the  World  Wide  Web Consortium (W3C),
which established the standards for the original Web and the design of Web pages
and Web protocols. Specific W3C standards used by KBpedia include RDF, RDFS, OWL 2,
SKOS, SPARQL, and SWRL, introduced in the prior chapter.

Other standards, such as HTML, are also used where appropriate.  De facto stan-
dards may contribute, arising from the effort of individuals or projects. We also may
employ open source standard libraries and tools. For KBpedia, these include the on-
tology IDE,  Protégé, the OWL API and the search engine Lucene. In the use of these
standards, we apply best practices, many of which we have developed through our
client work.1 Some of these include the use of semsets to capture the multiple labels
applied to a given thing; how to construct and manage ontologies (also known as
knowledge graphs); ensuring multi-lingual capabilities; and build and management
workflows.  We discuss these in following sections and chapters.  We have written
most supporting KBpedia code in Clojure, a modern language based on the original AI
language Lisp, in part due to its ability to run on the Java virtual machine. This abil-
ity means we may concurrently use any existing Java application with our various
KBpedia build, testing, analysis, and management routines.

Open standards, like open source, provide positive feedback across the entire de-
velopment ecosystem. Developers most often write open source software with open
standards and languages. Tooling written in open standards has a  broader base of
adoption. Developers and knowledge workers prefer to work with open standards be-
cause they desire transferable job skills  and experience. Like other aspects of the
‘openness’ phenomenon, open standards are a positive contributor to innovation and
still more openness.

INFORMATION MANAGEMENT CONCEPTS

Openness means we also need to accommodate some additional concepts in our
design. The first of these considerations relates to how we refer to and name things.
Not all of us use the same words for things, and we should be explicit (‘open’) about
this fact in our vocabularies. The second consideration is that we need to provide rel-
atively balanced and equal-weighted concepts in our reference structures. In the case
of KBpedia, with its use as a general purpose reference structure, this means we need
to capture a set of concepts that  capture relatively well the entire knowledge do-
main.  However, the same principles apply to restricted domains and how to define
their  overall  conceptual  structure.  The third  consideration is  that,  depending on
context, we also may use the same term to refer to either an instance or a general
class. Again, we should be explicit about these referential differences, with logic and
design suitable to them. For lack of a better phrase, I collectively term these three
considerations as information management concepts that we need to embrace in our
designs.

1 See Chapter 13.
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We intricately associate our vocabularies with how we see and understand the
world. We all know the apocryphal claim of how Eskimos have many more words for
snow, but the idea likely applies to multiple perspectives in multiple domains. My
own first experience is when I was an undergraduate learning plant taxonomy. We
had to learn hundreds of strange terms such as glabrous or hirsute or pinnate, all
terms of art for how to describe leaves, their shapes, their hairiness, fruits and
flowers, and such. What happens, though, when one learns the terminology of a
domain is that one’s eyes are opened to see and distinguish more. What had pre-
viously been for me a field of view composed of multiple shades of green made up
of shrubs and trees, began to emerge as distinct species of plants and individual
variants that I could discern and identify. As I learned nuanced distinctions, I be-
gan to see with greater clarity. In knowledge representation systems, where so
much of the knowledge is bound up in text and natural language, training oneself
to see the individual leaves and trees from the forest is a critical step to captur-
ing the domain. In part, this attention leads to a richer domain vocabulary.

Things, Not Strings

One of the strongest  contributions that semantic  technologies make to knowl-
edge-based artificial intelligence (KBAI) is to focus on what things mean, as opposed
to how they are labeled. The phrase that captures this focus on underlying meaning
is ‘things not strings.’ The idea of something — that is, its meaning — is conveyed by
how we define that something, the context for how we use the various tokens (terms)
for that something, and in the variety of names or labels we apply to that thing. In
Chapter 5, I provided the examples of  parrots and the  United States to illustrate this
concept, among other semantic heterogeneities.

We should not view knowledge graphs, properly understood, as being comprised
of labels, but of concepts, entities and the relationships between those things. If we
construct our knowledge graphs using single labels for individual nodes and rela-
tions, we will not be able to capture the nuances of context and varieties of refer-
ence. A knowledge graph useful to a range of actors must reflect the languages and
labels meaningful to those actors. To distinguish the accurate references of individ-
ual terms we need the multiple senses of words to each be associated with its related
concepts and then to use the graph relationships for those concepts to help disam-
biguate the intended meaning of the term based on its context of use.

According to WordNet, a synset (short for synonym set) is “defined as a set of one
or more synonyms that are interchangeable in some context without changing the
truth value of the proposition in which they are embedded.”9 In our view, the con-
cept of a synset is helpful but still does not go far enough. Any name or label that
draws attention to a given thing can provide the same referential power as a syn-
onym. If two parties use two different terms to refer to the same thing, we need not
go so far as to try to enforce a truth criterion. We can include in this category abbre -
viations, acronyms, aliases, argot, buzzwords, cognomens, derogatives,  diminutives,
epithets,  hypocorisms,  idioms,  jargon,  lingo,  metonyms,  misspellings,  nicknames,
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non-standard terms (see Twitter),  pejoratives,  pen names,  pseudonyms,  redirects,
slang, sobriquets and stage names as well as, of course, synonyms. Collectively, we
call all of the terms that may refer to a given concept or entity a semset. In all cases,
these terms are mere pointers to the actual something at hand.

In the KBpedia knowledge graph, these terms are defined either as skos:prefLa-
bel (the preferred term),  skos:altLabel (all other semset variants) or  skos:hid-
denLabel (misspellings).  Preferred label (or  prefLabels or  title) is the readable string
(name) for each  object in KBpedia.1 We provide labels as a convenience; the actual
definition of the object comes from the totality of its description, prefLabel, altLa-
bels, and connections (placement) within the knowledge graph. Labels of all kinds are
representations and reside in Thirdness.

You can inspect for yourself how this concept of semset works in KBpedia. You
can go to the standard online KBpedia search page and enter a query, for example,
‘mammal.’2 By changing between ‘Preferred Label’ and ‘All content’ on the dropdown
list under ‘Search Concepts,’ you can get a ten-fold range of results. Naturally, as one
would expect, increasing the number of terms something might be known by acts to
increase the possible matches within the knowledge graph. Semsets give us a way to
narrow or broaden queries, as well as in combination with linked concepts, to disam-
biguate the context of specific terms. We can apply these same considerations to
SPARQL queries  or programmatically  when working with the KBpedia  knowledge
graph (or any other graph constructed to KBpedia’s standards).

Charles Peirce held strong views about precision in naming things, best expressed
by his article on The Ethics of Terminology.10 His beliefs often led him to use obscure or
coined terms to avoid poor understanding of common terms. He also proposed a va-
riety of defining terms throughout the life of many of his concepts in his quest for
precision. He also understood that terms (symbols)  could be interpreted in different
ways (interpretants) by various agents (interpreters). With inquiry, truth-seeking, and
the consensus of the community of users, we can reference our desired objects with
more precision.  That is our ideal. Peirce would concur that many ways refer to the
same thing in the real world. The idea of semset is expressly designed to capture that
insight.

The Idea and Role of Reference Concepts

Interoperability comes down to the nature of things and how we describe those
things or quite similar things from different sources. Given the robust nature of se-
mantic  heterogeneities  in diverse sources and datasets on the Web (or anywhere
else, for that matter!), how do we bring similar or related things into alignment?
Then, how can we describe the nature or basis of that alignment?

Of course, classifiers since Aristotle and librarians for time immemorial have been

1 Other label types may be added to this roster, such as short- and long-labels that might be the reference for 
user interface labels where alternatives to prefLabel are desired. All labels may also be expressed in any of 
the standard ISO human languages.

2 See http://kbpedia.com/knowledge-graph/search/?query=mammal&index=rcs.
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putting forward various  classification schemes,  controlled vocabularies and  subject
headings. When one wants to find related books, it is convenient to go to a central lo-
cation where we may find books about the same or similar topics. If we can catego-
rize the book in more than one way — as all are — then something like a card catalog
is  helpful  to  find  additional  cross-references.  Every  domain  of  human  endeavor
makes similar attempts to categorize things. On the Web we have none of the limita-
tions of physical books and physical libraries; locations are virtual, and copies can be
replicated or split apart endlessly because of the virtually zero cost of another elec-
tron. However, we still need to find things, and we still want to gather related things
together. As stated by Elaine   Svenonius  , “Organizing information if it means nothing
else means bringing all the same information together.”11 This sentiment and need
remain unchanged whether we are talking about books, Web documents, chemical
elements or our information stores.

Like words or terms in human language that help us communicate about things,
how we organize things needs to have an understood and  definite meaning, hope-
fully, bounded with some degree of precision, that enables us to have some confi-
dence we are communicating about the same something with one another. However,
when applied to the Web and machine communications, we need further precision in
characterizations and definitions. 

The notion of a Web basis organizing things is both easier and harder than tradi-
tional approaches to classification. It is easier because everything is digital: we can
apply multiple classification schemas and can change them at will. We are not locked
into legacy structures like huge subject areas reserved for arcane or now historically
less relevant topics, such as the Boer Wars or phrenology (though we still accommo-
date access). We need not move physical books around on shelves to accommodate
new or expanded classification schemes. We can add new branches to our classifica-
tion of, say, nanotechnology as rapidly as the science advances. The notion is harder
because we can no longer rely on the understanding of human language as a basis for
naming and classifying things. Actually, of course, language has always been ambigu-
ous, but it can be manifestly more so when put through the grinder of machine pro-
cessing and understanding. Machine processing of related information adds the new
hurdles of no longer being able to rely on text labels (‘names’) alone as the identifier
of things and requires we be more explicit about our concept relationships and con-
nections. Fortunately, here, too, much has been done in helping to organize human
language through such lexical frameworks as WordNet and similar. We have learned
much while grappling with these questions of how to organize and describe informa-
tion to aid interoperability in an Internet context. 

One formalized approach has  been put forward by the  FRSAD (Functional  Re-
quirements for Subject Authority Data) working group,12 a community of librarians
and information specialists,  dealing with subject authority data. Subject authority
data is the type of classificatory information that deals with the subjects of various
works, such as their concepts, objects, events, or places. As the group stated, the
scope  of  this  effort  pertains  to  the  ‘aboutness’  of  various  conceptual  works.  The
framework for this effort, as with the broader FRBR effort, are new standards and ap-
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proaches appropriate to classifying electronic bibliographic records. The FRSAD ap-
proach distinguishes the idea of something (which it calls a thema, or entity used as the
subject of a work) from the name or label of something (which it calls  nomen). For
many in the logic community, steeped in the Peirce triad of sign–object–interpretant,13

this distinction seems rather obvious and straightforward.  However, in library sci-
ence, labels have been used interchangeably as identifiers, and making this distinc-
tion clean is a real contribution. The FRSAD effort does not discuss how the thema is
found or organized.

The notion that we use for a reference concept contains elements of this approach.
A reference concept (RC) is  the idea of something or a  thema in the FRSAD sense. How-
ever, as we use it, an RC is also a reference linking point for external sources or ex -
panded vocabularies. If properly constructed and used, a reference concept becomes
a fixed point in an information space. Think of an RC as a fixed starting point for
navigating, relating, or mapping content. It is a guiding star in a constellation of in-
formation, or, to use a different analogy, a defined, fixed survey marker as used by
surveyors to measure new mapping points. As one or more external sources link to
these fixed points, it is then possible to gather similar content together and to begin
to organize the information space, in the sense of Svenonius. Further, if the RC is it-
self part of a coherent structure, then additional value can be derived from these as-
signments, such as inference, consistency testing, and alignments. If the right factors
are present, it should be possible to relate and interoperate multiple datasets and
knowledge representations. 

We have six requirements for a reference concept, some provided by RDF or OWL:

1. Persistent IRI – by definition, a Web-based reference concept should adhere to
linked data principles and should have an IRI as its address and identifier. Also,
by definition as a ‘reference,’ the vocabulary or ontology in which the concept
is a member should be given a permanent and persistent address. Steps should
be taken to ensure 24×7 access to the RC’s IRIs since external sources will be
depending on them.  As a general rule, the concepts should also be stated as
single nouns and use CamelCase notation (that is, class names should start with
a capital letter and not contain any spaces, such as MyNewConcept);

2. Preferred label – provide a preferred label annotation property that is used for
human readable purposes and in user interfaces. For this purpose, a construct
such as the  SKOS property of  skos:prefLabel works well. Note, this label is
not the  basis  for  deciding  and  making  linkages,  but  it  is  essential  for
mouseovers, tooltips, interface labels, and other human use factors;

3. Definition –  give  all  RCs a  reasonable definition,  since  that and linkages are
what gives an ontology its semantics. Remember not to confuse the label for a
concept with its meaning. For this purpose, a property such as skos:defini-
tion works well,  though others  such as  rdfs:comment or  dc:description
are also commonly used. The definition, plus linkages to other concepts, are
the two most critical sources for the concept’s meaning. Adequate text and
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content also aid semantic alignment or matching tasks;

4. Semset – include explicit consideration for the idea of a ‘semset’ as described
above, which means a series of alternate labels and terms to describe the con-
cept;

5. Language independence – keep the identifier separate from its labels, and qualify
entries  for  definition,  preferred  label,  and  alternative  labels  with  language
tags.  Though  an  additional  step  (for  example,  assigning  the  RDF
xml:lang=”en” tag for English), adhering to this practice gives language inde-
pendence to reference concepts. Sources such as  Wikipedia or Wikidata, with
their richness of concepts and multiple language versions, can then be a basis
for creating alternative language versions; and

6. Part of a coherent structure – test for consistency and coherence when modifying
the knowledge structure. A cohesive structure provides the benefits of reliable
inferencing, discovery, navigation, and analysis. Adequately constructed RDFS
and SKOS data models and OWL ontologies can deliver these benefits.

To this basic set of reference concepts, it is also necessary to add the mapping
predicates that relate the RCs to external sources. The mapping predicates have their
own set of design guidelines:

1. Provide the same completeness of specification as RCs;

2. Capture a spectrum of  mapping alignments from  exact or  sameAs to approxi-
mate to represent the real correspondence between items; and

3. Range and domain – use domains and ranges, as provided for by RDFS, to assist
testing,  disambiguation,  and external concept alignments. Domains apply to
the subject (the left-hand side of a triple); ranges to the object (the right-hand
side of the triple).

In part, many current vocabularies meet these guidelines to some extent.  How-
ever, few vocabularies provide complete coverage, and across a broad swath of do-
main needs, gaps remain. This unfortunate observation applies to upper-level on-
tologies, reference vocabularies, and domain ontologies alike.

KBpedia is  a knowledge graph of  approximately 55,000 reference concepts de-
signed according to these design guidelines. We organize its reference concepts into
about 80 modular and distinct (mostly disjoint) typologies, which I discuss in some de-
tail in the next Chapter 10. The RCs that represent the top-level nodes of these typolo-
gies we also term  SuperTypes (also Super Types), which  are collections of (mostly)
similar reference concepts. We design most of the SuperType disjoint from the other
SuperType classes. Each typology we use in KBpedia thus has its corresponding top-
level SuperType node.1  SuperTypes, and the typologies they represent, thus provide

1 In KBpedia, disjoint SuperTypes are termed ‘core’, other SuperTypes used mostly for organizational pur-
poses are termed ‘extended’. KBpedia has a total of about 80 SuperTypes, with 30 or so deemed as ‘core’. See
further Appendix B.
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a higher-level of clustering and organization of the reference concepts. The KBpedia
Knowledge Ontology (KKO) only contains the highest-level RCs and SuperTypes. This
design enables a higher level view of KBpedia with only a couple hundred RCs and
makes clear these SuperType typology tie-in points.

For specific domain purposes, you may use KBpedia or portions thereof as the ini-
tial grounding structure. You may expand it into new domain areas following similar
design considerations. Potentially, you may turn nearly any of the existing 55,000
RCs in KBpedia into a SuperType, providing a new tie-in point to the new RCs reflect-
ing the expanded domain.

 Punning for Instances and Classes

In ontologies, we may want to treat our concepts as both classes and instances of
a class.  Punning, in computer science, refers to a programming technique that sub-
verts or circumvents the type system of a programming language, by allowing us to
treat a value of a particular type as a value of a different type. When used for ontolo-
gies, it means to treat a thing as both a class and an instance, with the use depending
on context. To better understand why we should pun, let’s look at a couple of exam-
ples, both of which combine organizing categories of things and then describing or
characterizing those things. This dual need is common to most domains.

For the first example, let’s take a categorization of apes as a kind of mammal,
which is then a kind of animal. In these cases, ape is a class (general), which relates
to other classes, and apes may also have members, be they particular kinds of apes or
individual apes.  At  the same time, we want to assert some characteristics of apes,
such as being hairy, two legs and two arms, no tails, capable of walking bipedally,
with grasping hands, and with some being endangered species. These characteristics
apply to the notion of apes as an instance. As another example, we may have the cat-
egory of trucks, which we further split into truck types, brands of trucks, type of en-
gine, and so forth. Again, we may want to characterize that a truck is designed pri-
marily for the transport of cargo (as opposed to automobiles for people transport,
both of which are vehicles), or that trucks may have different drivers license require-
ments  or  different  license  fees  than  autos.  These  descriptive  properties  refer  to
trucks as an instance. These mixed cases combine both the organization of concepts
and their relations and set members with the description and characterization of
these concepts as things unto themselves. This dual treatment is a natural and com-
mon way to refer to things for most any domain of interest.

Prior practice has been to represent these mixed uses in RDFS or OWL Full, which
makes them easy to write and create since most ‘anything goes’ (a loose way of say-
ing that the structures are not decidable).14 OWL 2 has been designed to fix this by
adding punning, which is to evaluate the object as either a class or individual based
on contextual use; the IRI is shared, but we may view its referent as either a class or
instance  based  on  context.  Thus,  we  allow  the  use  of  objects  both  as  concepts
(classes) and individuals (instances), the knowledge graph is decidable, and we may
use standard OWL 2 reasoners against them.15 
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We can diagrammatically show this instance-class dual-use of punning as follows:

TAMING A BESTIARY OF DATA STRUCTS

The real world is one of heterogeneous datasets, multiple schema, and differing
viewpoints. Even within single organizations — and those which formerly expressed
little need or interest to interoperate with the broader world — data integration and
interoperability have been a real challenge, as we discussed in Chapter 4. We should
view simple instance record assertions and representations — the essence of data ex-
change — separately from schema representations. Data values and attributes pose
similar problems to that of concepts when trying to get datasets to interoperate. Like
dictionaries  for  human  languages,  or  stars  and  constellations  for  navigators,  or
agreed standards in measurement, or the  Greenwich meridian for timekeepers, we
need fixed references to orient and ‘ground’ each new dataset over which we attempt
to integrate. For data values, symbol grounding means that when we refer to an ob-
ject or a number — say, the number 4.1 — we are also referring to the same metric.
4.1 inches is not the same as 4.1 centimeters or 4.1 on the Richter scale, and object
names for set member types also have the same challenges of ambiguous semantics
as do all other things referred to by language. Without such fixities of reference, ev-
erything floats concerning other things, the cursed ‘rubber ruler’ phenomenon. In
Chapter 5 we discussed the wide variety of formats and data structs in the wild, noting
specific design approaches might be embraced to help. We address how to tame this
diversity in this section, at the same time putting our data onto a common frame-
work. 
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Rationale for a Canonical Model

In the context of data interoperability, a critical premise is that a single, canoni-
cal data model is highly desirable. Why? Because of 2N v 2N. That is, a single reference
(‘canon’) structure means that fewer tool variants and converters need be developed
to talk to the myriad of data formats in the wild. With a canonical data model, talking
to external sources and formats (N) requires only converters to and from the canoni-
cal form (2N). Without a canonical model, the exponential explosion of needed for-
mat converters becomes 2N, meaning that every format needs to have a converter to
and from all of the other formats.16 For example, without a canonical data model, ten
different formats would require 1024 converters; with a canonical format, 20 (assum-
ing bi-directional converters).

A canonical data model merely represents the agreed-upon internal representa-
tion. It need not affect data transfer formats. Indeed, in many cases, we may employ
different internal data models from what we use for data exchange. Many data sys-
tems, in fact, have two or three favored flavors of data exchange such as XML, JSON
or the like. In most enterprises and organizations, the relational data model with its
supporting RDBMs is  the canonical  one.  In some notable  Web enterprises  — say,
Google — the exact details of their internal canonical data models are hidden from
view, with APIs and data exchange standards being the only portions visible to out-
side consumers. Generally speaking, a canonical, internal data standard should meet
a few criteria:

 Be expressive enough to capture the structure and semantics of any contribut-
ing dataset;

 Have a schema itself which is extensible; 

 Be performant;

 Have a model to which it is relatively easy to develop converters for different
formats and models;

 Have published and proven standards; and 

 Have sufficient acceptance to have many existing tools and documentation. 

Other desired characteristics might be free or open source tools, suitable  for much
analytic work, efficient in storage, and easy for users to read and maintain.

The RDF Canonical Data Model

Many wild data forms are patently inadequate for modeling and interoperability
purposes.  That is  why many of these simpler  forms might be called  ‘naïve’:  they
achieve their immediate  objective of simple relationships and communication, but
require understood or explicit context to meaningfully (semantically) relate to other
forms or data. However, besides naïve forms, two common formats with many vari-
ants also should be explicitly considered: the entity-attribute-value (EAV) model and
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RDBM systems. 
EAV is a data model to describe entities where the number of attributes (proper-

ties, parameters) that can be used to describe them is potentially vast, but the num-
ber that may apply to a given entity is relatively modest. In the EAV data model, each
attribute-value pair is a fact describing an entity. EAV systems trade off simplicity in
the  physical  and  logical  structure  of  the  data  for  complexity  in  their  metadata,
which, among other things, plays the role that database constraints and referential
integrity do in standard database designs. 

On the other hand, RDBMSs use the relational model and store their data in a tab-
ular form, with rows corresponding to the individual data records and the columns
representing the properties or attributes. RDF can be modeled relationally as a single
table with three columns corresponding to the  subject–predicate–object triple. Con-
versely, a relational table can be modeled in RDF with the subject IRI derived from the
primary key or a blank node; the predicate from the column identifier; and the object
from the cell value. Because of these affinities, it is also possible to store RDF data
models in existing relational databases. (In fact, many RDF ‘triple stores’ are RDBM
systems  with  a  tweak,  sometimes  as  ‘quad  stores’  where  the  fourth  tuple  is  the
graph.) Moreover, these affinities also mean that RDF stored in this manner can also
take advantage of the historical experience gained from RDBMS performance and
SQL query optimizations.

RDF (Resource Description Framework) might be called a superset of these two
forms and is exquisitely suited to accommodate them. In fact, because of its flexible
data structure ranging from implied EAV through both of these forms and including
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schema as well, RDF is a kind of ‘universal solvent’ that can readily model most any
known data form.17 When we match this flexible format representation with the abil-
ity to handle semantic differences through ontologies at the OWL 2 level, it is clear
why RDF provides a  competent data model around which to build an interoperable
framework. Moreover, because we give all of the information unique Web identifiers
(IRIs), and the whole system resides on the Web accessible via the HTTP protocol, our
information may reside anywhere the Internet connects. These are the reasons why
we have chosen RDF as our canonical data model.

Figure 9-3 on the prior page shows how we approach data interoperability. The in-
put bubbles at the left of the diagram represent the different data formats that the
system must address. We process each through a converter to RDF, which is the in-
ternal form used on the right. We map schema information associated with each left-
side external source to this internal RDF (and OWL 2) data model in advance, before
ingesting content.1 Note that the converter responsible for the external content in-
gest may (should!) be a callable Web service so that external sources may call for or
schedule ingests according to security standards. 

Converters (also known as translators or RDFizers)18 are an essential bridge to this
external world, which we should design for re-use and extensibility. While some may
be one-off converters (sometimes off-the-shelf RDFizers), and often devoted to large
volume external data sources, it is also helpful to emphasize one or more ‘standard’
naïve external formats. A ‘standard’ external format allows for a more sophisticated
converter and enables specific tools more easily justified around the standard naïve
format. In today’s environment, that ‘standard’ may be JSON or a derivative; or new
standards as they arise. Other common ‘naïve’ formats could be SQL from relational
databases or other formats familiar to the community at hand.

In many ways, because we emphasize the  ABox and instance records and asser-
tions in data exchange, the actual format and serialization is pretty much immate-
rial. Emphasizing one or a few naïve external formats is the cost-effective approach
to tools and services.  Even though the  format(s) chosen for this external standard
may lack the expressiveness of RDF (because the burden is principally related to data
exchange), we can readily optimize this layer for the deployment at hand.

Other Benefits from a Canonical Model

As we can see in Figure 9-3, converters may themselves be bona fide Web services.
Besides  import  converters,  it  is  also  useful to  have export  services  for  the more
broadly used naïve external formats. Exporters allow us to share data and schema
with external applications, up to the full expressiveness of RDFS, SKOS or OWL 2. We
may devote other services to data cleanup or attribute (property) or object reconcili-
ation (including disambiguation). In this manner, we can improve the authority and
trustworthiness of installations, while promoting favored external data standards.
Another common service is to give naïve data unique IRI identifiers and to make it

1 Depending on the nature of the new external content, it may also be necessary to update the knowledge 
graph at this point.
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Web-accessible, thus turning it into linked data.
Such generic services are possible because the canonical RDF model is the ‘highest

common denominator’ for the system. Because RDF is the consistent basis for tools
and services, once a converter is available, and we have mapped the external infor-
mation schema to the internal structure, we can re-use all existing tools and services.
Moreover,  we are now ready to share this system and its  datasets with other in-
stances, within the organization and beyond.
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ypology is not a typical term within semantic technology circles, though it is
used  extensively  in  such  fields  as  archaeology,  urban  planning,  theology,

linguistics, sociology, statistics, psychology, anthropology  ,   and others. Based on ety-
mology, ‘typology’ is the study of types.1 However, as used in the fields noted, a ‘ty-
pology’ is the result of the classification of things according to their characteristics.
As stated by Merriam Webster, a ‘typology’ is “a system used for putting things into
groups according to how they are similar.” Though some have attempted to make
academic distinctions between typologies and similar notions such as classifications
or taxonomies,2 we think this idea of grouping by similarity is the best way to think
of a typology. In this classification, each of our SuperTypes, as was introduced in the
prior chapter,  gets  its  own typology.  The idea of  a  SuperType,  in  fact,  is  exactly
equivalent to the root node of a typology, wherein we relate multiple entity types
with similar essences and characteristics to one another via a natural classification.

T

A  typology is  a systematic classification of types according to their common or
shared characteristics. A typology could be composed of all living things; all animals;
all  product  types;  or  something  as  narrow as  supervised  machine  learning  algo-
rithms. While types are classifications of  instances according to their shared charac-
teristics, a  typology is a classification of  types on a similar basis. Types enable us to
“carve Nature at the joints,” while typologies give us the organizational framework
for coherently subsuming types under a general type. We have complete flexibility to
define our general root type for a given typology as narrowly or broadly as we wish,
flexibility of immense design importance.

In this chapter, we discuss the use of types as our general classification structure,
and then typologies as modular ways to further organize those types. We give partic-
ular attention to the benefits that accrue from a typology design. We conclude our
chapter with an overview of the typologies used in the KBpedia knowledge structure,
and how its design may act as a prototype for other domain applications.

TYPES AS ORGANIZING CONSTRUCTS

Typologies assume the structural form of a subsumption hierarchy, most often in
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the form of a tree. Each node in that tree is a type, which by definition is itself a
Thirdness or general using Peirce’s universal categories. Since types are the basic
building blocks of a typology, let’s take a few minutes to understand them.1

The Type-Token Distinction

As used in knowledge representation and philosophy, types are the classification
of natural kinds. Besides kinds, we often equate types to sets or laws (the Peircean
view, using his common terms).3 Peirce is clear that a type is a general, or collective
(1908, CP 8.367). Also, in the base semantic technology language of  RDF, a ‘type’ is
what is used to declare an instance of a given class. This use is in keeping with the
sense of an instance as a member of a type.

Toward the end of his career, Peirce proposed  mark,  token and  type as the tri-
chotomous forms of symbols corresponding, respectively, to his universal categories
of Firstness, Secondness, and Thirdness (1908, CP 8.364). The examples he posed to il-
lustrate these ideas related to language symbols. His quote on these distinctions is: 

“A  common  mode  of  estimating  the  amount  of  matter  in  a  MS  [manuscript].  or
printed book is to count the number of words. There will ordinarily be about twenty
the's on a page, and of course they count as twenty words. In another sense of the
word ‘word,’ however, there is but one word ‘ the’ in the English language; and it is
impossible that this word should lie visibly on a page or be heard in any voice, for the
reason that it is not a Single thing or Single event. It does not exist; it only determines
things that do exist. Such a definitely significant Form, I propose to term a  Type. A
Single event which happens once and whose identity is limited to that one happening
or a Single object or thing which is in some single place at any one instant of time,
such event or thing being significant only as occurring just when and where it does,
such as this or that word on a single line of a single page of a single copy of a book, I
will venture to call a Token. An indefinite significant character such as a tone of voice
can neither be called a Type nor a Token. I propose to call such a Sign a Tone [later
mark]; In order that a Type may be used, it has to be embodied in a Token which shall
be a sign of the Type, and thereby of the object the Type signifies. I propose to call
such a Token of a Type an Instance of the Type. Thus, there may be twenty Instances of
the Type ‘the’ on a page.” (1906, CP 4.537)

The quote nicely illustrates the distinctions. However, in my view, a too literal
reading of this passage by some linguists and semioticians has unfortunately led to a
couple of misinterpretations. The first is that tokens are simply occurrences. They
are not; they are instances, which may include entities and events (1903, CP 2.245).
The second misinterpretation is that the distinction applies to only the symbols on
the page, as opposed to the complete sign that those symbols represent. In other
words, the type-token distinction is not one solely of the written page, a too limited
interpretation, but is one of representation by symbols of any type to the particular-
general distinction. Tokens and types are not limited to words, but to any instance

1 From a vocabulary standpoint, we describe the role of nouns and relations in Chapter 7; I also speculate on 
parts of speech in relation to Peircean terminology in Chapter 16 (esp. Table 16-3).
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and general distinction that we may represent symbolically. In Peirce’s 10-classifica-
tion schema for signs, he defined sinsign, another term for token:

“A Sinsign (where the syllable  sin is taken as meaning ‘being only once,’ as in  single,
simple, Latin semel, etc.) is an actual existent thing or event which is a sign. It can only
be so through its qualities; so that it involves a qualisign, or rather, several qualisigns.
But these qualisigns are of a peculiar kind and only form a sign through being actually
embodied.” (1903, CP 2.245)

Further, he equated the idea of type with the legisign:

“A Legisign is a law that is a Sign. This law is usually established by men. Every conven-
tional sign is a legisign [but not conversely]. It is not a single object, but a general type
which, it has been agreed, shall be significant. Every legisign signifies through an in-
stance of its application, which may be termed a Replica of it. Thus, the word ‘the’ will
usually occur from fifteen to twenty-five times on a page. It is in all these occurrences
one and the same word, the same legisign. Each single instance of it is a Replica. The
Replica is a Sinsign. Thus, every Legisign requires Sinsigns.” (1903, CP 2.246)

That Peirce saw the ‘collective’ type as a general, and not limited solely to language
matters, also comes from his referring to his three methods of reasoning — deduc-
tive, inductive, abductive —  as types. (1913, CP 8.385) 

OK, so types and tokens are not limited to the written word and can apply to any
general-particular distinction, respectively.4 Types have an identity and are real, but
are not an existent as defined as something with a material instantiation. “Every
conventional sign is a legisign,” (CP 2.246), or type, it is not an individual thing, and
every type requires instances, or sinsigns. (CP 2.246)

Types and Natural Classes

In Chapter 5 we discussed the importance of natural classes, which is related to a
realistic view of the world.5 Realism means we believe what we perceive in the world
is real — it is not just a consequence of what we understand and can be aware of in
our minds — and that there are forces and relationships in the world independent of
us as selves.  Realism is a longstanding tradition in philosophy that extends back to
Aristotle and  embraces,  for  example,  the  natural  classification  systems  of  living
things as espoused by taxonomists such as Agassiz and Linnaeus. Adhering to realism
and a natural classification is the best way to create and organize our types.

Peirce embraced this realistic philosophy but also embedded it in a belief that our
understanding of the world is fallible and that we needed to test our perceptions via
logic  (the scientific  method) and shared consensus within the community.  As  we
have noted, his overall approach is known as pragmatism and is firmly grounded in
his views of logic and his theory of signs (called semiotics or semeiotics). While abso-
lute truth is real, it acts more as a limit, to which our seeking of additional knowl-
edge  and  clarity  of  communication  with  language  continuously  approximates.
Through the scientific method and questioning, we get closer and closer to the truth
and to an ability to communicate it to one another. Still, new knowledge may change
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those understandings, which in any case will always remain proximate.
This intensional understanding of attributes is key to the classification of entities

into categories (that is, ‘types’). Further, Peirce was expansive in his recognition of
what kinds of objects could be classified, specifically including ideas, with application
to areas such as social classes, human-made objects, the sciences, chemical elements
and living organisms.6 Again, here are some of Peirce’s own words on the classifica-
tion of entities:

“All classification, whether artificial or natural, is the arrangement of objects accord-
ing to ideas. A natural classification is the arrangement of them according to those
ideas from which their existence results.” (1902, CP 1.231)

“The natural classification of science must be based on the study of the history of sci -
ence; and it is upon this same foundation that the alcove-classification of a library
must be based.” (1903, CP 1.268)

“All natural classification is then essentially, we may almost say, an attempt to find
out the true genesis of the objects classified. But by genesis must be understood, not
the efficient action which produces the whole by producing the parts, but the final ac-
tion which produces the parts because they are needed to make the whole. Genesis is
production from ideas. It may be difficult to understand how this is true in the biolog-
ical world, though there is proof enough that it is so. But in regard to science it is a
proposition easily enough intelligible.  A science is  defined by its  problem;  and its
problem is clearly formulated on the basis of abstracter science.” (1902, CP 1.227)

A natural classification system is one, then, that logically organizes entities with
shared attributes into a hierarchy of types, with each type inheriting attributes from
its parents, distinguished by what Peirce calls its final cause, or purpose. This hierar-
chy of types is thus naturally termed a typology.

An individual that is a member of a natural class has the same kinds of attributes
as other members, all of which share this essence of the final cause or purpose. We
look to Peirce for the guidance in this area because his method of classification is
testable, based on discernable attributes, and grounded in logic. Further, that logic is
itself grounded in his theory of signs, which ties these understandings ultimately to
natural language. Peirce’s own words can better illustrate his perspective, some of
which I have discussed elsewhere under his idea of ‘natural classes’  (see Chapter 5):

“Thought is not necessarily connected with a brain. It appears in the work of bees, of
crystals, and throughout the purely physical world; and one can no more deny that it
is really there, than that the colors, the shapes, etc., of objects are really there.” (1906,
CP 4.551)

“What if we try taking the term ‘natural,’ or ‘real, class’ to mean a class of which all
the members owe their existence as members of the class to a common final cause?
This is somewhat vague; but it is better to allow a term like this to remain vague, until
we see our way to rational precision.” (1902, CP 1.204)
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“... it may be quite impossible to draw a sharp line of demarcation between two classes, al -
though they are real and natural classes in strictest truth. Namely, this will happen when
the form about which the individuals of one class cluster is not so unlike the form about
which individuals of another class cluster but that variations from each middling form may
precisely agree... When one can lay one’s finger upon the purpose to which a class of things
owes its origin, then indeed abstract definition may formulate that purpose. But when one
cannot do that, but one can trace the genesis of a class and ascertain how several have
been derived by different lines of descent from one less specialized form, this is the best
route toward an understanding of what the natural classes are.” (1902, CP 1.208)

‘Natural  classes’  thus are a  testable means to  organize the real  objects  in  the
world, which include both Secondness and Thirdness. Secondness consists of all ex-
tant things, namely, entities and events. We include Thirdness because generals are
real. What makes these items real and classifiable into types is because they have: 1)
identity, which means we may refer to them via symbolic names; 2) context related to
other objects; 3) characteristic  attributes, with some expressing the essence of what
type of object it is; and 4) realness, since the general is not a fiction of our minds but a
type recognized by others. 

Natural  classifications  may apply to  truly  ‘natural’  things,  like  organisms and
matter, but also to human-made objects and social movements and ideas. The key ar-
gument is that shared attributes, including a defining kind of ‘essence’ (Aristotle) or
‘final cause’ (Peirce), help define the specific class or type to which an object may be-
long. For Peirce, what science has to tell us, or what social consensus settles upon,
holds sway. If accomplished well, natural classification systems lend themselves to
hierarchical structures that may be reasoned over. Further, if we make natural splits
between typologies, then it is also possible to establish non-overlapping (‘disjoint’) re-
lationships between typologies that provide powerful restriction and selection capa-
bilities across the knowledge structure. We believe KBpedia already achieves these
objectives, though we continue to refine the structure based on our mappings to
other external systems and other logical tests.

Very Fine-Grained Entity Types

Entity recognition or extraction is a key task in natural language processing (NLP)
and one of the most common uses for knowledge bases. Entities are the unique, indi-
vidual things in the world. Entities typically account for 90% or so of the items in a
knowledge base that we may type, though we may also type events, attributes, rela-
tions, ideas, and concepts. Context plays an essential role in entity recognition. We
have come to define types of finer and finer bases over time.

The ‘official’ practice of named entity recognition used within NLP began with the
Message Understanding Conferences, especially MUC-6 and MUC-7, in 1995 and 1997.
These conferences began competitions for finding ‘named entities’ within candidate
texts as well as the practice of in-line tagging.7 Many named entities signal their sta-
tus via capitalization, such as Rome or John F. Kennedy. Sometimes named entities are
also written in lower case, with examples such as rocks (‘gneiss’) or common animals
or plants (‘daisy’) or chemicals (‘ozone’) or minerals (‘mica’) or drugs (‘aspirin’) or
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foods (‘sushi’). We give some deference to Kripke’s idea of ‘rigid designators  ’   for how
to identify entities; rigid designators include proper names as well as natural kinds of
terms like biological species and substances. Because of these blurrings, the nomen-
clature of ‘named entities’ began to fade away, though some practitioners still use
the term. Much has changed in the twenty years since the seminal MUC conferences
regarding entity recognition and characterization. We are learning to adopt a very
fine-grained approach to entity types. What we see evolve with fine-grained entity
types has led us, in part, to the logic of our typology design.

The original MUC conferences only recognized three initial entity types: person,
organization,  and  location names.  However,  it  did  not  take  long  for  various
groups and researchers to want more entity types, more distinctions. BBN categories,
proposed in 2002, were used for question answering and consisted of 29 types and 64
subtypes.8 Sekine  put  forward  and  refined  over  many years  his  Extended  Entity
Types, which grew to about 200 types.9 These ideas of extended entity types helped
inform  a  variety  of  tagging  services  over  the  past  decade,  notably  including
OpenCalais,  Zemanta,  AlchemyAPI, and OpenAmplify, among others. Moreover the
research community also expanded its efforts into more and more entity types, or
what we now term fine-grained entities.10  Ling and Weld proposed 112 entity types in
2012.11 Another one, from Gillick et al. in 2014 proposed 86 entity types,12 organized,
in part, according to the same person, organization, and location types from the
earliest MUC conferences. A report in 2017 pointed to 1941 entity types drawn from
both Wikipedia and Wordnet.13 In KBpedia, at the time of this writing, we provide
mappings to a large number of entity types in external knowledge bases, including
the D  B  pedia   ontology (738 entity types), schema.org (636 types)  and GeoNames (654
types).

This growth in entity types comes from wanting to describe and organize things
with more precision. Tagging and extracting structured information from text are
obviously a key driver.  For a given enterprise, what is  of interest  — and at what
depth — for a particular task varies widely. The desired depth, or degree of fine-
graininess, increases for entity types within our domains of inquiry. For example,
let’s take a general thing such as a camera. A photographer may want finer-grained
distinctions such as SLR cameras or further sub-types like digital SLR cameras or even
specific models like the Canon EOS 7D Mark II, or even the name of the photographer’s
favorite camera, such as ‘Shutter Sue.‘ Capitalized names (common for named entity
recognition) often signal we are dealing with an actual individual entity, but again,
depending on context, a named automobile such as Chevy Malibu may refer to a spe-
cific car or the entire class of Malibu cars. If our domain of interest is transportation
in general, treating the Chevy Malibu as an instance of a Chevy may be sufficient; but
if our domain of inquiry includes Chevrolet automobiles, we probably want details
including specific years and models of Malibus. This kind of hierarchical organiza-
tion provides paths for inferencing, as well as user interface benefits (see Chapter 11).
We can visualize this hierarchy of types something like what we show in Table 10-1.

Recent  efforts  in  fine-grained  entity  recognition are  notable  because machine
learners have been trained to recognize all of the various types indicated. Which en-
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tity types to include, the different conceptions of the world, and how to organize en-
tity types varies broadly across these references.

Thing

Product

Camera

Digital Camera

SLR Digital Camera

Olympus Evolt E520

Table 10-1: Hierarchical Nature of Typologies

Perhaps 40,000 entity types are included in the baseline KBpedia knowledge struc-
ture to accommodate such fine-grained entity recognition. Over the past two decades
we see logarithmic growth in recognition of entity types:

Each type has a basis — ranging from attributes and characteristics to hierarchi-
cal placement and relationship to other types — that can inform computability and
logic  tests,  potentially  including neighbor  concepts.  We base supervised machine
learners on these features. Linking to knowledge bases helps provide the instance
data to drive these learners. Ensuring that type placements are accurate and meet
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these tests means that we may use the now-placed types and their attributes to test
the placement and logic of subsequent candidates. The candidates need not be only
internal typology types, but may also be used against external sources for classifica-
tion, tagging or mapping.

It is no longer sufficient to satisfy our domain queries with entity types classified
at the level of  person,  organization, and  location names. We want more preci-
sion;  more  detail;  and  more  relevance.  The  fact  that  knowledge  bases,  such  as
Wikipedia, but also our own data stores and domain-specific knowledge bases as well,
can provide entity-level instance information for literally thousands of entity types,
means that rich information is now available for driving the finest of fine-grained
entity extractors. It is essential to have a grounded understanding of what an entity
is, how to organize them into logical types, and an intensional understanding of the
attributes and characteristics that allow us to conduct inferencing over these types.
These understandings, in turn, point to the features that are useful to machine learn-
ers for artificial intelligence. These understandings also can inform a flexible design
for accommodating entity types from coarse- to fine-grained, with variable depth de-
pending on the domain of interest.

A FLEXIBLE TYPOLOGY DESIGN

The only sane way to tackle knowledge bases for knowledge representation and
management is to provide consistent design patterns that are easier to test, main-
tain,  and update.  Open world systems must embrace repeatable and mostly auto-
mated workflow processes, plus a commitment to timely updates, to deal with the
constant change in knowledge. We also want natural workflows for the knowledge
workers who use them, else quality checks and frequent updates will suffer. We thus
seek semi-automatic methods for constant knowledge updates.

The typology structure is not only a natural organization of natural classes, but it
enables flexible interaction points with inferencing and mapping across its design.
The typology design is the result of the classification of things according to their
shared attributes and essences. The idea is that we divide the world into real, discon-
tinuous and immutable ‘kinds.’ If using statistical terminology, a typology is a com-
posite  measure  that  involves  the  classification  of  observations  using  attributes
treated as variables.

Our typology design has arisen from the intersection of 1) our efforts with Super-
Types, and creating a computable structure that uses powerful disjoint assertions; 2)
an appreciation of the importance of entity types as a focus of knowledge base termi-
nology; and 3) our efforts to segregate entities from other constructs of knowledge
bases, including attributes, relations, and annotations. Though these insights may
have resulted from serendipity and practical use, they have brought a new under-
standing of how best to organize knowledge bases for artificial intelligence uses. It
just so happens that these splits are in complete accordance with Peirce’s writings.

The simple bounding and structure of the typology design make each typology
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understandable merely by inspecting its structure. The typologies can also be read
into programs such as Protégé to examine or check complete specifications and rela-
tionships. Because each typology attempts to have a coherent, modular, and consis-
tent design, new concepts or structures may be related to any part of its hierarchical
design. The organization of entity types also has a different structure than the more
graph-like organization of higher-level conceptual schema or knowledge graphs. In
the cases of broad knowledge bases, such as Wikipedia, where 70 percent or more of
the overall schema is related to entity types, more attention can now be devoted to
the remaining 30 percent, to extend insights into type placements based on relation-
ships and attributes. The combination of logical coherence with a flexible, accordion-
like structure gives typologies a unique set of design benefits.

Construction of the Hierarchical Typologies

We develop the initial typology by first gathering the relevant types (concepts)
and automatically evaluating them for orphans (unconnected concepts)  and frag-
ments (connected portions missing intermediary parental concepts). We allow no in-
stances in the typology, only types.1 We typically see multiple roots, multiple frag-
ments, and numerous orphans in the first builds.  We test and refine until we fix
these problems, resulting in a single root to connect all concepts in the typology. We
query source knowledge bases for missing concepts and evaluate again in a recursive
manner. We then write candidate placements to CSV files and evaluate them with
various utilities, including crucially manual inspection and vetting. (Because the sys-
tem bootstraps what is already known and structured in the system, it is mandatory
to build the structure with coherent concepts and relations.)

We should include all types related to a given typology as a sub-module. This de-
sign means we may maintain and inspect each typology separately. We may share
some types across typologies (due to multiple inheritances), and when many or all
typologies are present, the entire knowledge system assumes the form of an inter-
connected graph.  External  structures,  especially  those based on  SKOS,14 are  well-
suited for direct incorporation as typologies.

Once we complete  the overall  candidate  structure,  we then analyze it  against
prior assignments in the knowledge base. We create CSV files that we may view and
evaluate with various utilities for such tasks as SuperType disjoint analysis, coherent
inferencing, and logical placement tests. Again, however, to retain the integrity of
the structure, we manually vet final assignments. The objective of the build process
is a connected typology that passes  all  coherency,  consistency,  completeness and
logic tests. If we discover subsequent errors, we rerun the build process with updates
to the processing scripts. Upon acceptance, we should ensure each new type added to
a typology is complete by including a definition,  semset, guideline annotations, and
connections. We write out the completed typology in both RDF and CSV formats.

1 However, like the Chevy Malibu case described earlier, items that appear as instances in the putative typol-
ogy may be expanded to become an eventual class (type), with its own instances, akin to the punning discus-
sion in the prior chapter.
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Build, testing and maintenance routines, scripts, and documentation must be in-
tegral to the design. Knowledge bases are inherently open world, which means that
the entities and their relationships and characteristics are continually growing and
changing due to new knowledge underlying the domain at hand. Such continuous
processing and keeping track of the tests, learnings and workflow steps place a real
premium on literate programming. We discuss the build process in Chapter 14.

Typologies are Modular

Since each typology has a single root, it is readily plugged into or removed from
the broader structure. Each typology is rather simple in scope and structure, given
its hierarchical nature. We can readily build, test and maintain each typology. Ty-
pologies pose relatively small  ontological commitments. This isolated design means
the scale and scope of the overall system may be easily adjusted, and we may use the
existing structure as a source for extensions (see next). Unlike more interconnected
knowledge graphs (which can have many network linkages),  typologies  are orga-
nized strictly along these lines of shared attributes, which is both simpler and also
provides an orthogonal means for investigating type-class membership.

Our learning path to a typology design began with our early experience with Su-
perTypes in UMBEL. We started to explore typologies (though we did not call them
that at the time) because we observed about 90% of the concepts in UMBEL were
disjoint from one another. Disjoint assertions are computationally efficient and help
better organize a knowledge graph. Besides computational efficiency and its poten-
tial for logical operations, we also observed that these SuperTypes could also aid our
ability to drive display widgets (such as being able to display geolocational attributes
for geolocational types on maps). As we looked over the tens of thousands of con-
cepts in UMBEL, we began to see we could organize them into a tractable number of
SuperTypes. The SuperType tagging and possible segregation of STs into individual
modules led us to review other separations and tags. Given that the SuperTypes were
all geared to entities and entity types — and further represented about 90% of all
concepts at hand — we began to look at entities as a category with more care and at-
tention. This analysis took us back to the beginnings of entity recognition and tag-
ging in natural language processing. We saw the progression of understanding from
named entities and just a few entity types, to the more recent efforts in so-called
fine-grained entity recognition, as we reviewed above.

What was blatantly obvious, but which other researchers and we had previously
overlooked, was that most knowledge graphs (or upper ontologies) were themselves
made up of mostly entity types. In retrospect, this should not have been surprising.
Most knowledge graphs deal with real things in the world, which are most often enti-
ties. Entities are the observable, often nameable, things in the world around us. How
we organize and refer to those entities — that is, the entity types — constitutes the
bulk of the vocabulary for a knowledge graph. The trick to the transition is moving
from the idea of discrete numbers of entity types to a system and design that sup-
ports  continuous interoperability  through a generalized,  modular  typology struc-
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ture.
The ‘type-orientation’ of a typology is also attractive because it offers a construct

that we can apply to all other (non-entity) parts of the knowledge base. We can also
type actions, attributes, roles, events, and relations. A mindset around natural kinds
and types helps define the speculative grammar we need to do knowledge-based artificial
intelligence. Because the essential attributes or characteristics across typologies in an
entire domain can differ broadly — such as entities  v attributes, living v inanimate
things, natural things v human-made things, ideas v physical objects — it is possible
to make disjointedness assertions between entire groupings of natural classes. Dis-
joint assertions, combined with logical organization and inference, further provides
a typology design that lends itself to reasoning and tractability. The internal process
to create these typologies also has the beneficial effect of testing placements in the
knowledge graph and identifying gaps in the structure, as informed by fragments
and orphans. This computability of the structure is its foundational benefit since it
determines the accuracy of the typology itself and drives all other uses and services.

Typologies are Expandable

A typology design for organizing entities can thus be visualized as a kind of accor-
dion or squeezebox, expandable when detail requires, or collapsible to more coarse-
grained when relating to broader views. Each class (type) within the typology can be-
come a tie-in point for external information, providing a collapsible or expandable
scaffolding (the ‘accordion’ design). Via inferencing, multiple external sources may
be related to the same typology, even though at different levels of specificity. Fur-
ther, we may accommodate very detailed class structures in this design for domain-
specific purposes. Moreover, because of the single tie-in point for each typology at its
root, it is also possible to swap out entire typology structures at once, should design
needs require this flexibility.

The idea of nested, hierarchical types organized into broad branches of different
entity typologies also provides a very flexible design for interoperating with a diver-
sity of worldviews and degrees of specificity. A typology design, logically organized
and placed into a consistent grounding of attributes, can readily interoperate with
these different worldviews. The photographer, as discussed above, is interested in
different camera types and even how specific cameras can relate to a detailed entity
typing structure. Another party more interested in products across the board may
have a view to greater breadth, but lesser depth, about cameras and related equip-
ment. A typology design, logically organized and placed into a consistent grounding
of attributes, can readily interoperate with these different worldviews. Typologies
for attributes and relations, as we have implemented in KBpedia, also extend this ba-
sis to include full data interoperability of attribute:value pairs.

KBPEDIA’S TYPOLOGIES

So, to understand this typology design in action, it is worth inspecting the KBpe-
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dia knowledge structure. I provide the general vocabulary for KBpedia in Chapter 8.
Appendix B is a broad overview of KBpedia. Further, the KBpedia Web site offers ac-
cess to KBpedia’s overall upper structure (KKO),1 plus the approximately 70 typolo-
gies with formal type listings. You may inspect the KKO files and the typologies in an
ontology editor to glean additional details.2 As noted, nearly 90% of the classification
structure of KBpedia resides in the Generals branch of KKO, which is also the location
for all KBpedia types and typologies. 

Full Listing of Typologies

Unlike the KKO upper structure, we do not necessarily organize each typology ac-
cording to Peirce’s triadic logic.  That is  because we are dealing with objects of a
more-or-less uniform character (such as animals or products or atomic elements). About
85 such typologies exist in the KBpedia structure, 70 of which with formal typologies
(‘◊’), and about 30 of which are deemed ‘core’ (‘ ’‣’ ), meaning they capture the bulk of
the classificatory system. 

The best perspective to see the full listing of the typologies in KBpedia is to in-
spect the Generals branch of the KKO knowledge graph, which also includes Predica-
tions types and contains about 85 SuperTypes. Table 10-2 below provides this Generals
branch organization, as first organized around the Peircean universal categories of
Firstness (1), Secondness (2), and Thirdness (3). Also, recall that the Generals branch
is itself the Thirdness (3) branch of the broader KBpedia Knowledge Ontology (KKO)3:

3-Generals (SuperTypes)
1-Constituents ◊

1-Natural Phenomena ‣’
2-Time Types ◊

Times ‣’
Event Types ‣’

3-Space Types ◊
1-Shapes ‣’
2-Places ‣’

Area Region ‣’
Location Place ‣’

3-Forms ‣’
2-Predications ◊

1-Attribute Types ◊
1-Intrinsic Attributes ◊

1-Qualities
2-Components

1 See http://kbpedia.org

2 For example, using the open source Protégé ontology development environment (https://protege.stan-
ford.edu/).

3 The remaining portions of the upper KKO are shown in Chapter 8.
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3-Forms (configurations)
2-Adjunctual Attributes ◊

1-Quantities
2-Eventuals
3-Extrinsics

3-Contextual Attributes ◊
1-Situants
2-Ratings
3-Classifications

2-External Relations Types ◊
1-Direct Relations ◊

1-Equivalences
2-Parts
3-Descendents

2-Copulative Relations ◊
1-Identities
2-Action Types ◊
3-Conjoins

3-Mediative Relations ◊
1-Comparisons
2-Situation Types ‣’
3-Cognitives

3-Representation Types ◊
1-Denotatives ◊
2-Indexes ◊
3-Associatives ◊

3-Manifestations ◊
1-Natural Matter ◊

1-Atoms Elements ‣’
2-Natural Substances ‣’
3-Chemistry ‣’

2-Organic Matter ◊
1-Organic Chemistry ‣’

Biological Processes ‣’
2-Living Things ◊

1-Prokaryotes ‣’
2-Eukaryotes ◊

1-Protists Fungus ‣’
2-Plants ‣’
3-Animals ‣’

3-Diseases ‣’
3-Agents ◊

1-Persons ‣’
2-Organizations ‣’
3-Geopolitical ‣’

3-Symbolic ◊
1-Information ◊
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1-AV Info ◊
Audio Info ‣’
Visual Info ‣’

2-Written Info ‣’
3-Structured Info ‣’

2-Artifacts ◊
FoodDrink ‣’
Drugs ‣’
Products ‣’
Facilities ‣’

3-Systems ◊
1-Conceptual Systems ◊

1-Concepts ◊
2-Topics Categories ◊
3-Learning Processes ◊

2-Social Systems ◊
Society ‣’
Economic Systems ‣’

3-Methodeutic ◊
1-Inquiry Methods ◊
2-Knowledge Domains ◊
3-Emergent Knowledge ◊

Table 10-2: Full, Upper Hierarchy of KBpedia Generals

In  Table 10-2 the mark ‘◊’ indicates a formal typology for the entry in KBpedia,
which means a corresponding file for inspecting it exists. The mark ‘ ’‣’  indicates the
formal typology is also one of the ‘core’ KBpedia typologies, meaning it contains a
more substantial number of types with possible disjointedness assertions to other ty-
pologies.15 If time is limited, those typologies are the most fruitful to inspect. The
largest files, of course, are the ones with the largest number of types.

‘Core’ Typologies

So, let’s take a bit deeper look at these 30 'core' (‘ ’‣’ ) typologies. Here are those 30, 
with a definition of the type coverage for each:

Constituents Natural
Phenomena 

This typology includes natural phenomena and natural processes such as 
weather, weathering, erosion, fires, lightning, earthquakes, tectonics, etc. We 
explicitly include clouds and weather processes. Also, it covers climate cycles 
and general natural events (such as hurricanes) that are not specifically named. 
Biochemical processes and pathways are expressly excluded, occurring under a 
different typology. 
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Area or Region 
The AreaRegion typology includes all nameable or definable areas or regions 
that we may find within ‘space.’ Though the distinction is not sharp, this typol-
ogy is meant to be distinct from specific points of interest (POIs) that may be 
mapped (often displayed as a thumbtack). We may show areas or regions on a 
map as a polygon (area) or path (polyline). 

Location or Place The LocationPlace typology is for bounded and defined points in ‘space,’ which 
can be positioned via some form of coordinate system and we often show as 
points of interest (POIs) on a map. This typology is distinguished by areas or lo-
cations, which are often best displayed as polygons or polylines on a map. 

Shapes The Shapes typology captures all 1D, 2D and 3D shapes, regular or irregular. 
Most shapes are geometrically describable things. Shapes have only a minor dis-
jointedness role, with more than half of KKO reference concepts having some as-
pect of a Shapes specification. 

Forms This typology category includes all aspects of the shapes that objects take in 
space; Forms is thus closely related to Shapes. The Forms typology is also the 
collection of natural cartographic features that occur on the surface of the Earth
or other planetary bodies, as well as the form shapes that naturally occurring 
matter may assume. Positive examples include Mountain, Ocean, and Mesa. We 
exclude artificial features such as canals. Most instances of these natural fea-
tures have a fixed location in space. 

Time-related Events These are nameable occasions, games, sports events, conferences, natural phe-
nomena, natural disasters, wars, incidents, anniversaries, holidays, or notable 
moments or periods of time. Events have a finite duration, with a beginning and 
end. Individual events (such as wars, disasters, newsworthy occasions) may also 
have names. 

Times This typology is for specific time or date or period (such as eras, or days, weeks, 
months type intervals) references in various formats. 

Natural
Matter 

Atoms and
Elements 

The Atoms and Elements typology contains all known chemical elements and the
constituents of atoms. 

Natural
Substances 

The Natural Substances typology are minerals, compounds, chemicals, or physi-
cal objects that are not living matter, not the outcome of purposeful human ef-
fort, but are found naturally occurring. We also place other natural objects (such
as rock, fossil, etc.) in this typology. Chemicals can be Natural Substances, but 
only if they are naturally occurring, such as limestone or salt. 

Chemistry This typology covers chemical bonds, chemical composition groups, and the like.
It excludes natural substances or living thing (organic) substances. Organic 
Chemistry and Biological Processes are, by definition, separate typologies. The 
Chemistry typology thus includes inorganic chemistry, physical chemistry, ana-
lytical chemistry, materials chemistry, nuclear chemistry, and theoretical chem-
istry. 

Organic
Matter 

Organic
Chemistry 

The Organic Chemistry typology is for all chemistry involving carbon, including 
the biochemistry of living organisms and the materials chemistry (and poly-
mers) of organic compounds such as fossil fuels. 

Biochemical Pro-
cesses 

The Biochemical Processes typology is for all sequences of reactions and chemi-
cal pathways associated with living things. 

Living Things Prokaryotes The Prokaryotes include all prokaryotic organisms, including the Monera, Ar-
chaebacteria, Bacteria, and Blue-green algae. Also included in this typology are 
viruses and prions. 

Protists and Fun-
gus 

This typology is for the remaining cluster of eukaryotic organisms, explicitly in-
cluding the fungus and the protista (protozoans and slime molds). 

Plants This typology includes all plant types and flora, including flowering plants, al-
gae, non-flowering plants, gymnosperms, cycads, and plant parts and body 
types. Note that we also include all Plant parts. 
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Animals This large typology includes all animal types, including specific animal types and
vertebrates, invertebrates, insects, crustaceans, fish, reptiles, amphibia, birds, 
mammals, and animal body parts. We also include all Animal parts. Also, we 
cover the groupings of such animals (such as herds, flocks). We include Humans, 
as an animal, but exclude individual Persons. We specifically exclude Diseases. 
Animals have many of the similar overlaps to Plants. However, there are more 
terms for animal groups, animal parts, animal secretions, among others. Also, 
Animals can include some human traits (posture, dead animal). 

Diseases Diseases are atypical or unusual or unhealthy conditions for (mostly human) liv-
ing things, generally known as conditions, disorders, infections, diseases or syn-
dromes. Diseases only affect living things and sometimes are caused by living 
things. This typology also includes impairments, disease vectors, wounds and in-
juries, and poisoning. 

Agents Persons The appropriate typology for all named, individual human beings. This typology 
also includes the assignment of formal, honorific or cultural titles given to spe-
cific human individuals. It further contains names given to humans who conduct
particular jobs or activities (we know the latter as an avocation). Examples in-
clude steelworker, waitress, lawyer, plumber, artisan. We specifically include 
Ethnic groups. Note, we include Persons as living animals under the Animals ty-
pology. 

Organizations Organization is a broad typology and includes formal collections of humans, 
sometimes by legal means, charter, agreement or some mode of formal under-
standing. Examples these organizations include geopolitical entities such as na-
tions, municipalities or countries; or companies, institutes, governments, uni-
versities, militaries, political parties, game groups, international organizations, 
trade associations, etc. All institutions, for example, are organizations. Also in-
cluded are informal collections of humans. Informal or less defined groupings of 
humans may result from ethnicity or tribes or nationality or shared interests 
(such as social networks or mailing lists) or expertise (‘communities of 
practice’). This dimension also includes the notion of identifiable human groups 
with set members at any given point in time. Examples include music groups, 
cast members of a play, directors on a corporate Board, TV show members, 
gangs, teams, mobs, juries, generations, minorities, etc. 

Geopolitical Named places that have some informal or formal political (authorized) compo-
nent. Notable subcollections include Country, IndependentCountry, 
State_Geopolitical, City, and Province. 

Artifacts Products The Products typology includes any instance offered for sale or barter or per-
formed as a commercial service. A Product is often a physical object made by hu-
mans that is not a conceptual work or a facility (which have their own typolo-
gies), such as vehicles, cars, trains, aircraft, spaceships, ships, foods, beverages, 
clothes, drugs, weapons. 

Food or Drink This typology is any edible substance grown, made or harvested by humans. The 
category also includes the concept of cuisines explicitly. 

Drugs This typology is a drug, medication or addictive substance, or a toxin or poison. 

Facilities Facilities are physical places or buildings constructed by humans, such as 
schools, public institutions, markets, museums, amusement parks, worship 
places, stations, airports, ports, car stops, lines, railroads, roads, waterways, tun-
nels, bridges, parks, sports facilities, monuments. All can be geospatially located.
Facilities also include animal pens and enclosures and general human ‘activity’ 
areas (golf course, archeology sites, etc.). Importantly Facilities include infra-
structure systems such as roadways and physical networks. Facilities also in-
clude the components that go into making them (such as foundations, doors, 
windows, roofs, etc.). Facilities can also include natural structures that have 
been converted or used for human activities, such as occupied caves or agricul-
tural facilities. Finally, facilities also include workplaces. Workplaces are areas of
human activities, ranging from single person workstations to large aggregations 
of people (but which are not formal political entities). 

Information Audio Info This typology is for any audio-only human work. Examples include live music 
performances, record albums, or radio shows or individual radio broadcasts 
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Visual Info The Visual Info typology is for any still image or picture or streaming video hu-
man work, with or without audio. Examples include graphics, pictures, movies, 
TV shows, individual shows from a TV show, etc. 

Written Info This typology includes any general material written by humans including books, 
blogs, articles, manuscripts, but any written information conveyed via text. 

Structured Info This information typology is for all kinds of structured information and datasets,
including computer programs, databases, files, Web pages and structured data 
that can be presented in tabular form. 

Social Finance and 
Economy 

This typology pertains to all things financial and concerning the economy, in-
cluding chartable company performance, stock index entities, money, local cur-
rencies, taxes, incomes, accounts and accounting, mortgages and property. 

Society This category includes concepts related to political systems, laws, rules or cul-
tural mores governing societal or community behavior, or doctrinal, faith or re-
ligious bases or entities (such as gods, angels, totems) governing human spiritual
matters. We include culture, Issues, beliefs and various activisms (most -isms). 

Table 10-3: ‘Core’ KBpedia Typologies

Because Table 10-3 does not show all of the typologies, we collapse some of the hierar-
chical aggregations a bit. Note that the typologies that are not part of this ‘core’ list-
ing also have complete descriptions within the online ontology files, as well as, of
course, other specifications related to their roles in the knowledge graph.

Tailoring Your Own Typologies

The open source nature of KBpedia is such that you may use as little or as much of
this structure as you would like to build your own domain knowledge representa-
tions. The basic KKO structure, plus expansions or constrictions of existing KBpedia
typologies, provides a consistent scaffolding, with some promise of interoperability
with external systems, for your knowledge efforts.

The quickest way to leverage KBpedia is to create and add your domain typolo-
gies. As needed, these may be large expansions of new detail and scope. Some areas
may only require sporadic extensions or attention to the types already in KBpedia. I
noted earlier the importance of addressing orphans and fragments as you build these
typologies.  You may need to create some new branches,  including perhaps major
ones, to capture the new domain scope. Once you are done revising KKO and its rele-
vant typologies, you should turn your attention to integrating relevant instance data
from local datastores or knowledge bases appropriate to the domain. Once fueled by
instance data, including attributes and descriptive text, your knowledge system will
be a valuable basis for knowledge supervision in machine learning. The outcomes of
such learners can usefully aid many knowledge management tasks, importantly in-
cluding tagging and categorization, and continued growth of your knowledge struc-
tures.

Chapter Notes
1. Some material in this chapter was drawn from the author’s prior articles at the AI3:::Adaptive Information 
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blog: “Climbing the Data Federation Pyramid" (May 2006); “‘Structs’: Naïve Data Formats and the ABox" (Jan
2009); “Advantages and Myths of RDF" (Apr 2009); “structWSF: A Framework for Data Mixing" (Jun 2009); 
“Big Structure and Data Interoperability" (Aug 2014); “Logical Implications of Interoperability" (Jun 2015); 
“How Fine Grained Can Entity Types Get?" (Mar 2016); “Rationales for Typology Designs in Knowledge 
Bases" (Jun 2016); “Threes All of the Way Down to Typologies" (Oct 2016).

2. Marradi, A., “Classification, Typology, Taxonomy,” Quality & Quantity, 1990, pp. 129–157.

3. Wetzel, L., “Types and Tokens,” The Stanford Encyclopedia of Philosophy, 2014.

4. Aspects of Peirce’s definition of types have some interesting parallels to type theory (https://en.wikipedi-
a.org/wiki/Type_theory), especially homotopy type theory (https://en.wikipedia.org/wiki/
Homotopy_type_theory), that we do not have time to pursue further here. In type theory, well-founded 
types are ones where we can define objects by primitive recursion and prove properties by induction. (See 
Thompson, S., Type Theory and Functional Programming, Addison Wesley, 1991.) Primitive recursion over bool-
ean properties (which is why dichotomous keys for classification are so useful) is an interesting link to type 
theory, as are type families and creating new types. Further, some proposed resolutions to improve the rep-
resentation of subsets in type theories involve representing propositions distinct from types or as types.

5. Philosophers often contrast realism to idealism, nominalism or conceptualism, wherein how the world ex-
ists is a function of how we think about or name things. Descartes, for example, summarized his conceptual-
ist view with his aphorism “I think, therefore I am.”

6. Hulswit, M., “Natural Classes and Causation,” the online Digital Encyclopedia of, Charles S. Peirce, 2000.

7. Chinchor, N., “Overview of MUC-7,” MUC-7 Proceedings, 1997.

8. Brunstein, A., Annotation Guidelines for Answer Types, Linguistic Data Consortium, 2002.
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quotes.

11. Ling, X., and Weld, D. S., “Fine-Grained Entity Recognition,” Proceedings of the 26th AAAI Conference on Artifi-
cial Intelligence, 2012.
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14. For best interoperability with KBpedia, the SKOS reference should include the SKOS DL version; see M.K. 
Bergman, “SKOS Now Interoperates with OWL 2”, AI3:::Adaptive Information blog, February 10, 2011.

15. Jack Park has questioned why chemistry appears in this schema, while physics and quantum phenomena do 
not. I agree those topics are worthy, likely under the Natural Matter node at the interface between Firstness
and Secondness. Peirce does address these ideas a bit, and even posited something like the Big Bang. (1888, 
CP 1.411-2) These fundamental perspectives on matter are an active area of research for me, though there 
are not many crumbs from Peirce on these topics. Still, as we learn more, I can readily see including such 
topics in the schema. As for chemistry and organic chemistry, we better understand them at present and 
they importantly demark the transition from natural matter to life. Chemistry is the laws or “habits” 
(Peirce’s term) for how matter interacts and what products (compounds) may result, so is a natural Third-
ness with respect to Matter. Organic chemistry provides the building blocks or possible compounds or sub-
strates to life, so is equivalent to a Firstness regarding organic matter and life.
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irtually everywhere one looks we are in the midst of a transition for how we
organize and manage information, indeed even relationships. Social networks

and online communities are changing how we live and interact. NoSQL and graph
databases — married to their near cousin ‘big data’ — are changing how we organize
and store information and data. Semantic technologies, backed by their ontologies
and RDF data model, are showing the way for how we can connect and interoperate
disparate information in ways only dreamed about a decade ago. Moreover, we are
building all of this upon the infrastructure of the Internet and the Web, a global, dis-
tributed network of devices and information that is undoubtedly one of the most sig-
nificant technological developments in human history.

V

The graph is a shared structure across all of these developments.1 Graphs are the
new universal paradigm for how we organize and manage information. Graphs have
an inherently expandable nature and one which can also capture any existing struc-
ture. So, as we see all of the networks, connections, relationships, and links — both
physical and informational — grow around us, it is useful to step back a bit and con-
template the universal graph structure at the core of these developments. Some form
of conceptual schema governs every knowledge structure used for knowledge repre-
sentation (KR) or knowledge-based artificial intelligence (KBAI). In the semantic Web
space, we call such schema ‘ontologies.’ Because the word ontology is a bit intimidat-
ing, a better variant is the knowledge graph (because all semantic ontologies take the
structural form of a graph). In our knowledge representation efforts, we tend to use
the terms ontology and knowledge graph interchangeably.

What an ontology — or knowledge graph — means is dependent on context and
purpose. In the case of an upper ontology and typologies, we see the conceptual scaf-
folding. In the relation of attributes to instances, we see the intensional aspects of the
graph and the basis for data records. Relations between nodes, different than those
of a hierarchical  or subsumptive nature,  provide still  different structural  connec-
tions across the knowledge graph. Indeed, one can and should organize the types of
types in a knowledge graph to better modularize it and segregate similar purposes
and functions. We design some ontologies to capture the scope of particular knowl-
edge domains, while others we may use for administrative purposes or in support of
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user interfaces. We discuss all of these aspects in this chapter, plus what is desirable
in knowledge bases and how to use them to populate these knowledge structures.

GRAPHS AND CONNECTIVITY

Graphs, as conceptual or analytical structures, are relatively new. The explication
of graph theory only began about 300 years ago. The use of graphs for expressing
logic structures only began about 100 years ago, with its intellectual roots, in fact,
arising from Charles Peirce and his  existential graphs. Though likely trade routes
and primitive transportation or nomadic infrastructures were perhaps the first ex-
pressions of physical networks, the emergence and then prevalence of networks is
also a fairly recent phenomenon. Transportation, communications, and the electrical
grid were the first purpose-built physical networks. The Internet and the Web are
surely the catalyzing development that has brought graphs and networks to the fore-
front.

In mathematics, a graph is an abstract representation of a set of objects where
pairs of the objects are connected. We term these objects nodes or vertices; we call the
connections between the objects edges. Typically, we depict a graph in diagrammatic
form as a set of dots or bubbles for the nodes, joined by lines or curves for the edges.
If  we  define  a  logical  relationship  between  connected  nodes  we  call  the  graph
‘directed.’ We can express various structures or topologies through this conceptual
graph framework. Graphs are one of the focuses of study in discrete mathematics.2

The word ‘graph’ was first used in a mathematical sense by J.J. Sylvester in 1878.3

Graphs are modular and can be both readily combined and broken apart. From a
computational standpoint, this can lend itself to parallelized information processing
(and, therefore, scalability). If we represent the graph in RDF, graph extractions are
themselves valid models. Graphs have some unique strengths for search and pattern
matching. Besides options like finding paths between two nodes, depth-first search,
breadth-first search, or finding shortest paths, emerging graph and pattern-match-
ing approaches may offer entirely new paradigms for search. Graphs also provide
new methods for visualization and navigation, useful for both seeing relationships
and framing information from the local to global contexts. The interconnectedness
of the graph allows us to explore data via contextual facets, which is revolutionizing
data understanding in a way similar to how the basic hyperlink between documents
on the Web changed the contours of our information spaces.

Graph algorithms are a significant field of interest within mathematics, computer
science, and the social sciences. Via approaches such as network theory or scale-free
networks, we can analyze and model topics such as relatedness, centrality, impor-
tance, influence, ‘hubs’ and ‘domains,’ link analysis, spread, diffusion and other dy-
namics. Many would argue, as do I, that graphs are the most ‘natural’ data structure
for capturing the relationships of the real world. If so, we should continue to see new
algorithms and approaches emerge based on graphs to help us better understand our
information. RDF is a natural data model for such purposes.
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Graph Theory

Graph theory is the manipulation and analysis of graph structures. The first paper
in that field is the Seven Bridges of Königsberg, written by Leonhard Euler in 1736. The
objective of the article was to find a walking path through the city that would cross
each bridge once and only once. Euler proved that the problem had no solution.1

Later, Cayley broadened the approach to study tree structures, which have many im-
plications in theoretical chemistry. By the 20th century, the fusion of ideas coming
from mathematics with those coming from chemistry formed the origin of much of
the standard terminology of graph theory.

Graph theory forms the core of network science, the applied study of graph struc-
tures  and networks.  Besides  graph theory,  the field  draws  on methods  including
statistical mechanics from physics,  data mining and information visualization from
computer science, inferential modeling from statistics, and social structure from so-
ciology. Classical problems embraced by this realm include the four color problem of
maps, the  traveling salesman problem, and the  six degrees of Kevin Bacon. Graph
theory and network science are the suitable disciplines for a variety of information
structures  and many additional  classes  of  problems.  Graphs are  among the most
ubiquitous models of both natural and human-made structures. They can be used to
model many types of relations and process dynamics in physical, biological and so-
cial systems. Graphs can represent many problems of practical interest. This breadth
of applicability makes network science and graph theory two of the most critical an-
alytical areas for study and breakthroughs for the foreseeable future.

Graphs and graph theory also have broad applicability to natural systems. For in-
stance, researchers use graph theory extensively to study molecular structures in
chemistry and physics. A graph makes a natural model for a molecule, where vertices
represent atoms and edges bonds. Similarly, in biology or ecology, researchers em-
ploy graphs to express such systems as species networks, ecological relationships,
migration paths,  or the spread of  diseases.  Graphs are  also proper structures for
modeling biological and chemical pathways. Some of the exemplary natural systems
that lend themselves to graph structures include:

 Chemical reaction networks   
 Gene regulatory networks   
 Spin networks   
 Neural networks   
 Ecological networks  , and 
 Petri nets   (chemistry). 

The growth of social networks has paralleled the growth of the Internet and Web.
Social network analysis (SNA) has arguably been the most critical driver for advances
in graph theory and analysis algorithms in recent years. We are now elucidating new

1 The generalized understanding is that in any connected graph, only zero or two nodes may have odd num-
bers of connections to traverse the entire graph only once per path (edge); the Königsberg example has 
four nodes with odd numbers, and thus fails Euler’s test.
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and interesting problems and challenges — from influence to communities to con-
flicts — through techniques pioneered for SNA. The suitability of the graph structure
to capture relationships has been a real boon to a better understanding of social and
community dynamics. SNA has introduced many new concepts, including such things
as influence, diversity, centrality, and cliques. Particular areas of social interaction
that lend themselves to SNA include:

 Social networks   
 Military conflicts   and terrorism 
 Value networks   
 Project networks   
 Workflows  , and 
 Business ecosystems  . 

We have unearthed entirely new insights using SNA including finding terrorist lead-
ers,  analyzing  prestige,  or  identifying  keystone  vendors  or  suppliers  in  business
ecosystems.  Real networks, in comparison to random networks, are both modular
and hierarchical, distributed over a sparse topology.14 

What these examples show is the nearly universal applicability of graphs, from
the abstract to the physical and gradations from the small to the large. We also see
how to build upon basic graph structures and concepts with more structure. This
breadth points to the many synergies and innovations that may be transferred from
diverse fields to advance the usefulness of graph theories. Still, despite the advances
that have occurred in graph theory, and the increased attention from social network
analysis, many graph problems remain some of the  hardest in computation. Opti-
mizations, partitioning, mapping, inferencing, traversing and graph structure com-
parisons remain challenging. Some of these challenges are only growing due to the
growth in the size of networks and graphs.

Given the ubiquity of graphs as representations of real systems and networks, it is
not surprising to see their use in computer science as means for information repre-
sentation. It is notable that we may represent virtually any data structure as a graph,
but the paradigm has even broader applicability.  The critical  breakthroughs have
come through using the graph as a basis for data models and logic models. These, in
turn, provide the basis for crafting entire graph-based vocabularies and languages.
Once we embrace such structures, it is also natural to extend the mindset to graph
databases as well.

The Value of Connecting Information

The hackneyed phrase of  ‘connect the dots’  reflects our basic intuition of the
value in making connections amongst relevant data. However, what is this value?
How might we quantify it? The reason it is useful to try to quantify the value of con-
nected information is that such an estimate helps to define what effort or cost we
can justify building our connected knowledge structures. For most big data projects,
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for example, we already know that 50% to 80% of the costs in assembling relevant
datasets is due to data wrangling — the effort to extract, transform and clean the in-
put data.5 Nowhere, however, do we know what it is worth to go to the next step of
working to connect those data. 

The ‘network effect‘ was first realized in the early days of telephone networks,
where the value of the system increased as a function of more users.6 We have also
long recognized a similar effect in connecting information and the breaking down of
information or ‘data silos.‘  This  emergence of structure is  particularly evident in
physical networks, such as the growth of a telecommunications network. Two tele-
phones can make only one connection, five can make ten connections, and twelve
can make 66 connections, etc. It is this very multiplier effect that has led to most of
the thinking of how to quantify the network effect.

The earliest effort to estimate the value of physical networks was Sarnoff’s law,
developed by  David Sarnoff, for many years the leader of the Radio Corporation of
America (RCA). He posited that the value of a broadcast network was directly propor-
tional to its number of viewers (n). However, the problem with this formulation is
that a broadcast network is only one way, from broadcaster to user. What of net-
works with interactions or two-way linkages? The benefits of such networks must
surely be more than linear.

Once we get into interaction effects, we get into multipliers. The nature of those
multipliers come from the extent of real interactions, as well as perhaps the nature
of the network itself. Metcalfe’s law was the first direct derivation from the telecom-
munications model. Robert Metcalfe formulated it about 1980 in relation to Ethernet
and fax machines. The ‘law’ was then named for Metcalfe and popularized by George
Gilder in 1993.7 The actual algorithm proposed by Metcalfe calculated the number of
unique connections in a network with n nodes as n(n − 1)/2. This formulation makes
Metcalfe’s law a quadratic growth equation. We may simplify the law8 to state that
the value of a telecommunications network is proportional to the square of the num-
ber of users of the system (n²). Gilder’s popularization and the early growth of the In-
ternet made estimating the benefits of network effects a very timely topic. As a value
measure, we can use the network effect to estimate the benefits for increasing num-
bers of users. Some have even blamed Metcalfe’s law for contributing to the creation
(and then bursting) of the ‘dot-com bubble’ of the late 1990s.9

However, the Metcalfe formulation is not universally accepted, and others have
proposed different estimates. From the perspective of social groups, Reed came up
with the largest multiplier formulation premised on arbitrary sized groups forming
amongst any and all participants (nodes).10 On the other hand, under the provocative
title, “Metcalfe’s Law is Wrong,” Briscoe, Odlyzko, and Tilly (BOT) challenged both
the Metcalfe and Reed approaches in 2006.11 Using the proxy of Internet valuation,
the authors were able to show how absurd the implications of either approach were
at  scale.  Like  the  bet  of  rice  (or  wheat)  doubling  each  of  the  64  squares  on  a
chessboard bankrupting the kingdom, we can see the exponential  implications of
these  two  ‘laws’  to  (eventually)  violate  common  sense.  The  fundamental  fallacy
claimed by the authors for both the Metcalfe and Reed approaches is that all poten-

219

https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
http://en.wikipedia.org/wiki/Dot-com_bubble
http://en.wikipedia.org/wiki/George_Gilder
http://en.wikipedia.org/wiki/George_Gilder
http://en.wikipedia.org/wiki/Robert_Metcalfe
http://en.wikipedia.org/wiki/Metcalf's_law
http://en.wikipedia.org/wiki/RCA
http://en.wikipedia.org/wiki/David_Sarnoff
http://en.wikipedia.org/wiki/Sarnoff's_law
http://en.wikipedia.org/wiki/Information_silo
http://en.wikipedia.org/wiki/Network_effect
https://en.wikipedia.org/wiki/Data_wrangling


A KNOWLEDGE REPRESENTATION PRACTIONARY

tial links are of equal value. There must be some law of diminishing returns to slow
the unsustainable rates of exponential or (to a lesser extent) quadratic growth. After
much hand waving, the authors chose Zipf’s law12 as their basis for this diminishing
return. To approximate this distribution, they (BOT) offered the simple n log (n) for-
mulation of Zipf’s law. This approximation is reasonable, but one that is never re-
lated directly to the real nature of graphs or networks.

Yaakov Stein, a network and signals processing researcher of the first rank, used
his experience when joining LinkedIn to help understand and quantify connections
in real networks. 13 He began without a LinkedIn account and documented his experi-
ence as he joined and expanded his network of contacts on the service. He charted
direct links, and then meticulously looked at and recorded secondary and tertiary
links. His formulation recognized that the value to an individual user equaled raising
the access to the entire network (1) for that user plus the diminishing benefit repre-
sented by the participating graph’s other participants as measured by the average
degree of separation (D). D is an inherent measure of the graph type.

Though his context was a social network, the insight is that relations diminish by
distance within a graph, with average link distance (directly related to the degree of
separation) a relevant metric. Connected ‘facts’ or ‘friends’ is essentially the same
thing. It is all about what we share amongst graph nodes. Stein’s approach grounds
the multiplier effect in an inherent characteristic of the graph: its average degree of
separation. Like Zipf’s law, the degree of separation is a distance measure, but one
now based on the real nature of graphs. Here is the Stein formulation:

where V is potential value, n is number of graph nodes, and D is the graph’s average
degree of separation. Thus, a graph with a degree of separation of 4, would exhibit a
network-wide power factor of 5/4 (4/4 plus 1/4).

I modified Stein’s approach to calculate the Value of Knowledge Graph formula-
tion, or the VKG (Viking) algorithm, using this expression:

where  V is  potential value,  F is  average assertion accuracy,  n is  number of graph
nodes, and D is the graph’s average degree of separation. F is analogous to F-measure,
the combined  precision and  recall statistic for  information retrieval and  NLP tasks
(see further  Chapter  14).  F in the case of the Viking algorithm is also a combined
statistic  that  represents  the  ‘accuracy’  (verifiable  truthfulness)  of  statements  as-
serted in the graph. 

F is essentially an estimated value for one minus the residual falsity for the aver-
age statement in a graph, after removal of all assertions that do not meet existing co-
herency, consistency or completeness tests. Sampling statements across the graph
determine F and manually testing for truthfulness (or in a logical sense, validity for
the existing statements in the graph). An F of 1 signifies complete truthfulness (accu-
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racy); an F of 0 represents absolute falsity.
Now corrected with our assumed  F factor, we can begin to tease out the value

benefits of connecting ‘facts’ versus the unconnected ‘facts.’ As with any logarithmic
function, we see that the benefit value from connections increases in a growing man-
ner at larger scales. For example, at a level of 1000 records, the benefits from connec-
tions are 7x greater than unconnected data. By the time the scale grows to 1 million
or 500 million records, the benefit of connections increases to 44x to 215x, respec-
tively. However, the potential value of connectedness is also a function of the general
degree of information separation for the given domain.

I  consolidate these various estimates of  connected value in  Figure  11-1.  At  the
nominal scales of 100,000 and 1,000,000 records, the value of data connections in
comparison to the unconnected ‘facts’ case can show huge increases.  Based on em-
pirical experience to date, I think we can say the benefits of connecting previously
unconnected data may fall somewhere within the limits of Figure 11-1. Even at rather
low scales and more loosely-connected domains, the value improvements in making
connections with data are many-fold. At larger scales for tighter networks, the multi-
pliers can become astounding.

We are still in the early phases of gathering statistics for such things, but, in gen-
eral, most any knowledge graph would have a D factor ranging from 2 to 8, as I docu-
ment in Table 11-1. We also should assume network effects are not linear. We should
expect a leveling or flattening of the curve; the benefits of connections are not limit-
less. The shape of the curve likely varies by domain and the nature of the network. It
is a topic worth studying.
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Domain 100,000 Records 1,000,000 Records

Food webs 203x 611x

Genetic differences 38x 84x

Twitter 23x 46x

Facebook 17x 33x

Potential research collaborators 14x 26x

UMBEL 8x 12x

Social networks (general) 5x 8x

Mobile ad hoc networks 3x 5x

Table 11-1: Increased Value for Connecting Nodes, Various Networks

Another implication the Viking algorithm allows us to test is the benefit of adding
structure to  our datasets.  Actually,  ‘adding structure’  is  not strictly  correct;  it  is
‘structurizing’  the  data  via  characterizations,  attributes  and  categorizations.  Of
course,  mere connections for structure’s  sake is  silly.  Not all  structure is  created
equal. From a KR perspective, typing is the most important, individual instance an-
notations the least. Assigning or classifying our records into types, for example, ap-
plies to all records across the datasets and provides powerful cross-record linkages.
Adding annotations  or  metadata  to  single  records  provides  much lower  benefits.
Each  across-dataset  structure  characterization  adds  about  25%  to  30%  value  per
structure. Adding four structural characterizations, for example, more than doubles
the ‘facts’ assertion value (~ 140%) to the datasets. The good thing is that we can add
such structure as a slight increase over standard  data wrangling efforts, and with
more impact than standard wrangling. 

The graph structures, preferably guided by domain ontologies, provide the logic
means to test for subsequent structure additions. Not only does adding structure get
easier with a foundation of existing structure, but it increases the value of the infor-
mation by orders of magnitude. At this stage, what the Viking algorithm gives us is a
defensible means for assessing the value of adding structure (through connections)
to our datasets. We see potentially huge multiplier effects that compound further
benefits with scale. (Subject to the leveling curve caveat.) We also see that the most
developed forms of structure — namely, ontologies — bring further benefits in infer-
ence and testable coherence.14

While our current proxy for value — namely, asserted ‘facts’ — is useful, a per-
haps more useful one would be ‘fact’ assertions with a monetary value. Such esti-
mates will show, again, that not all ‘facts’ are created equal, and some have more
monetary value than others. Transitioning our estimates of value to a monetary basis
will help set parameters for the cost-benefit analysis of data collection and structur-
ing that is the ultimate basis for planning such KR initiatives. 

As we look at Table 11-1 and play with some parameters, we can see some guide-
lines emerge. First, more structure always provides benefits — adding structure pro-
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vides a multiplier effect in value. Second, more connections are more valuable as a
multiplier effect than adding more data, which has an additive effect. Third, the ben-
efits of  structure increase with increasing dataset sizes  (scale).  Fourth,  particular
kinds of structure, such as types or categorizations, enable cross-dataset selections
and comparisons that are inherently more valuable than record-specific annotations.
Fifth, by adding correct and coherent connections, it may be possible to move the en-
tire graph to a lower average degree of separation (D), with further multiplier bene-
fits.  Sixth, structure can be added incrementally and appears cumulative to some
level. Seventh, we should not view data wrangling as an overall ‘cost’ to the effort
but as a means for achieving the multiplier benefits arising from structure and con-
nections.

Graphs as Knowledge Representations

Graphs  are  an  iconic  and  intuitive  way  to  visualize  and  express  connections.
Graphs, expressed in mathematical or logical form, are a rich substrate for analysis
and reasoning. Graphs appear to be the natural structure for capturing real relation-
ships in the material world and the conceptual realm.

One key  aspect  of  graphs  is  their  inherent  extensibility.  Once  we  understand
graphs as an excellent way to represent both logic and data structures, their useful-
ness to knowledge representations becomes clear. Graph-theoretic methods are par-
ticularly useful in linguistics since natural language has a discrete, connected struc-
ture. Not only can graphs represent the syntactic and compositional structure, but
they can also capture the interrelationships of terms and concepts within those lan-
guages (that is, the semantics). We see the usefulness of graph theory to linguistics by
the various knowledge bases such as WordNet (in multiple languages) and VerbNet.
Domain ontologies emphasize conceptual relationships over lexicographic ones for a
given knowledge domain. Semantic networks and neural networks are similar knowl-
edge representations. 

The main reasoning in the knowledge graph relies on its hierarchical, hypony-
mous relations and instance types. These establish the parent-child lineages and en-
able us to relate individuals (or instances, which might be entities or events) to their
natural kinds, or types. Entities belong to types that share specific defining essences
and shared descriptive attributes. For effective inferencing, it is wise to try to classify
entities into the most natural kinds possible. Clean classing into appropriate types is
one way to realize the benefits from related search and related querying. Types may
also have parental types in a hyponymous relation. This ‘accordion-like’ design, dis-
cussed in the prior Chapter 10, is an important aspect that enables us to tie external
schema to multiple points in KBpedia.

Disjointedness assertions, where two classes are logically distinct, and other relat-
edness options provide other powerful bases for winnowing potential candidates in a
graph and testing placements and assignments. Each of these factors also may be
used in SPARQL queries. These constructs of semantic Web standards, combined with
a properly constructed knowledge graph and the use of synonymous and related vo-
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cabularies in semsets, provide potent mechanisms for how to query a knowledge base.
By using these techniques, we may dial-in or broaden our queries, much in the same
way that we choose different types of sprays for our garden watering hose. We can
focus our queries to the particular need at hand. 

Once a completed graph passes its logic tests during construction, perhaps impor-
tantly after being expanded for the given domain coverage, its principal use is as a
read-only knowledge structure for making subset selections or querying. The stan-
dard  SPARQL query language,  which we occasionally  supplement  with rule-based
queries using SWRL or for bulk actions using the OWL API, is the means by which we
access the knowledge graph in real time. In many instances, such as for the KBpedia
knowledge graph, these are patterned queries. In such cases, we substitute variables
in the queries and pass those from the HTML to query templates. When doing ma-
chine  learning,  we  often  retrieve  slices  via  query  and  then  stage  them  for  the
learner. We may generate entity lists for things like training recognizers and taggers.
Some of the actions may also do graph traversals to retrieve the appropriate subset.
However, the primary real-time use of the knowledge structure is search.

Among many other options, SPARQL also gives  us the ability to query specific
property paths.15 We can invoke these options either in our query templates or pro-
grammatically.  We may programmatically broaden or narrow our searches of the
graph,  depending  on  the  relation  chosen  (subClassOf is  one  example)  and  the
length of the specified property path. Switching inferencing on or off also acts to
broaden or narrow the search swath considerably. Besides all of the standard query
options provided by the SPARQL standard, we may also remove duplicates, identify
negated items, and search inverses, select named graphs, or select graph patterns.
Beyond SPARQL and now using SWRL, we may also apply abductive reasoning and
hypothesis generation to our graphs, as well as mimic the action of expert systems in
AI  through if-then  rule  constructs  based on any  structure within  the  knowledge
graph. A helpful online tutorial with examples helps highlight some of the possibili-
ties in combining OWL 2 with SWRL.16 

UPPER, DOMAIN AND ADMINISTRATIVE ONTOLOGIES

The root of the  ontology term is the Greek  ontos, or  being or the  nature of things.
Classical philosophers used the term ontology for the study of the nature of being or
the world, the nature of existence. Tom Gruber, among others, made the term popu-
lar in computer science and artificial intelligence about 15 years ago when he defined
ontology as a “formal specification of a conceptualization.” Since then, I have contin-
ued to find ontology one of the harder concepts to communicate to clients and quite
a muddled mess even as used by some practitioners. I have concluded that this prob-
lem is not because I have failed to grasp some ephemeral nuance, but because the
‘ontology’ term as used in practice is indeed fuzzy and imprecise.
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A Lay Introduction to Ontologies

Ontologies are the structural  frameworks for organizing information on the se-
mantic Web and within semantic organizations.1 Ontologies have the structural form
of a graph; we often use  knowledge graph synonymously. Ontologies provide unique
benefits in discovery, flexible access, and information integration due to their inher-
ent connectedness. We can layer ontologies on top of existing information assets,
which means they are  an  enhancement and not a  displacement for prior invest-
ments. Moreover, ontologies may be developed and matured incrementally, which
means their adoption may be cost-effective as benefits become evident.

Ontologies provide an organizing context for relating disparate information to-
gether and for making meaningful inferences. The framework itself is a function of
the worldview, context and domain scope at hand. Flexibility here is not weakness; it
is the power to capture the meaningful vocabulary and discourse for entire domains
of knowledge. The trick to designing a proper ontology is to maintain internal coher-
ence and self-consistency while capturing the vocabulary and discourse of its stake-
holders and users. When done, it is then possible to relate disparate information and
data to other data and to make intelligent business inferences. So, the use of an on-
tology does not limit freedom. It does set the context for making connections and
setting relations. As long as it is coherent, the ‘correct’ ontology is the one that best
captures the scope and domain at hand, and is one that is continually responding to
the open nature of knowledge and its community of users. 

When I refer to the idea of ‘worldview’ as synonymous with an ontology, I do not
mean that as cosmic, but how we may convey a given domain or problem area. One
group might choose to describe and organize, say, automobiles, by color; another
might choose body styles such as pick-ups or sedans; or, still,  another might use
brands such as Honda and Ford. None of these views is  inherently ‘right’  (indeed
multiples might be combined in a given ontology), but each represents a particular
way — a ‘worldview’ — of looking at the domain. So long as all ascertainable ‘facts’ in
an ontology may be confirmed and its logic kept consistent, different ‘worldviews’
are perfectly acceptable.

Understanding, using and manipulating ontologies can bring practical benefits:

 Ontologies help make explicit the scope, definition, language, and meaning (se-
mantics) of a given knowledge domain or worldview;

 Ontologies may represent  any form of  unstructured  (documents or text),  semi-
structured (XML or Web pages) or structured (database) data;

 Ontologies  provide a  coherent  navigation and search mechanism for moving
through disparate information spaces, with any node or edge providing a possi-
ble entry point;

 Ontologies, if hierarchically structured in part, enable the power of inheritance,
reasoning, and inference;

1 I personally prefer an embracing understanding of the term, consistent with Deborah McGuinness’s 2003 
paper, Ontologies Come of Age.17
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 Ontologies may provide the power to generalize and hypothesize (abductive rea-
soning) about their domains; 

 Ontologies provide guidance on how to correctly ‘place’ information in that do-
main, useful for external concept matching and mapping;

 Ontologies can provide a more effective basis for information extraction or con-
tent clustering ;

 Ontologies  may be queried and filtered to provide pre-qualified  corpora and
training sets, useful to unsupervised and supervised machine learning, respectively; 

 Ontologies may be a source of structure and controlled vocabularies helpful to
disambiguate context and to inform domain ‘lexicons’;

 Ontologies can help relate and ‘place’ other ontologies or worldviews to one an-
other; in other words, ontologies can help organize ontologies. 

The most prevalent use of ontologies at present is in semantic search. Semantic
search has benefits over conventional search by being able to make inferences and
matches not available to standard keyword retrieval. Perhaps a pinnacle application
for ontologies is to help map and integrate other structures and information, both
within and without the organization. Furthermore, if we populate a knowledge graph
sufficiently with accurate instance data, often from various knowledge bases, then
ontologies can also be the guiding structures for efficient machine learning and arti -
ficial intelligence.

Ontologies are A Family of Graphs

If you pose the query ‘ontology filetype:owl‘ to Google, you will see more than
10,000 results. According to Ontolog Forum, a community of ontology practitioners,
we can classify ontologies by some key measures. Expressiveness is the extent and ease
by which an ontology can describe domain semantics. Structure they define as the de-
gree of organization or hierarchical extent of the ontology. They further define gran-
ularity as the level of detail in the ontology. By these notions, we may include the
concepts  of  folksonomies and  topic  maps in  the definition.  The Forum also  defines
other dimensions of use, logical basis, and purposes for ontologies.18 One of these di-
mensions is to characterize ontologies by ‘levels,’ specifically upper, middle and lower
levels. These are useful distinctions, but we prefer to classify them into upper, domain
and administrative ontologies. 

Upper ontologies provide the top-level conceptual structure and schema, which of-
ten function as the reference structure for specific domain ontologies.  Examples of
upper-level ontologies include the Suggested Upper Merged Ontology (SUMO), the
Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), PROTON, Cyc
and BFO (Basic Formal Ontology). Most of the content in these upper-levels is akin to
broad, abstract relations or concepts. Most all of them have both a hierarchical and
networked  structure,  though  their  actual  subject  structure  relating  to  concrete
things is pretty weak. KBpedia’s Knowledge Ontology (KKO) is an example of an up-
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per ontology.
Domain (or content) ontologies embody more of the traditional ontology functions

such  as  information  interoperability,  inferencing,  reasoning  and  conceptual  and
knowledge capture of the applicable domain.  We can broadly or narrowly define
these domains; specific instantiations may cover multiple or a diverse range of sub-
ject matter. In KBpedia’s design, we compose the domain ontology of multiple ty-
pologies, including for relations and attributes. 

Administrative ontologies govern internal application use and user interfaces. These
areas might relate to providing metadata as a result of workflow steps and general
workflow management, as well as driving visualization or display widgets or inform-
ing user interfaces. Possible user interface aids provided by administrative ontolo-
gies may include attribute labels and tooltips; navigation and browsing structures
and trees; menu structures; auto-completion of entered data; contextual dropdown
list choices; spell checkers; and online help systems. Administrative ontologies may
also support internal applications such as workflow systems, access control, archive
management, and the like.

Incipient Potentials

For  over  twenty  years,  some researchers  such  as  Nicola  Guarino  (1998)19 and
Michael  Uschold (2008)20 have argued that we could rely upon ontologies for even
more central aspects of overall applications, what Uschold termed ’ontology-driven
information systems.’ I agree. Here are five areas of (largely) untapped potential:

1. Lack of a well-known relations ontology. Structurally, we may use OWL to reason
over actions and relations in a similar means as we reason over entities and
types, but our common ontologies have yet to do so. Creating such schema is
within grasp since we have language structures such as VerbNet and other re-
sources we could put to the task. KBpedia has its own relations typologies that
attempt to capture these aspects;

2. Lack of a well-known  attributes ontology. The lack of a schema and organized
presentation of attributes means it is challenging to do ABox-level integration
and interoperability. This gap is largely due to the primary focus on concepts
and  entities  in  the  early  stages  of  semantic  technologies.  As  the  KBpedia
knowledge graph shows, it is possible to formulate logical and reusable schema
for instance attributes as well; 

3. A  quantity units ontology is the next step beyond attributes, as we attempt to
bring data values for quantities (and well as the units and labeling used) into
alignment. The  QUDT ontologies (quantities, units and data types), or some-
thing similar, may provide such a template;

4. A  statistics and probabilities ontology is also appropriate given the idea of con-
tinua (Thirdness) from Peirce and capturing the idea of fallibility. Probabilistic
reasoning is  still  a young field in ontology.  Some early possibilities  include
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Costa21 and the PR-OWL ontology using Multi-Entity Bayesian Networks,22 prob-
abilistic first-order logic that goes beyond Peirce’s classic deterministic logic,
as well as fuzzy logic applied to ontologies23; and

5. ODapps (‘ontology-driven applications’) are generic software packages driven
by ontology specifications for specific applications. They may enable us to: 1)
import or export datasets; 2) create, update, delete (CRUD) or otherwise man-
age data records; 3) search records with full-text and faceted search; 4) manage
access  control  at  the  interacting  levels  of  users,  datasets,  tools,  and  CRUD
rights; 5) browse or view existing records or record sets, based on simple to
possible  complex  selection  or  filtering  criteria;  or  6)  process  results  sets
through workflows of various natures, involving specialized analysis, informa-
tion extraction or other functions. 

Realizing these potentials will  enable our  knowledge management (KM) efforts to
shift to the description, nature, and relationships of the information environment.
Under this broadened understanding, we now give explicit focus to the actual con-
cepts, terminology, and relations that comprise coherent ontologies, subject to the
direct  control and refinement by their users,  the knowledge workers  and subject
matter experts.

Good Ontology Design and Construction

While Chapter 14 focuses on best practices and includes a section on ontologies, it
is worthwhile here to reiterate three design considerations that should go into the
construction  of  an  ontology.  These  three  factors  are  coherence,  completeness,  and
scope, introduced in prior chapters.

Coherence is a state of logical, consistent connections, a logical framework for in-
telligently  integrating  diverse  elements.  In  the sense of  a  knowledge  graph,  this
means we have drawn the right connections (edges or predicates) between the object
nodes in the graph. Structure without coherence is where we have not drawn correct
or complete connections. The nature of the content graph lacks logic. The hip bone is
not connected to the thigh bone, but perhaps to something wrong or ludicrous, like
the arm or cheekbone.

Completeness is to conform to some minimum standard of characterization. For
KBpedia, we have set that minimum as a preferred label, robust set of alternative la-
bels (semset), a definition, language characterization, and one or more types or par-
ents. If we have information on attributes, we should include that as well. However,
it is not necessary to discover and document all attributes, though we should add
new ones as we encounter them. See further what we discussed for completeness for
reference concepts (RCs) in Chapter 9. 

Scope means we answer a series of questions in the positive for the ontology:

 Does the ontology provide balanced coverage of the subject domain?1 This ques-

1 The sense of ‘balance’ is from the perspective of the sponsor, roughly bounded by the topic domain at hand.
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tion gets at the issue of properly scoping and bounding the subject coverage
such that the breadth and depth are roughly equivalent; 

 Does the ontology embed its domain coverage into a proper context? Re-using
existing and well-accepted vocabularies and including concepts in the subject
ontology that aid such connections is good practice; 

 Are the relationships in the ontology coherent, per our earlier condition? and

 Has the ontology been constructed according to good practice?

If we can answer these questions affirmatively — including importantly the use of
testing scripts throughout construction — then we deem the ontology ready for pro-
duction-grade use.

The skills needed to create these ontologies are logic, coherent thinking, and do-
main knowledge. That is, any subject matter expert or knowledge worker likely has
the skills required to contribute to useful ontology development and refinement. On-
tology development is a trainable skill.

KBPEDIA’S KNOWLEDGE BASES

We want knowledge sources, putatively  knowledge bases, to contribute the actual
instance data to populate our ontology graph structures. Matching with knowledge
bases can also point out gaps and oversights in our knowledge graphs that we should
augment to provide better domain coverage. Sufficient instance data is an absolute
essential if we are to use our knowledge structures for supervised or unsupervised ma-
chine learning, or what we call herein KBAI.

We want knowledge bases to define and populate attributes for their instances.
This kind of information is what we see in a data record. The best knowledge bases
have large data stores, all  consistently characterized. We prefer large sources be-
cause we can spread the effort of mapping and conversion across more records.

We prefer knowledge bases that provide identity and information for disambigua-
tion. Identity works in that we can point to authoritative references (with associated
Web identifiers) for all of the individual things and properties in our relevant do -
main. We can use these identities to decide the ‘canonical’ form, which also gives us a
common reference for referring to the same things across information sources or
data sets. We also want richness in how to describe those things. 

Besides  our  earlier  criteria  of  consistency,  coherence,  and  completeness,  our
desiderata for what we find useful in a knowledge base includes:

 Comprehensive — does the knowledge base support the domain scope at hand?
Smaller, focused knowledge bases may be quite valuable if the overlap is good; 

 Referencable — is the knowledge source authoritative? Does it use IRIs or URIs for
referencing its objects? 

Work is always required to bring the knowledge graph up to this level of coverage. This sense is different 
for a library, where ‘balance’ is from the perspective of the patrons.
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 Open Standards — does it meet open standards? It is often easier to interoperate
with open standards with more tooling available; 

 Computable — does the KB support reasoning, inference, set selection, relations,
attributes, data types, and retrieval? If so, incorporation is easier; and

 Multi-lingual — if not already multi-lingual, does it have a structure (such as ID v
label-based) that supports multiple languages? Support for multiple languages
increases usefulness and applicability. 

The idea that we can purposefully craft knowledge bases to support knowledge-
based artificial intelligence, or KBAI, flows from these kinds of realizations. We begin
to see that we can tease out different aspects of a knowledge base, each with its logic
and relation to the other aspects.

KBpedia KBs

As of 2018, about 20 different knowledge bases contribute the instance data and
some key mappings to KBpedia. Six of these are primary ones, defined as both adding
large numbers of instances but scope coverage to KBpedia as well. We have selected
the secondary KBs based on their common usage or their ability to contribute more
limited concepts and structure to the overall KBpedia.

Primary KBs

Wikipedia,  the  primary  source  for  structure,  concepts,  and  definitions,  and
Wikidata, the primary source for millions of instance data and a rich system of at -
tributes, are the two most significant contributors to KBpedia. We use DBpedia as a
source for direct machine-readable Wikipedia data. While we first root the concep-
tual schema of KBpedia in Peirce’s universal  categories,  we use the  OpenCyc and
UMBEL knowledge bases to inform the construction of KBpedia’s typologies. We ex-
tend KBpedia’s geographical and geopolitical reach using the GeoNames knowledge
base. Here is a bit longer description of each source, current as of mid-2018: 

 Wikipedia is a crowdsourced, free-access and free-content knowledge base of hu-
man knowledge. It has more than 5 million articles in its English version. Nearly
35 million articles exist across all Wikipedias in about 280 different languag  es  .
Though not universal, most all recent AI advances leveraging knowledge bases
have utilized Wikipedia in one way or another, due to its scope, quality, and
open-access structure. Wikipedia is a common denominator in question answer-
ing and commercial natural language applications that leverage artificial intelli-
gence,  witness  Siri,  Watson,  Cortana and  Google  Now,  among  others.  Even
Freebase, the core of Google’s Knowledge Graph, did not blossom as a separate
data crowdsourcing concern until its former owner, Metaweb, decided to bring
Wikipedia into its system. More than 1000 research papers leverage Wikipedia
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for AI and NLP purposes,24 Many other knowledge bases are derivatives or en-
hancements to Wikipedia in one way or another.1 One is hard-pressed to iden-
tify any large-scale knowledge base, available in electronic form, that is being
exploited as much for AI or semantic technology purposes;26

 Wikidata is a crowdsourced, open knowledge base of (currently) about 55 million
structured  entity records. Each record consists of  attributes and values with ro-
bust cross-links to multiple languages. Wikidata is a crucial entities source;

 Cyc is a common-sense knowledge base developed over 20 years involving about
1000 person-years of effort. The smaller open-source OpenCyc version is the one
we use in KBpedia; an OWL version was available until that project ended in
2017. A ResearchCyc version of the entire system is still available to researchers.
The Cyc platform contains a dedicated logic language, CycL, and has many built-
in functions in areas such as natural language processing, search, inferencing and
the like. UMBEL is based on a subset of OpenCyc;

 DBpedia is a project that extracts structured content from  Wikipedia and then
makes that data available as linked data. Millions of entities are characterized by
DBpedia in this way. As such, DBpedia is one of the largest — and most central —
hubs for linked data on the Web;

 GeoNames integrates geographical data such as names of places in various lan-
guages,  elevation,  population,  and  others  from  multiple  sources.  We  obtain
nearly 800 feature descriptors from GeoNames for organizing geographic and
geopolitical information, as well as millions of well-characterized and -defined
place names and regions; and

 UMBEL, short for Upper Mapping and Binding Exchange Layer, is an upper ontol-
ogy of about 35,000 reference concepts, designed to provide universal mapping
points for relating different ontologies or schema to one another, and a vocabu-
lary for aiding that mapping.

The combination of these sources, organized by Peirce’s triadic universal categories
and typologies in the KKO, makes KBpedia a singularly unique knowledge resource. 

Secondary KBs

We have mapped about 15 leading external vocabularies and ontologies to KBpe-
dia, with the first three playing a more prominent role. This listing of mappings is: 

schema.org This extendable vocabulary describes common things, businesses, and events on 
the Web. Major search engines, including Google, sponsor it. There are more 
than 700 types in the vocabulary. Millions of Web documents are marked up with
this vocabulary. 

1 Though a bit dated, an 82-page technical report by Olena Medelyan et al. from the University of Waikato in 
New Zealand, Mining Meaning from Wikipedia,25 describes the unique structural and content reasons why 
Wikipedia is an absolutely irreplaceable source for notable entities, and semantic Web and natural language
research.
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DBpedia Ontology This ontology, an extension of the base DBpedia knowledge base, is meant to be 
an organizational framework for the information in Wikipedia infoboxes. There 
are more than 700 types in this ontology. 

Dublin Core Dublin Core, and its metadata extensions, is a generalized vocabulary for de-
scribing conceptual works, developed by the library community. It is a widely 
used core vocabulary across many domains. 

Bibliography 
Ontology 

This generalized bibliographic ontology is used to describe books and periodi-
cals; it is the most widely used bibliographic schema. 

Description of a 
Project (DOAP) 

A general vocabulary for describing projects. 

Friend of a Friend FOAF is a project devoted to linking people and information using the Web based
on social networks, representational networks, and information networks. 

FRBR This vocabulary for the Functional Requirements for Bibliographic Records is a 
recommendation of the International Federation of Library Associations and In-
stitutions (IFLA) for how to structure catalog databases to reflect the conceptual 
structure of information resources. 

Geo Geo is a vocabulary for representing latitude, longitude and altitude information 
in the WGS84 geodetic reference schema. 

Music Ontology MO is a vocabulary for describing music-related topics (i.e., artists, albums and 
tracks). 

Open 
Organizations 

OO is a vocabulary that provides supplementary terms for organizations wishing 
to publish open data about themselves. 

Organization 
Ontology 

The Organization Ontology is a core ontology for organizational structures, 
aimed at supporting linked data publishing of organizational information across 
some domains. 

Programmes 
Ontology 

The Programmes Ontology is a simple vocabulary for describing media pro-
grams. It covers brands, series (seasons), episodes, broadcast events, broadcast 
services, etc 

SIOC The SIOC initiative (Semantically Interlinked Online Communities) is a vocabu-
lary for the integration of online community information. 

Time Ontology The OWL-Time ontology is a vocabulary of temporal concepts, for describing the 
temporal properties of resources in the world or described in Web pages. 

TRANSIT TRANSIT is a vocabulary for describing transit systems, routes, stops, and sched-
ules. 

US PTO The US Patent and Trademark Office provide links to millions of organizations 
and brands that have sought or received trademark protection from the US gov-
ernment. 

Table 11-2: Secondary Knowledge Bases for KBpedia

The base KBpedia also includes entities mappings (organizations only) to Freebase
(though abandoned, prior users have transferred much Wikidata) and the US Patent
and Trademark Office (USPTO) databases. Since these are not full mappings, we do
not include them in the statistics for the base KBpedia.
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Candidate KBs for Expansion

For specific domains, multiple and rich sources may exist to expand KBpedia to
accommodate that scope.  Chapter  13 develops the topics  of finding and screening
such sources, using some of the acceptance criteria above. For now, let me note that,
in varying degrees, vocabularies, thesauri, taxonomies, and, even, tables of content
may be useful starting points for domain concepts and scope expansions. One may
find local instance data from internal relational datastores and spreadsheets. Some-
times you may find useful domain data and structure from academic publications,
trade organizations, or various sector studies.

As for KBpedia, some new areas that we are contemplating include country-spe-
cific  economic and demographic  data,  more  online databases,  brand and product
data, expanded corporate and ownership data, sustainability metrics associated with
significant economic pathways, or lexical databases, such as WordNet or VerbNet. As
a sponsor of the open source project, we will be responsive to multi-lingual versions
and will work to catalyze more mappings, more linkages, and more extensions.
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PLATFORMS AND KNOWLEDGE MANAGEMENT

aving discussed terminology and components in previous chapters, now let
us turn our attention in this Part IV to building an actual knowledge represen-

tation  system. The major theme of the effort is to obtain maximum value from the
work of converting and integrating data not only to achieve the aims of data interop-
erability and  knowledge-based  artificial  intelligence (KBAI)  but  to  leverage  maximum
benefits  from  knowledge  management as  well.  We follow this  chapter  on platforms
with two additional chapters in  Part IV on how to build out and tailor a system for
your own domain needs and on testing and best practices.

H

The material in these three chapters draws on our experience in building seman-
tic  technology  platforms  for  a  variety  of  clients  and  applications  over  the  prior
decade.1 In various guises and tailorings, we have created standalone and  Drupal-
based platforms using  PHP, and have created standalone systems using the  Clojure
language. Though we have released portions of these efforts as open source — Clo-
jure components related to KBpedia, and PHP and Drupal frameworks for the Open
Semantic Framework (OSF) — we are not prescriptive in this chapter or elsewhere in
the book about how to build a KR/KM platform. Rather, we emphasize guidelines and
lessons learned versus any specific design or language. Platforms will continue to
emerge and evolve, and what we should seek from those platforms regarding design
and architecture is of more guiding importance than any specific instantiation.

We begin this chapter by critically reviewing the work objectives of a platform.
These functional understandings are related to the earlier  TBox and  ABox splits we
discussed for description logics in Chapter 8. We also discuss the importance of content
and general workflows. From this basis, we then proceed to look at platform consid-
erations. As noted in Chapter 4, the platform should support three main opportunities
in general knowledge management, data interoperability and knowledge-based artificial in-
telligence (KBAI). We also discuss access control and governance, and other enterprise
considerations. The last section of this chapter deals with the overall Web-oriented ar-
chitecture, emphasizing the importance of Web connectivity and the use of modular
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Web services for scalability and flexibility. The entirety of these considerations helps
us set the overall guidelines for the design and architecture for a responsive knowl-
edge representation and management platform. 

USES AND WORK SPLITS

To contemplate what a knowledge representation platform should look like, we
first need to define what kinds of work we anticipate the platform to do. These work
requirements are related to the purposes we have for the platform, as well as the ex-
isting state of tooling and applications available to support them. (Chapters 15 and 16
offer additional use cases.) Workflows are also intimately tied to these questions.

The State of Tooling

I have been tracking and documenting the state of semantic technology, graphics
visualization, and knowledge management tooling for nearly two decades. For many
years I  maintained  Sweet Tools,  a searchable and faceted compendium of semantic
technologies that grew to a listing exceeding 1000 tools, the most comprehensive
available.2 In our platform work, we have used and integrated some of the leading
tools available from this listing. We have also extended and created many of our tools
and ontologies that we have contributed back to the community as open source.3 

We now have much tooling and demo experience to draw upon since the seminal
article on the semantic Web appeared in the Scientific American in 2001.4 The primary
sources for supporting the semantic Web are the European Union, mostly for aca-
demics, and the US government, mainly for intelligence and biomedical purposes to
academics and businesses alike. 

In the early years, ontology standards and languages were still in flux, and the
tools basis was similarly immature.  Frame logic, description logics, common logic
and many others were competing at that time for primacy and visibility. Practition-
ers based most ontology tools at that time such as Protégé,5 OntoEdit,6 or OilEd7 on F-
logic or the predecessor to OWL, DAML+Oil. The emergence of OWL and then OWL 2
by the  W3C helped solidify matters. The University of Manchester introduced the
OWL API,8 which now supports OWL 2.9 Protégé, in version 5x, is now solely based on
OWL 2 and has become a popular open source system, with many visualization and
OWL-related plug-ins. A leading commercial editor is TopBraid Composer, which uses
the Eclipse IDE platform and Jena API.10 The OWL API is now a standard used by Pro-
tégé and leading reasoners (Pellet, HermiT, FaCT++, RacerPro). It supports a solid on-
tology management and annotation framework, and validators for various OWL 2
profiles (RL, EL, and QL). 

RDF data management systems, or ‘triple stores,’  such as OpenLink’s  Virtuoso,
Ontotext’s  GraphDB, and Franz’s  AllegroGraph, are now mature offerings. One may
also apply modifications of existing data stores by Oracle, MarkLogic, and a variety of
NoSQL databases to the design ideas presented herein. Developers presently have
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multiple open source and commercial options to choose from, including cloud op-
tions such as Amazon’s Neptune, for hosting RDF and OWL databases. The more com-
prehensive frameworks have opted to become ontology-engineering environments
and to provide all capabilities in one box via plug-ins. 

 Java is the language of choice for about half of the semantic technologies, though
existing toolsets use more than a score of different languages. Academic tools are of-
ten the most innovative,  but the degree of  completeness  is  often frustrating and
most academic and grant-supported tools have limited or no support. Many, after a
single experimental release, are abandoned or see no further development. Newer
academic releases (often) are more strategically oriented and parts of broader pro-
grammatic  emphases.  Programs like  AKSW from the University  of  Leipzig  or the
Freie  Universität  Berlin  or  Finland’s  Semantic  Computing Research Group (SeCo),
among many others, are exemplars of this trend. Promising projects and tools are
now much more likely to be spun off as potential ventures, with accompanying bet-
ter packaging, documentation and business models.

Full-text search is weak in RDF triple stores, and many leading approaches now
match a text engine with the semantic portions. Some excellent components exist,
but not yet packaged into single-stop solutions as RedHat did with Linux. The ontol-
ogy tooling is especially difficult for standard knowledge workers to use, and the
coupling of tools into current, actual workflows is lacking. Our experience is that
most potential components are incompletely tested, and lack many basic expecta-
tions suitable for enterprise environments. Much scripting is necessary to glue to-
gether existing parts. However, some of the design guidance provided herein, espe-
cially about the use of canonical data forms, Web services, and suitable modular ar-
chitectures, can help overcome many of these problems. It  is  possible to create a
proper  enterprise  knowledge  management  environment  at  acceptable  cost  using
available  open  source  components  and  solid  architectural  design.  The  Apache
Software Foundation is doing an especially good job of picking, incubating and sup-
porting a diversity of open source tools useful to semantic technologies. These tools
include  Ant,  Hadoop,  HTTP  server,  Jackrabbit,  Jena,  Mahout,  Marmotta,  Maven,
OpenNLP, Singa, Stanbol, SystemML, Tika, Tomcat, UIMA, ZooKeeper, and the Lucene
and Solr search engines and Nutch crawler. Additional tooling that would make this
task easier still includes:

 Vocabulary managers — we lack easy inspection and editing environments for
concepts  and predicates.  Though standard editors  allow direct  ontology lan-
guage edits (OWL or RDFS), these are not presently navigable or editable by non-
ontologists. Intuitive browsing structures with more ‘infobox’-like editing envi-
ronments could be helpful here; 

 Graph API — it would be wonderful to have a graph API (including analysis op-
tions) that could communicate with the OWL API. As a second option, it would
be helpful to have a graph API that communicates well with RDF and ontologies;

 Large-graph visualizer — while I have earlier reviewed large-scale graph visual-
ization software,11 with  Gephi and  Cytoscape being my two preferred alterna-
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tives, they are neither easy to set up nor use. I would like more easily to select
layout options with quick zooms and scaling options;

 Graphical editor — some browsers or editors provide nice graph-based displays
of ontologies and their properties and annotations. However, the better design
we advocate here is to edit the ontology graph directly in its deployment envi-
ronment; and

 Component  services  —  we  recommend piecing  out  ontology  and  knowledge
management functions into individual  components  that we can integrate di-
rectly into existing workflows with minimal training.

TBox, ABox, and Work Splits

To better understand what kinds of functions we require and how they may relate
to existing tools or applications, recall the discussion of description logics in Chapter 8.
Description logics and their semantics traditionally split concepts and their relation-
ships from the different treatment of  individuals and their attributes and roles, ex-
pressed as fact assertions. The concept split is known as the TBox (for terminological
knowledge, the basis for  T in  TBox) and represents the schema or taxonomy of the
domain at hand, what we also call the knowledge graph. The TBox is the structural and
extensional component of conceptual relationships. The second split of individuals is
known as the ABox (for assertions, the basis for A in ABox) and describes the attributes
of individuals, the roles between individuals, and other assertions about individuals
regarding their class membership with the TBox concepts. The ABox is the reposi-
tory for data records and can be a light layer over existing data stores. Both the TBox
and ABox are consistent with set-theoretic principles.

TBox and ABox logic operations differ, and their purposes vary. TBox operations
are based more on inferencing and tracing or verifying class memberships in the hi-
erarchy (that is,  the structural placement or relation of objects in the structure).
ABox operations are more rule-based and govern fact checking, instance checking,
consistency checking, and the like. ABox reasoning is often more complicated and at
a larger scale than that for the TBox. However, even with these TBox and ABox splits,
we can also see that some work done by a knowledge management system falls out-
side of the specific purview of instances and concepts:

TBox Possibly Separate Work Tasks ABox

 Definitions of the concepts 
and properties (relation-
ships) of the controlled vo-
cabulary 

 Declarations of concept ax-
ioms or roles 

 Inferencing of relationships, 
be they transitive, symmet-

 Mappings are the core of in-
teroperability in that con-
cepts, and attributes get 
matched across schema and
datasets 

 Transformations are the 
means to bring disparate 
data into common grounds,

 Membership assertions, ei-
ther as concepts or as 
roles 

 Attributes assertions 
 Linkages assertions that 

capture the above but 
also assert the external 
sources for these assign-
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TBox Possibly Separate Work Tasks ABox

ric, functional or inverse to 
another property 

 Equivalence testing as to 
whether two classes or 
properties are equivalent 
to one another 

 Subsumption, which is 
checking whether one con-
cept is more general than 
another 

 Satisfiability, which is the 
problem of checking 
whether a concept has been
defined (is not an empty 
concept) 

 Classification, which places a
new concept in the proper 
place in a taxonomic hier-
archy of concepts 

 Logical implication, which is 
whether a generic relation-
ship is a logical conse-
quence of the declarations 
in the TBox 

 Infer property assertions im-
plicit through the transi-
tive property 

the second leg of interoper-
ability 

 Entailments, which are 
whether the stated condi-
tion implies other proposi-
tions 

 Instance checking, which 
verifies whether a given in-
dividual is an instance of 
(belongs to) a specified 
concept 

 Knowledge base consistency, 
which is to verify whether 
all concepts admit at least 
one individual 

 Realization, which is to find 
the most specific concept 
for an individual object 

 Retrieval, which is to find 
the individuals that are in-
stances of a given concept 

 Identity relations, which is to
determine the equivalence 
or relatedness of instances 
in different datasets 

 Disambiguation, which is re-
solving references to the 
proper instance

 Machine learning based on 
entities and features in the 
knowledge base 

ments 
 Consistency checking of in-

stances 
 Satisfiability checks, which

are meeting the condi-
tions of instance mem-
bership 

Table 12-1: Possible Work Activities in a Knowledge Management Platform

Searching across the entire database or conducting machine learning, as examples,
are such functions that work against the whole knowledge structure, or which pose
work requirements orthogonal to the TBox-ABox splits.  Table 12-1 summarizes how
we may segregate these significant work areas against the TBox, the ABox, or possi-
bly separate to them.

The TBox should be a coherent structural description of the domain, which ex-
presses  itself  as  a  knowledge  graph  with  meaningful  and  consistent  connections
across its concepts. Somewhat irrespective of the number of instances (the ABox) in
the knowledge base, the TBox is relatively constant in size given the desired level of
descriptive scope for the domain. (In other words, the logical model of the domain is
mostly independent of the number of instances in the domain.) As its name suggests,
the TBox is where we define terminology for the vocabulary of the domain, the pred-
icates used, and the relationships of those concepts to one another via the predicates
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available. A key aspect of the TBox functionality is classification through subsump-
tion hierarchies, from which we set much of the logic and inferencing capabilities of
the structure. The TBox also requires checks during its building and maintenance to
ensure that we have provided complete definitions (satisfiability) and consistency and
logic tests to make sure our placements within the knowledge graph remain consis-
tent and coherent.

The ABox of instances consists of the specific individual things in the KB that are
relevant to the domain. Instances can be many or few, as in the millions within KBpe-
dia, accounting for 90% or more of the total number of objects in the knowledge base.
We characterize instances by various types of structured data, provided as attribute-
value pairs, and which we describe with long or short texts and with multiple aliases
and synonyms, and we relate to other instances via type or kind or other relations,
possibly in multiple languages. 

We can perhaps better illustrate this work split with Figure 12-1 showing the inter-
actions of all of these contributing parts:

242

Figure 12-1: Possible Work Splits in a KM Platform

mike
Stamp



PLATFORMS AND KNOWLEDGE MANAGEMENT

Whether a single database or the federation across many, we have data records (in-
stances in the ABox) and a logical schema (ontology of concepts and relationships in
the TBox) by which we try to relate this information. As  Table 12-1 and  Figure 12-1
show, the TBox is where the reasoning work occurs; the ABox is where assertions and
data integrity occurs. This meaningful work broadly relates to the growth and main-
tenance of the knowledge base itself. For instance, all aspects of ontology editing re-
late  to  these  components,  as  do  logic,  consistency,  coherency  and  satisfiability
checks. These portions are essential to the integrity of the knowledge structure via
its editing and maintenance but represent very little of the desired work we want to
extract from the knowledge structure. These work tasks are separate from the needs
of the TBox and ABox themselves.

The middle column of Table 12-1 and Figure 12-1 list some of those work tasks that
reside outside of the knowledge graph and knowledge base build and maintenance
tasks. Some of these tasks may apply across the entire knowledge structure, such as
search or retrieval. Other tasks are specialized ones that may involve subsets of the
structure or dedicated extractions of one form or another. 

What the Figure 12-1 readily shows is that platforms with only semantic technolo-
gies lack the major work functions desired. It is this gap to bring in and facilitate
dataset exchanges to external applications that most requires tailored scripting for
specific installations (along with the need to create the domain knowledge graph and
ingest data, of course). It is why standalone semantic technology platforms have not
been, generally, commercially successful. Not shown in the figure is the further gen-
eral weakness of semantic technology platforms; namely, they are hard to learn and
use. We need more visual frameworks with well-segregated tasks, such as what we
are beginning to see in such tools as the SKOS-based PoolParty.

Providers have increasingly embraced platforms that integrate conventional text
search engines, such as Solr, for generalized retrieval, plus use in instance and con-
sistency  checks.  However,  critical  areas  such  as  mappings,  transformations,  and
identity  evaluation remain weak.  Mappings refer  to  the suite  of  aids  that suggest
matching correspondences between objects in the domain knowledge base with ex-
ternal sources, with choices often manually vetted.  Transformation is the ability to
convert subsets of the knowledge graph to the dataset format required by various ex-
ternal applications. These include machine learning, AI, or specialized natural lan-
guage processing (NLP) like parsing into parts of speech or transforming external
sources into new records or updating the knowledge base.  Identity evaluation means
to contextualize a possible entity reference to its disambiguated actual subject. Main-
taining identity relations and disambiguation as separate components also has the
advantage of enabling us to swap out different methodologies or algorithms as better
methods become available. We could apply a low-fidelity service, for example, for
quick or free uses, while we reserve more rigorous methods for paid or batch mode
analysis. We may deploy any of these mapping, transformation, or identification ac-
tivities as a Web service, preferably using an internal canonical data transfer form,
discussed further toward the end of this chapter.

Breaking our description logics design into the TBox and ABox, and then enumer-
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ating  the  work  tasks  we  wish  to  do  against  these  structures,  helps  us  to  think
through the modularity and architecture we want to see in our actual deployments.
The practical aspects of our work tasks and where and how they should occur be-
come clearer. We know that we can architect a framework that is amenable to swap-
ping in and out different analysis methods, and that can be modular to use or not dif-
ferent work tasks and applications. Here are some general principles that should ap-
ply to most domain installations:

 We want to handle our concepts, and their definitions and relationships (TBox)
separate from our instance data, and subject to rigorous testing, vetting, and
updating since this is the controlling logical structure of our knowledge man-
agement system;

 The task of knowledge graph creation and maintenance should be the responsi-
bility of knowledge workers and their management, not the IT department;

 We want to handle our instance data (ABox) separately and directly, using com-
paratively constant and readily understandable attribute-value pairs;

 We can re-use these instance records in varied and multiple worldviews in rela-
tion to different TBoxes or external applications; we can support these different
perspectives without affecting instance data in the slightest;

 We should approach architectural decisions from the standpoint of the work to
be done, leaving open unique analysis or tasks like disambiguation or full-text
search as functions, which may be added or not at another time; 

 Ontologies  should be modular,  scoped according to appropriate  user  groups,
and kept as simple and easy to understand as possible; this is a significant ratio-
nale for the typology design discussed in Chapter 10. We should assert inter-ontol-
ogy relationships via a rather simple upper ontology, such as what is provided
by the KBpedia Knowledge Ontology;

 We may base mapping on suggestions from TBox (extensional) relationships or
ABox (intensional) relationships, and is a particularly weak yet important part
of tooling;

 We can treat logic and consistency testing as external applications, and conduct
them on scheduled or on-demand via services using canonical formats;

 We should evaluate instances separately from concepts, which also via triangu-
lation may aid such tasks as disambiguation or entity identification; 

 We should include access control and governance (missing from Figure 12-1) in
most enterprise settings or where we use proprietary or private data; 

 We can often keep instance records in situ, especially useful when incorporating
the massive amounts of data in existing relational databases;

 We may add to instance stores incrementally, via  in situ or staged, following
these same design principles; and, given the discussion in Chapter 9; and
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 We should premise the entire system on continuous change given the nature of
knowledge and its openness.

Content Workflows

Two of these critical work splits are thus to: 1) keep knowledge updated; and 2)
directly involve knowledge workers and subject matter experts. These requirements
go hand and hand since the source of new knowledge comes from these workers and
their accumulated content in the first place. More simply put, to capture knowledge,
the systems to do so must be in the hands of the knowledge workers themselves, and
must integrate cleanly into their existing content workflows. It is inefficient not to
leverage existing workflows. Users will likely ignore new knowledge graph mainte-
nance and use tasks unless they are dead simple to implement. We best achieve adop-
tion through an incremental series of non-threatening tasks.

The following Figure 12-1 sketches out broad steps and interactions that one might
want to see in a content workflow:

Respect for workflows is the first principle when setting boundaries around func-
tional requirements. We express this respect in two different ways. The first is that
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we cannot unduly disrupt existing workflows when introducing interoperability im-
provements. While workflows can be improved or streamlined, new tools and prac-
tices must fit with existing ways of doing tasks to see adoption. Users mostly resist
jarring changes to existing work practices.

The second way is that we should explicitly model and codify the workflows of
how we do tasks. This codification becomes the ‘language’ of our work and helps de-
fine the tooling points or points of interaction as we merge activities from multiple
disciplines in our domain. These workflow understandings also help us identify use-
ful points for APIs in our overall interoperability architecture. An excellent use of an
administrative ontology is to codify and model the workflow and approval steps as-
sociated with informal and formal content workflows in the organization. 

Some steps within  Figure 12-2 may not be active within an organization, such as
tagging or assigning metadata. Cases like this probably need to identify tasks in the
associated content creation and review where we can link metadata additions into
current workflows. These kinds of incremental additions to existing workflows con-
tinue to suggest the wisdom of breaking apart the individual steps in ontology cre-
ation and maintenance to  more atomic  parts,  such as  flagging a  new concept  or
adding to a semset label for an existing one. We may then slipstream these additional
steps into separate ontology suggestions that authorized editors review and vet be-
fore final acceptance. These steps, of course, and how we refer to them, may vary
across  circumstances  and  organizations.  Nonetheless,  we  may  apply  the  general
ideas of work steps, approval types, and users to any formal or informal workflow
that presently exists.

These considerations provide the rationale for assigning metadata that character-
izes our information objects and structure. We should base this metadata on con-
trolled vocabularies and relationships in domain and administrative  ontologies, as
determined by their users (knowledge workers). The vocabularies and the tagging of
information objects with them are a first principle for ensuring how we can find and
transition states of information. These vocabularies need not be elaborate, but they
should be constant and consistent across the entire content lifecycle. Backbone as-
pects of these vocabularies should capture the overall information workflow, as well
as concrete steps for individual tasks. As a complement to such administrative on-
tologies, domain ontologies provide the context and meaning (semantics) for our in-
formation.

This common grounding of data model and semantics means we can connect our
sources of information. The properties that define the relationships between things
determine the structure of our knowledge graph. Seeking commonalities for how our
information sources relate to one another helps provide a coherent graph for draw-
ing inferences. How we describe our entities with attributes provides a second type
of property. Attribute profiles are also a good signal for testing entity relatedness.
Properties — either relations or attributes — give another filter to draw insight from
available information.

If the above sounds like a dynamic and fluid environment, you would be right. Ul-
timately,  knowledge  is  a  challenge  in  a  technology  environment  that  is  rapidly
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changing. New facts, perspectives, devices, and circumstances are continually aris-
ing. For these very reasons a knowledge management framework must embrace the
open world assumption (see Chapter 9), wherein we can grow and extend the underlying
logic structure and its vocabulary and data at will. 

Though perhaps not quite at the level of a first principle, I also think KM im-
provements should be easy to use, easy to share, and easy to learn. I imply tooling in
this, but also it is important we be able to develop a language and framing for what
constitutes our knowledge domain. We should pursue the question of interoperabil-
ity to discover insights and gain efficiencies. The thing about interoperability is that
it extends over all aspects of the information lifecycle, from capturing and creating
information, to characterizing and vetting it, to analyzing it, or publishing or dis-
tributing it. Eventually, information and content already developed become input to
new plans or requirements. These aspects extend across multiple individuals and de-
partments and even organizations, with portions of the lifecycle governed (or not) by
their own set of tools and practices. 

Today, overall, we only embrace pieces of this cycle in most daily workflows. Edi-
torial review and approvals, or database administration and management, or citation
gathering or reference checking, or data cleaning, or ontology creation and manage-
ment, or ETL activities, or hundreds of other specific tasks, sit astride this general
backbone. Besides showing that interoperability is a systemic activity for any organi-
zation (or should be), we can also derive a couple of other insights from Figure 12-2.
First, we can see that some form of canonical representation and management is cen-
tral to interoperability. The form need not be a central storage system, but can be
distributed using Web identifiers (IRIs) and protocols (HTTP). Second, we character-
ize and tag our information objects using ontologies, both from structural and ad-
ministrative viewpoints, but also by domain and meaning. We can combine and ana-
lyze our information when we characterize it with a common semantics.

A third insight is that a global schema (from the standpoint of the enterprise) spe-
cific to workflows and our content is a key for linking and combining activities at any
point within the cycle. A common vocabulary for stages and interoperability tasks,
included as a best practice for our standard tagging efforts, provides the conventions
for how batons can get passed between activities at any stage in this cycle. The chal-
lenge of making this insight operational is one more of practice and governance than
of technology. It should be a purposeful activity in its own right, backed with appro-
priate management attention and incentives.

An enabling mindset for the knowledge workers involved is to pay explicit atten-
tion to content workflows and common vocabularies for those flows and the infor-
mation objects they govern. This focus becomes the scaffolding for an administrative
ontology and a basis for investigating tooling and automation in processing informa-
tion. We can already put in place chains of tooling and workflows to achieve a degree
of interoperability. We do not need to provide global answers or scope at the incep-
tion. We can start piecemeal, and expand as we benefit. The biggest gaps remain cod-
ification of workflows for the overall information lifecycle, and the application of
taggers to provide the workflow and structure metadata at each stage in the cycle.

247



A KNOWLEDGE REPRESENTATION PRACTIONARY

Again, these are not matters so much of technology or tooling, but willingness, and
policy and information governance.

PLATFORM CONSIDERATIONS

Semantic technologies have not yet reached the point of fulfilling their prophecy
nor of being sufficiently buzz-worthy to fuel their demand.1 Enterprise customers
are intrigued with the idea of semantic solutions but remain skeptical. Better search
is often the crucial leverage point in the sale. Enterprises do not seem interested in
linked data alone (if at all), though some like the idea of possibly contributing linked
data back to others. On the other hand, all enterprises competing in the current en-
vironment understand that knowledge, and their use and management of it, is per-
haps the pivotal factor in their relevance and survival.

I have had the good fortune to work with some cutting-edge, reference enterprise
deployments  of  semantic  technologies.  These  efforts  in  enterprise-scale  systems
have been eye-opening. We have opened one eye for how semantic technologies need
to integrate and adapt to existing enterprise practices and deployments. We have
opened the other eye to see how semantic technologies should be presented and sold
to internal enterprise stakeholders.

We have a working example in the Open Semantic Framework that shows the way
for how a few common representations and conventions can work to distribute both
schema and information (data) across a potentially distributed network. Further, by
not stopping at the water’s edge of data interoperability, we can also embrace fur-
ther, structural characterizations of our content. Adding this wrinkle enables us to
support a variety of venues for content consumption simultaneously and efficiently,
as well as to broaden our leverage of the knowledge asset through cheaper, more
streamlined machine learning and artificial intelligence. What I set out in the next
section  are  the  multiple  purposes  and  the  ontology-driven  aspects  of  a  general
knowledge representation and management platform to support enterprise aims.

Supporting Multiple Purposes

Our avowed purposes in data interoperability and KBAI, supported by general KM
(knowledge management) uses, sets the overall application scope for our platform.
At the same time, we understand that particular uses of the platform will vary by do-
main, desired application emphases, and the actual instance data. We further assume
that initial demands and scope may warp and grow as we experience platform re-
sults, and external demands dictate. All of these considerations demand a platform
design that is open, modular, and extensible, capable of supporting multiple pur-
poses (and, thus, cost justifications). We need to put forward reasonable projected
benefits that greatly exceed development costs, and then to continue to justify such
assertions to sustain a healthy, dynamic knowledge management system. Specific do-

1 See Chapters 15 and 16.
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main applications are surely the instrumental justification for an initial installation,
but an adaptive KM platform should also meet the two core requirements of search
and knowledge management.

Search

Enterprises, familiar with structured query language (SQL), have understood for
quite  some time  that  queries  and  search  are  more  than  text  searches  to  search
engines.  Semantic  technologies  have  their  structured  query  approach,  SPARQL.
State-of-the-art semantic search has found a way to combine these various underly-
ing retrieval engines with the descriptive power of the graph and semantic technolo-
gies to provide a universal search mechanism across all types of information stores.
The simplest way to understand semantic search is  to de-construct the basic RDF
triple down to its fundamentals. This first observation is that the RDF data model can
represent anything, that is, an object or idea. Moreover, we can represent that object
in virtually any way that any viewer would care to describe it, in any language. In se-
mantic search, we may derive facets from not only what types of things exist in the
search space, but also what kinds of attributes or relations connect them. Gratify-
ingly, this all comes for free. Unlike conventional faceting, no one needs to decide
what are the important ‘dimensions’ or any such. With semantic search, the very ba-
sis  of  describing the domain at  hand creates  an organization of  all  things in the
space. 

In  semantic  search,  every property represents  a  different  pathway,  and every
node is an entry point. SPARQL enables us to pose queries, including with variables,
which can navigate and slice-and-dice the information space into usable results sub-
sets at will. We do not need to state all of the relationships and types of things in our
information space; we can infer them from the assertions already made. We can use
these broad understandings of our content to do better targeting, tagging, highlight-
ing or relating concepts to one another. The fact that semantic search is a foundation
for semantic publishing is noteworthy. 

We first adopted Solr (and then Lucene) because traditional text search of RDF
triple stores was not sufficiently performant and made it difficult to retrieve logical
(user) labels in place of the IRIs used in semantic technologies. In our design, the
triple store is the data orchestrator. The RDF data model and its triple store are used
to  populate  the Solr  schema index.  The structural  specifications  (schema)  in  the
triple store guide the development of facets and dynamic fields within Solr. These
fields and facets in Solr give us the ability to gain Solr advantages such as aggregates,
autocompletion, filtering, spell checkers and the like. We also can capture the full
text if the item is a document, enabling us to combine standard text search with the
structural aspects orchestrated from the RDF. On the RDF side, we can also leverage
the schema of the underlying ontologies to do inferencing (via forward chaining). We
have been able  to  (more-or-less)  seamlessly  embrace geo-locational based search,
time-based search, the use of multiple search profiles, and switchable ranking and
scoring approaches based on context (using Solr’s powerful extended disMax edismax
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parser).12 This  combination  gives  us  an  optimal  search  platform  to  do  full-text
search, aggregates, and filtering.

Knowledge Management

Our earlier Figure 12-1 showed the two bracketing left- and right-work areas in se-
mantic technologies. These are the very same knowledge graph (TBox) and instance
data (ABox) areas that form the knowledge base that our KM system must manage.
Here are some of the tasks we need to manage: 1) insert and update concepts in the
upper ontology; 2) update and manage attributes and track specific entities as new
sources of data are entered into the system; 3) establish coherent linkages and rela-
tions between things; 4) ensure these updates and changes are done wholly and con-
sistently, while satisfying the logic already in place; 5) update how we name and re-
fer to things as we encounter them; 6) understand and tag our content workflows
such that we can determine provenance and authority and track our content; and 7)
do these tasks using knowledge workers, who already have current tasks and activi-
ties. 

These actions should be continuous, and established procedures with annotations
and logging should govern them. The entire premise of a knowledge management
system is to keep current and up-to-date. This need for currency means that use and
updates of the semantic technologies portion, which is the organizing basis for the
knowledge in the first place, must be part of daily routines and work tasking, subject
to management and incentives. Responsive, tailored tooling linked to current work-
flows is  the technical  requirement. Management procedures and training need to
complement the technology to ensure the human factors are also in place.

An Ontologies-based Design

We have seen that an upper ontology governs the overall knowledge graph, with
typologies and domain ontologies tailoring the scope and providing instance cover-
age. We have also seen, in the case of the content lifecycle, where we can capture
content workflows and approvals into metadata that tracks content across the sys-
tem and provides  provenance information using an administrative  ontology.  The
platform should also provide a standard set of access and retrieval services including
browse, full-text search, CRUD, direct record retrievals, and the like. We may embed
these within an access and permissions service, also governed by an administrative
ontology, that acts at the level of registered datasets (see next section). We should
also design our queries and requests to the platform to include a parameter for get-
ting results sets in particular formats such as XML or JSON or RDF (various flavors),
or others of domain importance. Administrative ontologies can also guide how HTML
pages and forms are dynamically populated, often contextually, based on standard
SPARQL queries. For specific purposes, we can also return these results sets as pre-
staged, properly formatted results streams (usually in the form of SPARQL queries)
for driving particular applications. We only need to add a basic converter to the plat-

250

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete


PLATFORMS AND KNOWLEDGE MANAGEMENT

form’s Web services stack to ‘drive’ a new application in a specific format.
As explained in the concluding section of this chapter, we recommend packaging

these platform capabilities as Web services that we can interact with and drive via
standard HTTP requests using standard application programming interfaces (APIs). Al-
ternatively,  we can issue these requests from simple to comprehensive Web apps
that create the API queries based on user interface choices such as selections from
dropdown lists or clicking on various listed options. The platform thus acts as a sin-
gle, uniform Web interface to all of the capabilities of the structured data system or-
ganized by the adaptive ontologies. Further, we may ingest virtually any data struc-
ture and convert it  via  an import  service  made part  of  the underlying canonical
structure. Lastly, the dataset nature of the framework, and its neutrality to underly-
ing data stores or content management systems, also makes the platform an excel-
lent framework for one or many nodes to share information and collaborate across
the Web.

‘Ontology-driven apps’ through this platform design thus provide two profound
benefits. First, once we write the templates, we can drive the entire system via sim-
ple Web form selections or interactions without the need for any programming or
technical expertise. Second, we can power entirely new applications through the ad-
dition of new, minor output converters. These potentials arise from the native power
of the design basis for ontology-driven apps. Conceptually, the design is simplicity it-
self.  Operationally,  the  system  is  extremely  flexible  and  robust.  Strategically,  it
means our development and specification efforts may now move from coding and
programmers to the subject matter users who define ontologies and depend on them.

Enterprise Considerations

Security is an additional enterprise requirement that warrants particular atten-
tion. Whether profit or non-profit, all enterprises are unique, with potential propri-
etary information both internally and externally (with the public or possible com-
petitors). Though individual consumers also have requirements for privacy and con-
fidentiality, these information flows are strictly between the individual and outside
entities. In an enterprise, access may occur and be among many internal individuals
and all of their external contacts. Access control is the protection of resources against
unauthorized access. It is a process by which use of resources is regulated according
to a security policy and is permitted by only authorized system entities according to
that policy.13 

We  may  provide  access  control,  like  many  other  enterprise  considerations,
through a third-party application, by an administrative ontology linked to other fea-
tures tagged in the knowledge store, or both. As one example, we have provided ac-
cess control in some installations of the Open Semantic Framework using a three-di-
mensional matrix of datasets, users/groups, and CRUD rights to tools/endpoints. A
dataset refers to a named grouping of records, best designed as similar in record
types and intended access rights (though technically a dataset is any named group-
ing of records). We need to first grant access for given user/group to a particular
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Web service, and specify whether that user has CRUD (create – read– update – delete)
rights in whole or part to interact with specified datasets within the knowledge base.
It is in the nexus of user type, a tool (API), and dataset that we may establish access
control for the semantic system.

In  an  enterprise  context,  a  given  individual  (user)  may  have  different  access
rights depending on circumstance. A worker in a department may be able to see and
do different things for departmental information than for enterprise information. A
manager may be able to view budget information that is not readable by support per-
sonnel. A visitor to a different Web site or portal may see different information than
visitors to other Web sites. Supervisors might be able to see and modify salary data
for individual employees that is not viewable by others. The user role or persona
thus becomes the access identifier to the system. As system managers,  we define
what information and what tools users might use for the datasets for which they
have access.

The combination of datasets * tools * roles can lead to many access permutations.
With, say, 20 tools with five different roles and just ten different datasets, we already
have about 1,000 permutations. As portals and dataset numbers grow, this combina-
torial explosion gets even worse. Of course, not all combinations of datasets, tools,
and roles make sense. In fact, only a relatively few number of patterns covers 95% or
more of all likely access options. Because access rights are highly patterned, these
theoretical combinations can, in fact, be boiled down to a small number of practical
templates — which we call  profiles — to which we may assign a newly registered
dataset or user. (Of course, the enterprise could also tweak any of the standard pro-
files to meet any of the combinatorial options for a specific, unusual individual, such
as for a tax auditor.)

Another enterprise consideration relates to training. Inter-team communications
must be grounded in shared vocabulary and concepts. Even then, it is still necessary
to continuously describe and explicate the benefits due to semantic approaches over
conventional ones. Because of its general foundational nature, semantic approaches
are often hidden or at the core of the information solution. It is not always self-evi-
dent what the advantages of semantic approaches are because their results can be
mimicked via conventional approaches (though at a higher cost with greater brittle-
ness). Semantic concepts are not (generally) intuitive to content editors, information
architects, project managers or fellow developers or project vendors. It is imperative
to engage in continuous training and knowledge transfer during a semantic deploy-
ment. Unlike just a few years back, we no longer see resistance to open source solu-
tions. In fact, for early semantic adopters, open source is a positive feature. However,
open source in a complicated enterprise environment comes with challenges. Sup-
port is often weak and integrating the pieces becomes one of the project responsibili-
ties and risks. Open APIs and Web service endpoints still can lead to integration chal-
lenges. Encoding mismatches or how error messages get generated or treated, as two
examples, point to some of the challenges in creating an integrated enterprise envi-
ronment from multiple open source pieces.

Enterprise funding is still another concern. Enterprise IT budgets have come un-
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der pressure. The justification for many projects resides in being able to offset an-
nual licensing and maintenance fees, which can impose delivery constraints based on
renewal dates. Existing enterprise IT budgets have also been made more incremental,
with milestone achievements often required for moving forward. These trends are
putting a premium on agile development and the need for enterprise-scale deploy-
ment and testing tools. Repeatable build processes and scripts are an essential com-
ponent now for complex stack deployments.

Many of the issues that emerge in enterprise deployments are ancillary to or in-
dependent of specific knowledge components. Logging, testing, security, access, ser-
vice buses and deployment builds are an umbrella over entire deployments. In these
regards, too, we must adhere to enterprise build practices and standards. The fre-
quency of repeating builds and testing means we need to create scripts for these
steps  and  improve  deployment  documentation  and  practices.  In  these  regards,
knowledge and semantic technologies are no different from other components in the
broader, enterprise-wide stack.

Another reality of semantic technologies in the enterprise is that few champions
and advocates exist within many organizations. We must find means to communicate
to semantic newbies and to enlist the aid of champions in carrying the message for-
ward within the organization. In multi-vendor deployments, we should seek single
points of contact able to communicate with their colleagues. In turn, the consumers
of knowledge applications – namely subject matter experts, employees, partners, and
stakeholders – now become the active contributors to the graphs themselves, focus-
ing on reconciling terminology and ensuring adequate entity and concept coverage.
Graph-driven applications mean that those closest to the knowledge problems will
also be those directly augmenting the graphs. These changes act to democratize the
knowledge function and lower overall IT costs and risks.

A WEB-ORIENTED ARCHITECTURE

Web-oriented architecture, or WOA, is a subset of the service-oriented architectural
(SOA) style, wherein we package discrete functions into modular and shareable ele-
ments (‘services’) that we make available in a distributed and loosely coupled man-
ner. WOA uses the representational state transfer (REST) style, geared to the HTTP
hypertext transfer model.  Roy Fielding defined the REST architectural style in his
2000 doctoral thesis.14 Fielding is also one of the principal authors of the Hypertext
Transfer Protocol (HTTP) specification. We couch WOA guidelines within the frame-
work of a generalized architectural style, and while not limited to the Web, are a foun-
dation for it.

Nick Gall, a Gartner analyst, was one of the first to coin the WOA moniker. Gall de-
scribes WOA as based on the architecture of the Web as aq “globally linked, decen-
tralized, and [with] uniform intermediary processing of application state via self-de-
scribing messages.” REST provides principles for how resources are defined and used
and addressed with simple interfaces without additional messaging layers such as
SOAP or RPC. REST and WOA stand in contrast to earlier Web service styles known by
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the WS-* acronym (such as  WSDL). WOA has proven highly scalable and robust for
decentralized users since all messages and interactions are self-contained (convey
‘state’). It is not surprising that the largest existing knowledge networks on the globe
— such as Google, Wikipedia, Amazon, and Facebook — are Web-based. These pio-
neers have demonstrated the wisdom of WOA for cost-effective scalability and uni-
versal access.

We recommend a WOA architecture for knowledge management and representa-
tion purposes. Like the Internet itself, WOA has the advantage of being scalable and
distributed, all (mostly) based on open standards. RESTful application programming
interfaces (APIs) extend interoperability to outside systems and provide flexibility
for swapping in new features or functionality as new components or developments
arise.  Under this design, all  components and engines (‘services’)  become in effect
‘black boxes,’ with information exchange via standard vocabularies and formats us-
ing APIs as the interface for interoperability.

Web-orientation and Standards

Two main reasons, plus a host of others, justify basing our KM architecture on the
Web. The first main reason is a crowning achievement of the semant  i  c Web  , which is
the simple use of uniform resource identifiers (URIs, now internationalized to IRIs) to
identify data. Further, if the resource identifier can resolve to a representation of
that data, it now becomes an integral part of the  HTTP access protocol of the Web
while providing a unique identifier for the data. The HTTP protocol is the second
main reason, through which we gain access to a global, distributed network. These
innovations provide the basis for distributed data at global scale, all accessible via
Web devices such as browsers and smartphones that are now a ubiquitous part of our
daily lives. The combination of RDF with Web identifiers also means that we may ex-
pose any information from a given knowledge repository and make it available to
others as linked data. This approach makes the Web a universal database.

We often think of HTTP as a communications protocol, but it is much more.15 It
represents the operating system of the Web as well as the embodiment of a design
philosophy and architecture. Within its specification lies the secret of the Web’s suc-
cess. REST and WOA quite possibly require nothing more to understand than the
HTTP specification. HTTP provides the distinctions of GET and POST and persistent
IRIs and the need to maintain stateless sessions with an  idempotent design. HTTP
also provides for content and serialization negotiation, and error and status mes-
sages for HTTP requests. HTTP also includes: language, character set, encoding, seri-
alization and mime type enforced by header information and conformance with con-
tent negotiation; common and consistent terminology to aid understanding of the
universal interface; a resulting component and design philosophy that is inherently
scalable and interoperable; and a seamless consistency between data and services.
CRUD is readily applicable to HTTP.

Besides these reasons, WOA is consistent with the many open Web standards we
use in KBpedia and our platform designs. See further Chapter 9.
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A Modular Web Services Design

I  have emphasized two themes throughout this  chapter.  The first  theme is  to
scope and bound functionality related to design needs. The second theme is to inte-
grate these functions within current content workflows. We express these themes
using  individual  RESTful  Web  services  in  our  design,  as  exposed  and  accessed
through their application programming interfaces (APIs). We have already seen how the
WOA approach enables us to use the HTTP protocol for accessing RESTful Web ser-
vices. The specific scoping and design of the functional modules provide the comple-
mentary part of the overall design. Since the resulting APIs are independent of any
particular operating environment, we can reduce implementation costs for multi-
platform user agents and promote the development of multi-platform services. 

We determine the modularity of the services through analysis of the work tasks
(see Figure 12-1). Where appropriate, we embed these modules into other current ap-
plications or workflows (Figure 12-2). Enterprise considerations such as security, ac-
cess control, or workflow management enter in at this point to help complete the
roster of desired services. These definitions help provide the boundary responsibili-
ties of each Web service and what types of API instructions they may need. Platform-
wide requirements, such as access control, must inform some of these needs. 

We tend to follow a few guidelines in designing our Web services. We emphasize
1) use of a canonical, internal data representation format; 2) unit testing for all ser-
vices; 2) attentiveness to error numbering and conformity of error messages, some of
which we discover during testing; 3) similar granularity and order for specifying pa-
rameters across the APIs; 4) provision of online demo examples; 5) standard import
and export formats; and 6) dual access to the API via SPARQL and programmatically.
We tend to use a ‘triples’ or N3 RDF format for our internal canonical representation,
which has a standard specification. (We also allow multiple import or export formats
beyond the internal canonical form.)  The provision for dual access to the APIs gives
us the standard query basis of SPARQL, plus faster programmatic calls when using in-
ternal network transfers. 

The size of payloads in both query results and as results set objects can be a chal-
lenge for RESTful Web services. Long HTTP queries with many parameter requests
and large results sets can be a problem to handle, especially in the security layer. In
some cases, we may need to look at ways to minimize and package (consolidate) pa-
rameter options to make endpoint requests more efficient. Encoding mismatches are
a further challenge. It is best, for example, to adhere to a standard UTF-8 encoding
via all semantic component interfaces. Consistent encoding requires attention and
coordination on both sides of the interface and in tool use,  especially the use of
spreadsheets or CSV files.

The more fundamental challenge, however, is one of mindset. Effective interfaces
require effective communications of the participating vendors across the boundary.
The terminology, concepts, logic and open-world approach to knowledge manage-
ment and semantic technologies are not easily communicated nor immediately un-
derstood by traditional vendors. We must continuously work on communications to
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overcome past practices  and embrace the flexibilities  provided by semantic tech-
nologies.

REST Web services16 and linked data are naturally compatible approaches. Linked
data is a set of best practices for publishing and deploying data on the Web using the
RDF data model. The data objects are named using Web uniform resource identifiers
(IRIs), emphasize data interconnections, and adhere to REST principles. We also see
the ideas of RESTful Web services morph into ones with more limited and targeted
functionality. These  microservices have a broad swath of definitions. Some of the
narrower ones, including in their ideas of choreographing and aggregating multiple
small services, bear a close resemblance to the particular flavor of Web services that
we recommend.

An Interoperability Architecture

Figure 12-3 presents our generic architecture for this WOA design. The three tiers
of the system are content acquisition, the repository, and content consumption:
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We have tended to abstract our WOA services into simple and compound ones
(which are combinations of the simple). All Web services have uniform interfaces and
conventions and share the error codes and standard functions of HTTP. We further
extend the WOA definition and scope to include linked data, which is also RESTful.
Thus,  our WOA also sits atop an RDF (Resource Description Framework)  database
(‘triple store’) and full-text search engine. 

The content acquisition tier is where all information comes into the system. For
new sources, this involves mapping the concepts and other conformities to the exist-
ing knowledge graph. Already mapped sources and concepts require fewer integrity
checks when we add instances or updates. Because we are using semantic technolo-
gies, we are agnostic as to the content source and can handle most any content. The
content ingestion step is where we employ the limited number of canonical forms
and use RDF as our data transfer model (see Chapter 9).

The repository tier is where the knowledge graph, knowledge base, triple store,
OWL API, and full-text search engine reside. Most all knowledge management (KM)
functions reside in this tier. All ontologies and their management reside at this tier.
The full-text search engine and triple stores are mostly agnostic third-party systems.
While some differences in open source search engines and triple stores exist, we may
plug most into the design. We have used Jena and Virtuoso as triple stores in the
past, as well as the Lucene and Solr search engines. Many other options exist.

Many of the specialized work functions shown in the middle sections of Table 12-1
and Figure 12-1 reside in the bottom (as shown in Figure 12-3) content consumption
tier. Within this tier, we may move some content to an archive data store, or we may
transform subsets for machine learning purposes or to re-purpose existing content.
Some of the transformations at this tier are merely transfer conventions with an ex-
ternal application. In addition to such tailored forms and their dedicated Web ser-
vices, we also make available the general output in a variety of standard formats.
Note that the content re-use and mapping layers, as well as the repository, use the
internal canonical data representation.
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BUILDING OUT THE SYSTEM

o, you have looked at the evidence and the prospects, and are now ready to
contemplate moving ahead seriously with a knowledge management installa-

tion. You have some hoped-for target goals in various kinds of analysis or data inter-
operability or knowledge-based artificial intelligence. Where does one begin? What is
the plan? How can one proceed with initial implementation and testing to keep risks
manageable and to demonstrate tangible benefits?

S

These are the topics of this chapter.1 We begin by looking at what is involved in
tailoring a new installation for specific domain purposes. We identify the checklist of
items that you should consider for domain use. We discuss how to conduct an inven-
tory of information assets that we might apply to the instance, and where external
sources and information can contribute. We pay particular attention to how to con-
struct a phased implementation plan based on our own experience with successful
client projects and lessons learned.

We next discuss the critical work tasks of any new domain installation: the cre-
ation of the domain knowledge graph and its population with relevant instance data.
We look at the state-of-the-art in mapping methods and tools, and how we may apply
those tools to these central tasks. We discuss methodologies and some of the publicly
available databases — including those in KBpedia — that may be employed to help fa-
cilitate the new effort. We look at longer-term extensions to the base installation
that we may contemplate as the effort proceeds from a proof-of-concept to a full-
blown knowledge management installation for the enterprise. These factors contrib-
ute to how we can make practical choices to proceed given limited time and budget.

 Besides the context of limited budgets, these efforts have high but uncertain ex-
pectations and a lack of trained creators and users of the system. We know that our
efforts must meet the open-world nature of knowledge so that we can turn that fact
to our advantage. It is just as defensible, and likely easier to implement and test, an
incremental approach to our knowledge domain and data needs. With a pre-defined
starting basis such as KBpedia, we can expand new portions with our domain scope
and vocabulary in a piecemeal manner, tackling only the current new scope of the
specific domain focus at hand, what we call ‘pay as you benefit.’ 
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TAILORING FOR DOMAIN USES

Our prior discussions of ‘domain’ make clear that the size and scope of what it
means are flexible, from the minute and focused on to the broad and general, for any
branch of inquiry. Further, in a purposeful, incremental plan, the domain coverage
should also grow and expand. That is one of the beauties of the open-world nature of
knowledge.

Scoping the current domain of interest is thus a central task for any existing plan.
Most  of  the  implementation effort  is  to  conceptualize  (in  a  knowledge  graph)  the
structure of the new domain and to populate it with instances (data). We also find
that as our domain scope grows, so does the justification and need for more general
knowledge management functions and applications. These general KM tasks, as well
as increased maintenance and testing that should accompany any more widely used
apps, should be added to the roster of task considerations as incremental plans move
forward.

A Ten-point Checklist for Domain Use

Each incremental expansion of the system, including the initial proof-of-concept,
should consider,  and incorporate as  appropriate,  specific  points  from a ten-point
checklist:

1. Define potential scope, starting place; a starting place wants and needs cham-
pions; the scope is of much lesser importance;

2. Conduct inventory, interview stakeholders, evaluate assets;

3. Develop a phased plan; budget, schedule, and staffing; ID analysis and testing;
define platform and ontologies scope and phasing;

4. Assemble assets (tools, data, structure, vocabularies);

5. Build and test domain ontology;

6. Build out platform;

7. Map and populate data;

8. Conduct and test target analysis;

9. Refine and use KM system; and

10. Document and proselytize results.

 
You should consult this basic checklist each increment of the plan. Some from this
checklist may be active during any particular increment, others not. However, these
are the general task areas from which to construct the current increment of the plan.
You may also need to formalize certain areas over time, such as documentation now
exposing and describing workflows, or including deployment requirements.
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An Inventory of Assets

Without exception, you must inventory your potential information assets for the
installation. This inventory need not be exhaustive to start, just relevant and appli-
cable to the particular domain space that is your starting or expansion scope. Think
about what is an information asset in this space, and how one finds and uses such in-
formation. Since knowledge workers know their information assets, an essential and
integral requirement is to interview uses when assembling this inventory. It is with
these same interviews that we identify and assemble the domain vocabulary. Discus-
sions should also help identify early champions and possible project team members.

Recall that our system is capable of handling text and documents (unstructured
data), mark-up documents and attribute-value pairs (semi-structured data), and struc-
tured data (database, spreadsheets, tables). Evaluate this possible content for consid-
eration as part of the TBox knowledge graph or as new instance data (ABox). Differ-
ent tests and checks apply to concepts and instances. Concept data comes from glos-
saries,  tables  of  content,  thesauri,  sometimes  bullet  lists,  or  from  more  formal
schema, such as hierarchies in spreadsheets or relational schema or ontologies. Text
definitions, or links to encyclopedias, or links to specific Web pages, may be desirable
content  to  add to  the characterizations.  You may uncover instance in  infoboxes,
spreadsheets, data tables, or text records with fixed fields. You should inspect the
record form to identify the types to which the instances belong and their attributes.
Favor complete structure, but gaps are OK given the open nature of knowledge. Text
in the form of labels or semset entries that can accompany instance entries is desir-
able. 

I do not advise beginning a KM project premised on paper conversion to digital.
All first-iteration sources should be electronic, with the possible exception of sub-
sumption hierarchies that you might obtain from paper listings or tables of content.
If essential data only resides on paper, this kind of task should only be tackled in
later increments after the basic system has justified itself. In the earliest phases of a
project, avoid unusual formats or data that requires much wrangling or cleaning to
stage for ingesting. Again, if essential, such sources can be tackled in later phases.

I do not advise beginning a KM project where security and access are a concern. I
do recommend that proprietary and restricted access content be included in the ini-
tial inventory and interviewing steps. Early designs can anticipate possible security
expansions, even though you may defer specifics and implementation. Since each im-
plementation increment of the plan involves a new boundary for the domain, it is
also appropriate that an updated inventory be conducted, perhaps putting on to the
table sources that you chose to skip over in earlier phases.

These all constitute possible domain extensions. However, KBpedia and its 55,000
reference concepts and millions of organized instance data, is also available for free.
Many of these also have links to text entries on Wikipedia or Wikidata, supplying
that valuable content form. You may already find much, if not perhaps nearly all, of a
starting skeleton for a given domain in the KBpedia structure.
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Phased Implementation Tasks and Plan

Too many KM and business intelligence (BI) projects in the past have failed. The
relational schema and its closed logic and brittleness have been one contributor to
this record. Another reason for failure has been too-ambitious scope or expectations.
By embracing open approaches to knowledge, we can also open up a development
path that is phased and incremental. We can let the experience and results of prior
phases justify new phases and expansions. 

This philosophy fits well with a proof-of-concept approach, followed by staged
and managed extensions. Repeating methods and continuing to refine tools as part of
this phasing means we are climbing learning curves as more knowledge workers be-
come exposed and facile in the use of the system. Expanding use and input helps pro-
vide continued knowledge and feedback into the plan and how we execute each in-
cremental phase.

In a proof-of-concept phase, the least-effort path would be to leverage KBpedia or
portions of it as is, make few changes to the knowledge graph, and populate and test
local instance data. A next step may be to expand the knowledge graph with still
more instances. As increments occur, consider more KM infrastructure for the sys-
tem to accompany the expansion of domain scope.

Over time the plan should reflect its content and management pipeline. It is im-
portant to design the ability to swap in and out various options at multiple points
from input to desired output. Then, because disparate sources and different formats
must be accommodated, it is also important to use canonical syntaxes and standards
for expressing the products and specifications at the various steps along that pipe-
line. The very notion of pipeline implies workflows, which are the actual drivers for
how we design the pipeline. Evolve key workflow steps to include:

 Clean the input sources;
 Express the sources in a canonical form;2

 Identify and extract concepts; 
 Map the structure to KB concepts; 
 Identify and extract entities; 
 Identify and extract relations; 
 Type the entities, concepts, and relations; 
 Extract attributes and values for identified entities; 
 Add new import and export formats according to the needs of data interoper-

ability and use of third-party analyses, machine learners, and tools;
 Test these against the existing KB; 
 Update reference structures, including placement of the new assertions, as ap-

propriate; 
 Characterize and log to files;
 Commit to the KB, perhaps through formalized deployment steps; and 
 Rinse and repeat. 
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Much information gets processed in these pipelines, and the underlying sources up-
date frequently. Thus, the pipelines themselves should be designed for performance
and based on solid code with appropriate workflow tagging and management. 

Automation, within the demanding bounds of quality, is also an essential scalable
condition. Functional programming languages align well with the data and schema in
knowledge management functions. Ontologies, as structures, also fit well with func-
tional languages. The ability to create DSLs (domain-specific languages) should con-
tinue to  improve bringing the knowledge management  function directly  into the
hands of its users, the knowledge workers. An essential design criterion is to have a
methodology and workflow that explicitly accounts for interoperable and straight-
forward tools, following the scoping guidelines discussed in the previous chapter.
You may need to include and justify specific tasking for any of these aspects in a
given plan increment.

Over the timeframe of multiple increments for a phased project, consider clusters
of work tasks to drawn upon for next increments: 

Domain Knowledge Graph

You may start with KBpedia, though eventually, it is desirable to move toward a
tailored domain knowledge graph. You may proceed to create the domain knowledge
graph from prunings and additions to the base KBpedia structure, or from a more
customized format such as the approach recommended in Ontology Development 101.3

Some of your tasks in this area are to: determine the domain and scope of the ontol-
ogy; incorporate domain terminology; consider reusing existing ontologies; enumer-
ate important terms in the ontology; define the types and the class hierarchy, espe-
cially into typologies; and define the attributes of the types. After providing a pre-
ferred label, I encourage you to seek relevant alternative labels (for building the sem-
sets). 

The build methodology should re-use ‘standard’ ontologies as much as possible, to
help promote interoperability. The 20 or so core and extended ontologies mapped to
KBpedia are one starting point. To this base, you should add other commonly-used
ontologies or those specific to your domain. You should make identification of these
candidates an explicit part of the information inventory efforts. At a minimum, the
ongoing working knowledge graph should conform to ontology building best prac-
tices (see Chapter 14) and complete enough such that it can be loaded and managed in
an ontology editor or IDE. You can use this working structure with the OWL API for
specialty tools and user maintenance functions. 

Instance Data Population

Identifying, staging, transforming, incorporating, and vetting new instance data
should be a continuous set of tasks for the installation. It is less risk to start with sim-
ple data formats populated with clean data. I suggest you cluster new, desired inter-
faces or translators with expansions into entirely new sources of instance data, such
as from external sources or relational databases. Considerations like this can spread
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needed development and tests over a complete project. A proper inventory of infor-
mation assets will  include file types and possible conversion tools for those types
that may exist in the marketplace, preferably as open source. For example, a single
conversion to the system’s canonical format for a tool such as  Tika can open up a
thousand new data formats to the system. As a general guideline, it is much less ef -
fort and cost to investigate existing, available options, and then to adapt them to our
data federation design, than it is to write converters from scratch.

For relational systems with large data stores, it may be justified to use third-party
commercial tools for initial staging and conversion. We have had excellent experi-
ence with tools such as Safe Software’s FME; many options exist for high-throughput
situations or where updates are frequent.

Analysis and Content Processing

Each increment should target some form of analysis or content processing as its
design objective. From the platform perspective, that means being able to select ap-
propriate subsets from the knowledge base, process or transform them in some way,
and then submit those results set to an external tool to conduct the designated work.
Per the design philosophy, transformations or submittals of results sets should occur
via an adequately scoped Web service. You should identify each new tool required for
a given design objective, with integration part of the new tasking. Internal communi-
cations should also conform to the canonical data form. Some tasks may also require
injecting analyzed results back into raw Web pages for display or visualization. Other
tasks may need to expand Web pages to enable control and setting of tool parame-
ters. You can also convert or export the information in various forms for direct use
or incorporation into third-party systems. 

You may drive visualization systems and specialized widgets using the results sets
obtained from such queries or analysis, in which case you should include such in the
task list. Our methodology also provides for administrative ontologies whose purpose
is to relate structural  understandings of the underlying data and data types with
suitable end-use and visualization tools. You may therefore also need to consider
tasks related to creating or modifying the administrative ontologies.

Use and Maintenance

The emerging knowledge system has practical uses including: search, querying,
filtering, discovery, information federation, data interoperability, analysis, and rea-
soning. During use, you may discover many enhancements and improvements. Exam-
ples include improved definitions of concepts; expansions of synonyms, aliases and
jargon (semsets) for concepts and instances; better, more intuitive preferred labels;
better means to disambiguate between competing meanings; missing connections or
excessive connections; and splitting or consolidating of the underlying structure. We
want to see an evolution of tooling and incorporation into existing workflows such
that we make these enhancements as encountered and without major work disrup-
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tion. Today, practitioners most often do not pursue such maintenance enhancements
because existing tools do not support such actions. Users and practitioners do not re-
spond well to IDEs and tools geared to ontology engineering. A start small strategy,
of course, lowers risk and is more affordable. However, for effectiveness, you must
design an explicit strategy anticipating extension and expansion. Ontology growth
thus occurs both from learning and discovery and from expanding the scope. Ver-
sioning, version control,  and documentation (see below) therefore assume central
importance as the system grows. Any of these items may form a nexus for work tasks
in a given increment of the plan.

Testing and Mapping

As we generate new ontologies, we should test them for coherence against rea-
soning, inference, and other natural language processing tools. We also use gap test-
ing to discover holes or missing links within the resulting ontology graph structure.
Gap testing helps identify internal graph nodes needed to establish the integrity or
connectivity of the concept graph. We may use coherence testing to find missing or
incorrect axioms. Though used for different purposes, we may also use mapping and
alignment tools to identify logical and other inconsistencies in definitions or labels
within the graph structure. Mapping and alignment help establish the links that help
promote  ontology  and  information  interoperability.  We  ask  external  knowledge
bases to play crucial roles in testing and mapping. Depending on the phase, you may
need to include such tasks for a given plan increment. Mapping is not always a part
of a given increment. However, testing should be a part of all of your increments. In-
clude unit tests for all new tools and converters or further target analyses. 

Documentation

Ontologies give us as a way to capture the structure and relationships of a domain
— which is also always changing and growing. We can use further use ontologies to
document their development and versions. We need to apply better tools — such as
vocabulary management and versioning — and better work processes to capture and
record use of our ontologies. We can handle some of these aspects with utilities such
as OWLdoc or wikis for standard knowledge capture and documentation. We have in-
novated many connectors to capture ontology knowledge bases on an ongoing basis.
Still, these are rudimentary steps that we need to enforce with management commit-
ment and oversight. Ongoing use and training demand that we adequately document
the knowledge graphs, ontologies,  tools,  scripts, and instance record sources that
support a given knowledge installation. Given the lack of tools or best practices in
this area, you will need to commit to and monitor documentation.

MAPPING SCHEMA AND KNOWLEDGE BASES

Two critical work areas in tailoring your implementation are in building out the
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schema (knowledge graph) and populating your installation with instance data. Vari-
ous mapping methods and tools aid these two work areas. Given their importance,
let’s spend a bit of time discussing these work areas in more detail.

Mapping Methods and Tools

Mapping is the definition of a formal correspondence of objects in one knowledge
source with objects in another knowledge source, with the latter most often being
the reference knowledge graph. The correspondence takes the form of assigning a
specific predicate linking an object in an external source to its subject in a reference
source. Some mapping is straightforward; other mappings may be quite hard due to
the vagaries of language and context. Mapping involves specific methods and algo-
rithms to propose candidate matches, as well as tools or applications that embed
these methods in user interfaces and workflows, often with the intent of supporting
the broader mapping purpose. By making the reference knowledge graph the target,
we only need to test the updated graph for coherency and consistency. The reference
knowledge graph grows and changes shape and scope over time as new domain in-
formation is incorporated. Properly mapped external sources can become an integral
part of the domain knowledge graph and participate in inferencing and other rea-
soning tasks.

Though some tout complete automation of mapping as desirable, there is no such
thing, and even small assignment error rates can translate into noticeable errors in
the knowledge base.4 For this reason, we support what we call a ‘semi-automatic’ ap-
proach to mapping. The method involves using multiple methods to score potential
matches, perhaps differentially weighted, and ultimately reviewed and vetted by hu-
man editors before acceptance into the system. The individual review steps are what
make the approach ‘semi-automated,’ though to make that process efficient, it is also
useful to automate away clear mismatches and other problems before the human re-
view of candidates. By automating the process to reduce easily recognized non-can-
didates and score only candidates via the differing methods, we can reduce the num-
ber of uncertain candidates editors need to review. We can also apply this method
for screening candidates for supervised machine learning. Efficiencies and learning
curves should be fed back into the screening tools so that reviewers believe their in-
put is valued and gets reflected in constantly improving tools, two unarguable objec-
tives when mounting a knowledge management initiative.

The mapping methods are varied and tend to reflect the same broad clusters of
semantic heterogeneities as provided by Table 5-1. We may use various ways to clas-
sify these mapping types, but the central options tend to focus on schema, labels/lex-
ical,  labels/definitions/semantics,  instances,  relations,  machine learning,  or medi-
ated, by using external KBs or thesauri or WordNet. The most straightforward ap-
proaches look only at labels and propose various kinds of string matches. Better ones
look at attributes, external relations, subsumption hierarchies, and the semantics of
labels and concepts. Some of the tools provide multiple methods, and the user may
combine or not multiples of them with user-assigned weights. 
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The heyday of tools developed in the areas of  ontology alignment, or  mapping, or
matching, was in the 2000 to 2005 timeframe. Still, the sophistication and usability of
these tools have continued to improve, even if the pace of new offerings has slowed.
A major driver for these advances has been the annual  OAEI (Ontology Alignment
Evaluation Initiative) conference, which has provided a competitive contest and es-
tablished evaluation test sets and criteria on a yearly basis since 2004. My recent sur-
vey  specific  to  ontology  mapping  identified  30  different  existing  mapping  tools,
many embracing multiple methods, and most open source.5 

Building Out the Schema

If you ask most knowledgeable enterprise IT executives what they understand on-
tologies to mean and how to use them, you would likely hear that ontologies are ex-
pensive, complicated and challenging to build. Reactions such as these (and not try-
ing to set up strawmen) result from the relative lack of guidance on how one builds
and maintains these beasties. The use of ontology design patterns is one helpful ap-
proach.6 Such patterns help indicate best design practice for particular use cases and
relationship  patterns.  However,  while  such  patterns  should  be  part  of  a  general
methodology, they do not themselves constitute a methodology. 

The focus here is on domain ontologies, which are descriptions of particular subject
or domain areas. The last known census of ontologies in 2007 indicated there were
more  than  10,000  then  in  existence,  though  today’s  count  is  likely  in  excess  of
40,000.7 Because of the scope and coverage of these general and domain representa-
tions, and the value of combining them for specific purposes, ontology alignment has
been a topic of practical need and academic research. According to Corcho et al.8 “a
domain ontology can be extracted from special purpose encyclopedias, dictionaries,
nomenclatures, taxonomies, handbooks, special scientific languages (say, chemical
formulas), specialized KBs, and from experts.” Another way of stating this is to say
that a domain ontology — adequately constructed — should also be a faithful repre-
sentation of the language and relationships for those who interact with that domain. 

Overview of Approaches

There is a spectrum of approaches for how to conduct these mappings. At the
simplest and least accurate end of the spectrum is string matching methods, some-
times supplemented by regular expression processing and heuristic rules. An inter-
mediate set of methods uses concepts already defined in a knowledge base as a way
to ‘learn’ representations of those concepts; while many techniques exist, two com-
mon ones are explicit semantic analysis and word embedding. Most of these interme-
diate methods require some form of supervised machine learning or other ML tech-
niques. At the more state-of-the-art end of the spectrum are  graph embeddings or
deep learning, which also capture context and conceptual relationships as codified in
the graph.

Aside from the string match approaches, all of the intermediate and state-of-the-
art methods use machine learning. Depending on the method, these machine learn-
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ers require developing either training sets or corpora as a reference basis for tuning
the learners. These references should be manually scoped, as in the case of training
corpora for unsupervised learning, or manually scored into true and false positives
and negatives (labeled results) for training sets for supervised learning. All of these
techniques are useful, but you should, in any case, supplement them with logic tests
and scripts to test coherence and consistency issues that may arise. You should test
the coherency of the target knowledge graph after any new mappings.

Practitioners of ontology development have been documenting approaches since
at least Jones et al. in 1998.9 That early study outlined common steps and noted typi-
cal stages to produce first an informal description of the ontology and then its formal
embodiment in an ontology language. The existence of these two descriptions is an
important characteristic of many ontologies, with the informal description often car-
rying through to the formal description.  Corcho et al. did the next major survey in
2003.8 This built on the earlier Jones survey and added more recent methods. The
survey also characterized the methods by tools and tool readiness. More recently the
work of Simperl and her colleagues has focused on empirical results of ontology cost-
ing and related topics. This series has been the richest source of methodology insight
in recent years.10 11 12 Though not a survey of methods, one of the more attainable de-
scriptions of ontology building is Noy and McGuinness’ well-known Ontology Develop-
ment 101.3 

Another way to learn more about ontology construction is to inspect some exist-
ing ontologies. Though one may use a variety of specialty search engines and Google
to find ontologies,13 some current repositories also deserve inspection. Examples in-
clude the University of Manchester, VIVO, TONES, the Protégé ontology library, the
Linked Open Vocabularies (LOV), the NanJing Vocabulary Repository, the Online On-
tology Set Picker (OOSP), and the  OBO (biomedical) Foundry. An older, but similar,
repository is OntoSelect. Another way to learn about ontology construction is from a
bottom-up perspective. In this regard, the Ontology Design Patterns (ODP) wiki is a
source of building patterns and exemplary ontologies. ODP is not likely the first place
to turn to and does not give ‘big picture’ guidance, but it  also should be a book-
marked reference once you begin real ontology development.

For the last twenty years, there have been many methods put forward for how to
develop ontologies. Though new methodology developments have diminished some-
what in recent years, our reviews suggest this is the current state of ontology devel-
opment methodologies:

 Very  few  uniquely  different  methods  exist,  and those  that  do  are  relatively
older in nature; 

 The methods tend to either cluster into incremental,  iterative ones or those
more oriented to comprehensive approaches; 

 There is a general logical sharing of steps across most methodologies from as-
sessment to deployment and testing and refinement;

 Actual specifics  and flowcharts  are quite limited;  except the  UML-based sys-
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tems, most appear not to meet enterprise standards; 

 Discussion of supporting toolsets is often lacking, and most of the examples, if
even provided, are based solely on a single or governing tool. Tool integration
and interoperability is almost non-existent in narratives; and 

 Development methodologies are not as active an area of recent research. 

While there is by no means unanimity in the community, we can see some con-
sensus from these prior reviews.14 We have taken these consensus items and added to
them some points from our experience, resulting in these eight general guidelines
for what you should consider in a domain ontology:

 Be lightweight and modular; 
 Use reference structures; 
 Re-use existing structure; 
 Build incrementally; 
 Use simple predicates;
 Test for logic and consistency; 
 Map to external ontologies; and 
 Map reciprocally. 

I expand further on these points in the next sections.

Some Design Guidelines

Effective ontology development is as much as anything a matter of mindset. This
mindset is grounded in leveraging what already exists, ‘paying as one benefits’ (see
below) through an incremental approach, and starting simple and adding complexity
as we gain understanding and experience. Inherently this approach requires domain
users to drive ongoing development with appropriate tools to support that emphasis.
Ontologists and ontology engineering are important backstops, but not in the lead
design or development roles. The net result of this mindset is to develop pragmatic
ontologies that are understood — and used by — actual domain practitioners. Let’s
look more closely at the individual design guidelines just listed to see what goes into
this mindset.

1. BE LIGHTWEIGHT AND MODULAR

Begin with a lightweight, domain ontology,15 which is hierarchical or classificatory in
nature. Ontologies built for the pragmatic purpose of interoperating different con-
texts and data should start lightweight with only a few predicates, such as subClas-
sOf, isAbout, narrowerThan or broaderThan. If done properly, these lighter weight
ontologies with more limited objectives can be surprisingly robust in discovering
connections and relationships. Moreover, they are a logical and doable intermediate
step on the path to more demanding semantic analysis. Because we have this per-
spective, we also tend to rely heavily on the SKOS vocabulary for many of our ontol-
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ogy constructs16 and use typologies in our overall design
Provide  balanced coverage of the subject domain. The breadth and depth of the

coverage in the ontology should be roughly equivalent across its scope. Build modular
ontologies that split your domain and problem space into logical clusters. Try to split
domain concepts from instance records structurally. Concepts represent the nodes within
the structure of the ontology (also known as classes, types, or the  TBox). Instances
represent the data that populates that structure (also known as entities, individuals,
or the ABox). Use disjoint classes to separate classes from one another where the logic
makes sense, and let dissimilarities guide the bounding of types in the first place. An
architecture of multiple ontologies often works together to isolate different work
tasks to aid better ontology management. Also, try to use a core set of  primitives to
build up more complex parts. This approach is a kind of reuse within the same ontol-
ogy, as opposed to reusing external ontologies and patterns. The corollary to this is
that the same concepts should not be created independently multiple times in differ-
ent places. Adhering to these practices is akin to object-oriented programming.

Try to think of your knowledge graph as also providing context, by explicitly con-
sidering what the best way is to describe what your content ‘is about.’ A good gauge
for whether the context is adequate is whether one has sufficient concept definitions
to disambiguate common concepts in the domain. As we add relationships and the
complexities of the world get further captured, ontologies migrate from the light-
weight to a more ‘heavyweight’ end of the spectrum. 

2. USE REFERENCE STRUCTURES

One benefit is that reference structures of any kind provide a focus, by definition,
of common or canonical referents. This commonality leads to better defined, better
understood and more widely used referents. Common referents become a kind of
common vocabulary for the space, upon which other vocabularies and datasets can
depend. A common language, of sorts, can begin to emerge. Reference structures also
provide a grounding, a spoke-and-hub design, that leads to an efficient basis for ex-
ternal vocabularies and datasets to refer to one another. Of course, any direct map-
ping can provide a means to relate this information, but such pairwise mappings are
not scalable nor efficient. In a spoke-and-hub design, the number of mappings re-
quired goes down significantly with the number of datasets or items requiring map-
ping. The spoke-and-hub design,17 for example, is at the heart of such disciplines as
master data management. Another benefit of common reference structures is that
they provide a common target for the development of tools and best practices. These
kinds of ‘network effects’ lead to still further tooling and practices.

3. RE-USE EXISTING STRUCTURE

Reuse structure and vocabularies as much as possible. Fundamental to the whole
concept of coherence is the fact that domain experts and practitioners have been
looking  at  the  questions  of  relationships,  structure,  language,  and  meaning  for
decades. Massive time and effort have already been expended to codify some of these
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understandings in various ways and at multiple levels of completeness and scope. A
short list of these potential sources demonstrates the treasure trove of structure and
vocabularies available to any enterprise for re-use: Web portals; databases; relational
database schema; industry specifications and standards; spreadsheets; informal lists;
legacy schema;  metadata;  taxonomies;  controlled vocabularies;  ontologies;  master
data (MDM) directories and catalogs; exchange formats, etc. Metadata and available
structure may have value no matter where or how it exists, and a fundamental aspect
of the build methodology is to bring such candidate structure into a standard tools
environment for inspection and testing. It is wasteful to ignore prior investments
that have been used to characterize or organize information assets.

We closely relate this guidance to our earlier advocacy that you should accom-
pany each incremental phase of development with an update to the information in-
ventory. The most productive methodologies for modern ontology building are those
that  re-use  and  reconcile  prior  investments  in  structural  knowledge,  not  ignore
them. These existing assets take the form of already proven external ontologies and
internal and industry structures and vocabularies. Besides assembling and reviewing
current  sources,  those  selected  for  re-use  must  be  migrated  and  converted  to  a
proper ontological form (OWL in our case). Others have demonstrated some of these
techniques for prior patterns and schema.18 15 In other instances, you may employ
various converters or scripts to conduct the migration. Many tools and options exist
at this stage, even though as a formal step, practitioners often neglect this conver-
sion.

4. BUILD INCREMENTALLY

 Build ontologies incrementally. Much value can be realized by starting small, be-
ing simple, and emphasizing the pragmatic. It is OK to make those connections that
are doable and defensible today while delaying until later the full scope of semantic
complexities associated with complete data alignment. An open world approach pro-
vides the logical basis for incremental growth and adoption of ontologies. You need
to repeat the process of modifying a working ontology, testing it, maintaining it, and
then revising and extending it over multiple increments. In this manner, the deploy-
ment proceeds and gets refined as learning occurs. Importantly, too, this approach
also  means  that  complexity,  sophistication,  and scope  only  grow consistent  with
demonstrable benefits. Thus, in the face of typical budget or deadline constraints,
you may initially scope domains smaller or provide less coverage in depth or use a
smaller set of predicates, all the while still achieving productive use of the ontology. 

5. USE SIMPLE PREDICATES

Define  unambiguous  predicates (also  known  as  properties,  relationships,  at-
tributes,  edges  or  slots),  including  a  precise  definition.  Then,  when relating  two
things to one another, use care in actually assigning these properties. Initially, as-
signments should start with a logical taxonomic or categorization structure and ex-
pand from there into more nuanced predicates. Though not involved in any reason-
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ing, aggressively use annotation properties to promote the usefulness and human read-
ability of the ontology, as well as to provide text support for the better characteriza-
tion of entities and concepts.

Assign  domains  and ranges to your properties. Domains apply to the subject (the
left-hand side of a triple), ranges to the object (the right-hand side of the triple). You
should not view domains and ranges as real constraints, but as axioms used by rea-
soners. In general, the domain for a property is the range for its inverse and the
range for a property is the domain of its inverse. (You can envision this by under-
standing that domain applies to the subject, while range applies to the object. If you
invert these roles, domain and range switch.) Use of domains and ranges will assist
testing and help ensure the coherency of your ontology. Assign property restrictions,
but do so sparingly and judiciously. Use of property restrictions will  also support
testing and provides possibly new features to machine learners. 

6. TEST FOR LOGIC AND CONSISTENCY

 We must always test our knowledge graphs for logic, consistency, completeness,
and coherence. Test each increment; no official or public release should be made that
does not pass all tests. As we learn, we should continue to add to the comprehensive-
ness of our tests. We test logic as we build with inference engines and reasoners. We
look for completeness and consistency regarding standard ontology errors, such as
what the tool OOPS! helps identify,19 and follow our best practices for completeness
and the use of semsets.

The essence of  coherence is that it is a state of logical, consistent connections, a
logical framework for intelligently integrating diverse elements. So while context
supplies a reference structure, coherence means that the structure makes sense. Is
the  hip  bone connected  to  the  thigh  bone,  or  is  the  skeleton askew? Coherence
means that we draw the right connections (edges or predicates) between the right
object nodes (or content) in the graph. Relating content coherently itself demands a
coherent framework. At the upper reference layer, this begins with KBpedia, which
begins as a coherent structure. If KBpedia continues as the basis for the modified do-
main ontology, and if incremental changes are tested for logic and consistency as
they occur, then you should be able to continue to evolve the domain knowledge
graph coherently. Absent starting reference structures, it is tough to create a cohe-
sive starting knowledge graph, since any new assertion may not have been encoun-
tered in a related form before.

7. MAP TO EXTERNAL ONTOLOGIES

Mapping to external ontologies increases the likelihood of sharing and interoperabil-
ity, but importantly from an ontology building perspective, also helps to identify
gaps or errors in the reference knowledge graph. Mapping helps expose the impor-
tance of ‘punning,’ since depending on use or context, we may want to treat a given
concept  as  either  a  class  or instance.  Given our domain and our interoperability
goals, we likely want to rely on a set of core ontologies for external re-use purposes. For
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interoperability purposes, we also want to write our ontologies in machine-processable
languages such as OWL or RDF Schema.

Building Out the Instances (Knowledge Bases)

The conceptual and logical demands for adding instances are different in scope
and kind than that for the conceptual knowledge graph. When adding instances, en-
sure the quality of the input data with reliable provenance; you may be required to
justify your sources. An attributes ontology, embedded as one of the backbones in
KBpedia,  is  a useful  starting place to  map data attributes  and characteristics.  We
grow and mature the reference structure for this using similar considerations as to
what we followed for the overall knowledge graph, including logic and consistency
tests (though they will be of a different character, more akin to data validation).
When adding instances, it is essential you relate all entities to a type and pay atten-
tion to other aspects of the instance’s data record that may be useful to include as
disambiguation cues. 

In building out and then using instance data, we can see a cycle of ten or so broad
guidelines.  Note  that  I  refer  to  the  input  instance  source  as  a  knowledge  base,
though, of course, any instance data repository may be a source. A relational data
store, for example, would follow these guidelines, but also would need to go through
some form of relational to RDF converter. Other types of data stores may impose sim-
ilar wrinkles.

Here are the ten guidelines for building out instances:

1. UPDATE CHANGING KNOWLEDGE

We need to ensure that the input knowledge bases to the overall domain knowl-
edge structure are current and accurate. Don’t start with dated material! Depending
on the nature of the KM system, there may be multiple input KBs involved, each de-
manding updates. Besides capturing the changes in the base information itself, many
of the steps below may also be required to process this changing input knowledge
correctly.

2. PROCESS THE INPUT KBS

Process the input KBs  to be machine-readable. We also desire processing to ex-
pose features for machine learners and to do other clean up of the input sources,
such as removal of administrative categories and articles, cleaning up category struc-
tures, consolidating similar or duplicative inputs into canonical forms, and the like.
This step is highly contextual, and may require multiple steps or scripting.

3. INSTALL, RUN AND UPDATE THE SYSTEM

The KBs themselves reside on their host databases or triple stores. Each of the
processing steps may have functional code or scripts associated with it. All general
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management systems should be installed, kept current, and secured. The manage-
ment of system infrastructure sometimes requires a staff of its own, let alone install,
deploy, monitoring and update systems. It is here that we may need to add specific
source converters to the system.

4. TEST AND VET PLACEMENTS

New entities and types added to the knowledge base should be placed into the
overall knowledge graph and tested for logical placement and connections. Though
we should manually verify final placements, the sheer number of concepts in the sys-
tem places a premium on semi-automatic tests and placements. Placement metrics
are also valuable to help screen candidates. This task area requires similar tools and
user interfaces, plus incorporation into existing workflows, as is required for concept
placements into the governing knowledge graph.

5. TEST AND VET MAPPINGS

If we add new types or concepts to the governing knowledge graph, then these
should be tested and mapped with appropriate mapping predicates to external or
supporting KBs. Any new mappings to the base KB should be re-investigated and con-
firmed.

6. TEST AND VET ASSERTIONS

Testing does not end with placements and mappings. Attributes and values often
characterize concepts; sometimes we may give them internal assignments as Super-
Types; and, we must test all new assertions against what already exists in the KB.
Though the tests may individually be straightforward, thousands may require test-
ing, and cross-consistency is vital if one is adding large instance stores. Each of these
assertions is subject to unit tests.

7. ENSURE COMPLETENESS

Our standard practice calls to accompany each new concept in the KB with a defi-
nition, complete characterization and connections, and synonyms or semsets to aid
in natural language tasks. If updates are periodic or scheduled, as opposed to one-
time batch incorporation, then we recommend writing scripts for the appropriate
tests. Any activity that we can reasonably anticipate to occur three times or more de-
serves scripting attention.

8. TEST AND VET COHERENCE

As we build and extend the broader structure, we apply system tests to ensure the
overall graph remains coherent. We address and correct outliers, orphans, and frag-
ments when encountered. We do some of this testing via component typologies, and
some we do using various  network and graph analyses.  You should flag possible
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problems and document or present them for manual inspection. Like other manual
vetting requirements, confidence scoring and ranking of issues and candidates helps
speed up this screening process.

9. GENERATE TRAINING SETS

A key objective of populating our knowledge system with instance data is to en-
able the rapid creation of positive and negative training sets for machine learning.
We need to generate candidates; they should be scored and tested; and, we need to
vet their final acceptance. Once vetted, we may need to express the training sets in
different formats or structures (such as  finite state transducers,  one of  the tech-
niques we often use) for them to perform well in actual analysis or use. Since ma-
chine learners may require many iterations to refine input parameters, your script-
ing attention is certainly required here.

10. TEST AND VET LEARNERS

We can then apply machine learners to the various features and training sets pro-
duced by the system. Each learning application involves the testing of one or more
learners; the varying of input feature or training sets; and the testing of various pro-
cessing thresholds and parameters (including possibly white and blacklists). This set
of requirements is one of the most intensive on this listing, and requires you to docu-
ment test results, alternatives tested, and other observations useful to a cost-effec-
tive application.

RINSE AND REPEAT

Each of these ten steps is not a static event. Instead, given the constant change in-
herent in knowledge sources, including the ongoing addition of new instances, we
must repeat the entire workflow on a periodic basis. The inexorable pull is to auto-
mate more steps and generate more documentation to reduce the tension between
updating effort and current accuracy. A lack of automation leads to outdated systems
because of the effort and delays in updates. The imperative for automation, then, is a
function of the change frequency in the input KBs or the use of learners.

‘PAY AS YOU BENEFIT’

As best as I can tell, Alon Halevy was the first to use the phrase ‘pay as you go’ in
2006 to describe the incremental aspect of the open world approach applied to the
semantic Web.20 Others had earlier applied the ‘pay as you go’ phrase to data man-
agement and storage; it had also been used to describe phone calling plans. Unfortu-
nately, the ‘pay as you go’ phrase has (and still is) largely confined to incremental,
open world approaches involving the semantic Web. Nonetheless, I like the phrase,
and I think it evokes the right mindset. In fact, I think with linked data and many
other aspects of the current semantic Web we see such approaches come to fruition.
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Inch-by-inch, brick-by-brick, we see useful data on the Web getting exposed and in-
terlinked. ‘Pay as you go’ is incremental, and that is good.

Still, I think we can express this idea better. The idea of ‘pay as you benefit’ more
directly ties the question of project funding and project staging to project benefits. It
ties directly into the open nature of knowledge and dovetails  nicely with the re-
peated recommendations to implement your knowledge management initiatives in-
crementally. The idea of ‘pay as you benefit’ is purposeful, and may be planned and
implemented on standard enterprise cost-benefit principles.1 What the ‘pay as you
benefit’ idea means is you can start small and be incomplete. You can target any do-
main or department or scope that is most useful and illustrative for your organiza-
tion. You can deploy your first stand-ups as proofs-of-concept or sandboxes. More-
over, you can build on each prior step with each subsequent one. Of course, you must
communicate with stakeholders to get this message out and to overcome the glazed
eyes that might accompany the terminology of knowledge management and ontolo-
gies. ‘Pay as you benefit’ is a guiding pragmatic principle for how you can build out
your domain knowledge management system. So, how does one move ahead with a
‘pay as you benefit’ strategy?

Placing the First Stake

The first step is always the hardest on a new journey. We can minimize risk by
planning an incremental roll-out and scoping and bounding our first step carefully,
but it is still important the first step be successful to move the journey forward. I
have discussed elsewhere the wisdom of designing the first step for success, and to
limit unneeded or risky development. Leveraging existing KBpedia assets as supple-
mented by your domain instance data is one way to bound this risk.

The players in the first step of a KM initiative should be those with a need and
who are supportive. It is perhaps essential that the initial team include champions,
who are smart and willing to learn. We need to spread the seeds of knowledge man-
agement on fertile ground, which also has some visibility to other portions of the or-
ganization. We almost assuredly bake in failure when we attempt such initiatives too
broadly or without local  support.  Because of  the shortcomings  of  past  ‘solutions’
such as BI or data warehousing, we also see a decline and a reluctance for IT to em-
brace new and transforming approaches.  These considerations argue strongly for
embedding first stakes in a KM project within a department or group directly in-
volved in knowledge work or management. KM projects are almost always of some
threat to IT departments as they presently understand their role. As a general rule,
do not attempt to start KM projects there, and expect resistance and naysaying from
some in IT.

1 Including, of course, explicit attempts to model intangible benefits realistically.
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Incremental Build Outs Follow Benefits

We make much of ‘incremental’ or ‘agile’ deployments within enterprises, but the
nature of the traditional data system (and its closed world assumption) can act to un-
dermine  these  laudable  steps.  The  inherent  nature  of  an  open  world  approach,
matched with methodologies and best practices, can work wonderfully with KM-re-
lated projects. We have seen how we can incrementally stage our phases, moving
into more complicated and enterprise-visible areas over time. 

Learn to Quantify and Document Benefits

The grounding of a KM system in the information that knowledge workers have,
how they presently conduct their work, and what they need to improve it, provides
the same bases for documenting benefits from a new initiative. You should document
current practices to capture and model workflows, and you should record time and
effort associated with ongoing work tasks. These are the required metrics to show
whether KM initiatives are improving productivity or not and, if so, by how much.
(Of course, you need to measure and document benefits as well.) These kinds of con-
siderations should be central in the design of a KM initiative because, without you
collecting and monitoring such data, it will be impossible to project the documented
savings and improvements needed to justify ongoing commitments. James Hendler
once stated that “a little semantics goes a long way.”21 That truth — and it is true —
when combined with incremental deployment firmly tied to demonstrable results,
promises a different way to do business. 
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uilds,  in  a  knowledge  environment,  should  be  responsive  to  the  nature  of
knowledge, open and always changing. This knowledge environment includes

the knowledge graph, plus its knowledge bases, and its management and analysis
tools. To maintain the integrity of this structure going forward, we must test the
structure for consistency and coherence after every batch of updates or changes.
This constant requirement demands that the entire structure be re-compiled and
tested quickly and frequently. Constant revision is the only correct mindset, subject
to user input and scrutiny, for which we need tools and guidance to do so in an intel-
ligent way. As we wrap up our discussion on building a KM system, we need to give
equal weight to the practical activities that keep our knowledge structures relevant.

B

We will  start  the discussion by introducing two straightforward metrics,  from
which all of our statistical tests flow.1 From these we derive many useful and com-
mon statistics that are good to know, and easy to calculate. Our approach leverages
the knowledge aspects, including good populations of type instances, to continue to
improve the quality of the domain representation. Enhanced domain representations
improve the subsequent ability to test new candidate representations, all in a virtu-
ous circle.  To make these efforts  practical,  we need scripts for both building the
structure and testing its integrity. We want the control of these skills to continue to
migrate to knowledge workers. Knowledge is best captured by those discovering it.
These guidances then lead us to the question of best  practices,  especially for the
build steps covered in Chapter 13. As we wrap up this chapter, we also conclude our
discussion of building the knowledge representation system. This chapter completes
the stage of the why and wherefore of a KR system, enabling us in the next part to
tackle the question of applications and potential practical uses.

A PRIMER ON KNOWLEDGE STATISTICS

Semantics is a funny thing. All professionals come to know that communication
with their peers and external audiences requires accuracy in how to express things.
Even with such attentiveness, communications sometimes go awry. It turns out that
background, perspective, and context can all act to switch circuits at the point of in-
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teraction. Despite, and probably because of, our predilection as a species to classify
and describe things, all from different viewpoints, we can often communicate with
terms and language that convey to others  something different from what we in-
tended. Alas! This reality is why, I suspect, we have embraced as a species things like
dictionaries,  thesauri,  encyclopedias,  specifications,  standards,  sacred  tracts,  and
such, to help codify what our expressions mean in a given context. So, yes, while
sometimes we are sloppy in language and elocution, many misunderstandings be-
tween parties are also a result of the difference in perspective.

When we process  information to identify relations or extract  entities,  to  type
them or classify them, or to fill out their attributes, we need measures to gauge how
well our algorithms and tests work, all attentive to providing adequate context and
perspective. These very same measures can also tell us whether our attempts to im-
prove them are working or not. We also use these measures, in turn, to establish ef-
fective ‘gold standar  ds  ’ and create positive and negative training sets for machine
learning. Still, despite their importance, it is not always easy to explain these mea-
sures. The truth is, sometimes we don’t adequately understand these measures.

Two Essential Metrics, Four Possible Values

In our context, we can see a couple of differences from traditional scientific hy-
pothesis testing.2 The problems we are dealing with in information retrieval (IR), nat-
ural language understanding or processing (NLP), and machine learning (ML) are all
statistical classification problems, specifically in binary classification.1 For example,
is a given text token an entity or not? What type amongst a discrete set is it? Does
the token belong to a given classification or not? Binary classification makes it con-
siderably easier to posit an alternative hypothesis and the shape of its distribution.
What makes it binary is the decision as to whether a given result is correct or not.
We now have a different set of distributions and tests from more common normal
distributions. The most common scoring methods to gauge the ‘accuracy’ of natural
language or supervised machine learning analysis involves statistical tests based on
the ideas of two essential metrics: negatives or positives, true or false. We can mea-
sure both of these metrics by scoring correct ‘hits’ for predictions compared to a
‘gold standard’ of known results. This gold standard provides a representative sam-
ple of what our actual population looks like, one we have characterized in advance.
We can use this same gold standard repeatedly to gauge improvements in our test
procedures. I talk more about gold standards at the conclusion of this section.

 Statistical tests will always involve a trade-off between the level of false positives
(in which a non-match is declared a match) and the level of false negatives (in which
an actual match is not detected).3 Let’s see if we can simplify our recognition and un-
derstanding of these conditions:

1. TN / True Negative: case was negative and predicted negative 

1 I refer here to  statistical classification; clearly, language meanings are not binary but nuanced. 
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2. TP / True Positive: case was positive and predicted positive 

3. FN / False Negative: case was positive but predicted negative 

4. FP / False Positive: case was negative but predicted positive.

Combining these thoughts leads to a much simpler matrix, sometimes called a
confusion matrix, for laying out the true/false, positive/negative characterizations:

Correctness
Test Assertion

Positive Negative

True TP
True Positive

TN
True Negative

False FP
False Positive

FN
False Negative

Table 14-1: Two Essential Metrics, Four Possible Values

As we can see, ‘positive’ and ‘negative’ are simply the assertions (predictions) arising
from our test algorithm of whether or not there is a match or a ‘hit.’ ‘True’ and ‘false’
merely indicate whether these assertions proved correct or not as determined by
gold standards or training sets. A false positive is a false alarm, a ‘crying wolf’; a false
negative is a missed result. Thus, all true results are correct; all false results are in-
correct. More formally, we can now define these four values as:

 TP = test assertion is positive and correct; standard provides labels for instances
of the same types as in the target domain; manually scored; test identifies the
same entity as in the gold standard;

 FP = test assertion is positive but incorrect; manually scored for test runs based
on the current configuration; test indicates as positive, but deemed not true;
test identifies a different entity than what is in the gold standard (including no
entity);

 TN = test assertion is negative and correct; standard provides somewhat similar
or  ambiguous  instances  from  disjoint  types  labeled  as  negative;  manually
scored; test identifies no entity, gold standard has no entity; and 

 FN =  test  assertion is  negative and incorrect;  manually  scored for  test  runs
based on the current configuration; test indicates as negative, but deemed not
true; test identifies no entity, but gold standard has one. 

These measures are  sufficient  to  calculate  most  of  the relevant  statistics  for our
knowledge management and representation purposes.

Conversely, we can relate these two metrics to the branch of statistics known as
statistical hypothesis testing. This testing is likely the statistics that you were taught
in school. In hypothesis testing, we begin with a hypothesis about what might be go-
ing on concerning a problem or issue, but for which we do not know the cause or
truth. After reviewing some observations, we formulate a hypothesis that some fac-
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tor A is  affecting or influencing factor B. We then formulate a mirror-image  null
hypothesis that specifies that factor A does not affect factor B; this is what we test
using statistical hypothesis testing. The null hypothesis is what we assume the world
in our problem context looks like, absent from our test. If the test of our formulated
hypothesis does not affect that assumed distribution, then we reject our alternative
(meaning our initial hypothesis fails, and we keep the null explanation).

We make assumptions from our sample about the distribution of the population,
which enables us to choose a  statistical model that captures the shape of assumed
probable results for our measurement sample. These shapes or distributions may be
normal (bell-shaped or  Gaussian),  binomial,  power law, or  many others. These as-
sumptions  about  populations  and  distribution  shapes  then  tell  us  what  kind  of
statistical test(s) to perform. (Misunderstanding the actual shape of the distribution
of a population is one of the major sources of error in statistical analysis.) Different
tests may also give us more or less statistical power to test the null hypothesis, which
is that chance results will match the assumed distribution. Different tests may give
us more than one test statistic to measure variance from the null hypothesis.

We then apply our test and measure and collect our sample from the population,
with  random or other  statistical sampling necessary so as not to skew results, and
compare the distribution of these results to our assumed model and test statistic(s).
We reject the null hypothesis if we observe significant differences from the expected
shape in our sample at a high level of confidence. If we reject the null hypothesis, but
in fact it was correct, we call that a Type I error, or a false positive (FP), the same as
FP in a binary classification. If we accept the null hypothesis, we reject the alterna-
tive hypothesis that some factor A is affecting or influencing factor B. However, if we
accept a null hypothesis that is not correct, we term that a Type II error, or a false
negative (FN), the same as FN in a binary classification. Statisticians often apply com-
mon rules for how differences and level of confidence may lead to rejection of the
null hypothesis, thereby leading us to accept the alternative hypothesis that factor A
is affecting or influencing factor B.

The binary classification TP v FP v TN v FN approach is better than the statistical
hypothesis approach because it explicitly recognizes either the sampling method or
our test may be in error. Further, the TP v FP v TN v FN approach is also easier to ex-
plain and understand.

Many Useful Statistics

Armed with these four characterizations — true positive, false positive, true nega-
tive, false negative — we now can calculate nearly all essential statistical measures.
Most of these measures also have exact analogs in standard statistics. The first met-
ric  captures the concept of  coverage.  In standard statistics,  this measure is  called
sensitivity; in IR and NLP contexts it is called  recall.  It is the fraction of the docu-
ments that are relevant to the query that is successfully retrieved. Recall measures
the ‘hit’ rate for identifying true positives out of all potential positives, and we also
call it the true positive rate, or TPR:
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A high recall value, expressed as a fraction of 1.00 or a percentage, means the test
has a high ‘yield’ for identifying positive results. We measure it as  true positives di-
vided by all potential positives in the corpus.

Precision is the complementary measure to recall, in that it is a measure of how ef-
ficient the system is to make correct identifications from the positive ones. Precision
is the fraction of retrieved documents that are relevant to the query. We measure it
as true positives divided by all measured positives (true and false):

 

High precision indicates a high percentage of true positives compared to all positive
results. Precision is something, then, of a quality measure, which we express as a frac-
tion of 1.00 or a percentage. It provides a positive predictive value, as defined as the
proportion of the true positives against all the positive results (both true positives
and false positives). So, we can see that recall gives us a measure as to the breadth of
the hits captured, while precision is a statement of whether our hits are correct or
not. Note also that false positives are a proper focus of attention in test development
because they directly lower precision and the efficiency of the test.

One of  the preferred overall  measures of  IR and NLP statistics  is  the F-score,
which is the adjusted (beta) mean of precision and recall. It recognizes that precision
and recall are complementary and linked. The general formula for positive real  is:β is:

which we can express for TP, FN, and FP as:

In many cases, the  harmonic mean is used, which means a beta of 1, which is
called also called the F1 statistic or the F1 score:

However, F1 displays a tension. Either precision or recall may be improved to achieve
an improvement in F1, but with divergent benefits or effects. What is more highly

valued? Yield? Quality? These choices dictate what kinds of tests and areas of im-
provement need to receive focus. As a result, the weight of beta can be adjusted to fa-
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vor either precision or recall. Two other commonly used F measures are the F2 mea-

sure, which weights recall higher than precision, and the F0.5 measure, which puts

more emphasis on precision than recall.
A  ccuracy   is another metric that can factor into our evaluations, though we use it

less in the IR and NLP realm. Accuracy is a statistical measure of how well a binary
classification test correctly identifies a condition. We calculate it as the sum of true
positives and true negatives divided by the total population (TP + FP + TN + FN):

 
An accuracy of 100% means that the measured are the same as the given values.

All of the measures above only require the measurement of false and true, posi-
tive and negative, as do a variety of predictive values and likelihood ratios. We may
also calculate r  elevance  , prevalence  ,   and specificity, which use these same metrics in
combination with the total population. By bringing in some other rather simple met-
rics,  we  can  expand  this  statistical  base  to  cover  such  measures  as  information
entropy,  statistical  inference,  pointwise  mutual  information,  variation  of
information, uncertainty coefficients, information gain, AUCs, and ROCs. All of these
still bridge from the basic four values that we need to measure of TP, FP, FN, and TN.
We may accommodate these additional tests by keeping track of distributions, calcu-
lating confidence intervals, tracking joint or conditional distributions, or summing
the area under the distribution curve, in addition to our standard four measures.

We can summarize across all of these basic statistical tests on a single chart, cour-
tesy of a template on Wikipedia,4 for which I have taken some minor liberties. I show
this summary chart of IR and NLP statistical tests in Table 14-2 on the following page.

Working Toward ‘Gold Standards’

Academic researchers in natural language processing (NLP) and machine learning
(ML) commonly compare the results of their studies to benchmark, reference stan-
dards.  A  gold  standard is  a  reference,  benchmark test  set  where we have  already
scored results, with a minimum (if not zero) amount of false positives or false negatives.
We should also include true negative results in a proper gold standard approximate to
the likely ratio expected in the overall population to improve overall accuracy.5 Gold
standards that themselves contain false positives and false negatives, by definition,
immediately introduce errors, as we noted for Type I and Type II errors above. A
skewed baseline makes it difficult to test and refine existing IR and NLP algorithms.
Moreover, because gold standards also often inform training sets, errors there prop-
agate into errors in machine learning. The requirement to compare research results
to existing gold standards provides an empirical basis for how the new method com-
pares to existing ones,  and by how much.  Precision,  recall,  and the combined  F1
score are the most prominent amongst these statistical measures.
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We often refer to specific standards, such as the  NYT Annotated Corpus or the
Penn  Treebank,6 as gold standards because they have been in public use for some
time, with many errors edited from the systems. Vetted standards such as these may
have inter-annotator agreements in the range of 80% to 90%. More typical use cases
in biomedical notes7 and encyclopedic topics8 tend to show inter-annotator agree-
ments in the range of 75% to 80%. While a claimed accuracy of even, say, 95% sounds
impressive, applied to a large knowledge graph such as KBpedia, with its 55,000 con-
cepts, translates into 2,750 concept misassignments (actually, the problem is many
orders of magnitude greater than that when we include all assertions). That sounds
like a lot, and it is. Misassignments of some nature occur within any standard. When
they occur, they are sometimes glaringly obvious, like being out of plumb. It is pretty
easy to find most errors in most systems. Still, for the sake of argument, let’s accept
we have applied a method that has a claimed accuracy of 95%. Remember, this is a
measure applied only to the gold standard. If we take the high-end of the inter-anno-
tator agreements for domain standards noted above, namely 80%, then we have this
overall accuracy of the system:

Whoa! Now, using this expanded perspective, for a candidate knowledge graph the
size of KBpedia — that is, about 55,000 items — we could see as many as 13,200 con-
cept misassignments (again, orders of magnitude greater for all assertions). Those
numbers now sound huge, and they are. They are unacceptable.

A couple of crucial implications result from this analysis. First, we need to take a
holistic view of the error sources across the analysis path, including and most espe-
cially the reference standards. (They are, more often than not, the weak link in the
analysis path.) Second, we want to get the accuracy of reference standards as high as
possible. Thus, we can see many areas by which gold standards may need attention:

1. They may contain false positives;

2. They may contain false negatives; 

3. They have variable inter-annotator agreement; 

4. They have variable mechanisms, most with none, for editing and updating the
labels;

5. They may lack sufficient inclusion of true negatives; or 

6. They may derive from an out-of-context domain or circumstance. 

You should be aware of these potential sources of error to improve test foundations.
An integral part of any knowledge representation or management effort must be

to create gold standards for continuous quality improvements. The domain coverage
inevitably  requires  new  entity  or  relation  recognizers,  or  the  mapping  of  new
datasets. The nature of the content at hand may range from tweets to ads to Web
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pages or portions or academic papers, with specific tests and recognizers from copy-
rights to section headings informing new learners. Every engagement requires refer-
ence standards. One effort might favor instance records over concepts. Creating gold
standards efficiently with a high degree of accuracy is a competitive differentiator.

We may use each type and its instances in KBpedia as a training set for learners.
We can continue to improve the accuracy of instance assignments for each type by
testing shared attributes or neighbors or type inheritance, plus errors fixed after in-
spection. One key to growing a consistent knowledge graph over time is  to apply
these virtuous improvements. Once you create a gold standard, you then run your
current test regimes against it  when you run your same tests against  unknowns.
Preferably, of course, the gold standard only includes true positives and true nega-
tives (that is, the gold standard is the basis for judging ‘correctness’; see confusion
matrix  above).  If  it  does  not,  misassignments,  when  encountered,  must  be  fixed,
preferably as part of existing workflows (see Chapter 12). 

More  accurate  standards  and  training  sets  lead to  improved  IR  and ML algo-
rithms, feeding the virtuous circle in  knowledge-based    artificial intelligence   (KBAI)
(see Figure 4-2). Continuing to iterate better knowledge bases and validation datasets
is a driving factor in improving both the yield and quality from the KBs. KBAI, then,
is a practice based on a curated knowledge base eating its tail, working through cy-
cles  of  consistency and logic  testing to  reduce misassignments,  while  continually
seeking to expand structure and coverage. Adding and testing structure or mapping
to new structures and datasets continually gets easier, and also produces a network
effect. These efforts enable us to partition the knowledge structure efficiently for
training specific recognizers, classifiers, and learners, while also providing a logical
reference structure for adding new data and structure.

We then use this basic structure — importantly supplemented by the domain con-
cepts and entities relevant to the domain at hand — to create reference structures
for training the target recognizers, classifiers, and learners. The process of testing
and adding structure identifies previously hidden inconsistencies. As corrected, the
overall accuracy of the knowledge structure to act in a reference mode increases.
Through straightforward SPARQL queries, we can retrieve both positive and negative
training sets for machine learning. Clean, vetted gold standards and training sets are
thus a critical component to improve our knowledge bases going forward.9 We need
to give much attention to the practice of creating gold standards and training sets
because, without it, we are shooting in the dark when we attempt to improve our
learners or language analysis.

 BUILDS AND TESTING

The implications of working with knowledge bases are clear. KBs are constantly in
flux. Single-event, static processing is dated as soon as we run the procedures. The
only way to manage and use KB information comes from a commitment to constant
processing and updates. Further, with each processing event, we learn more about
the  nature  of  the  underlying  information that  causes  the  processing  scripts  and
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methods to need tweaking and refinement. Without us documenting what we have
done with prior processing, it is impossible to know how to tweak next steps to avoid
dead-ends or mistakes of the past. KBAI processing cannot be cost-effective and re-
sponsive without a memory. We find literate programming, discussed below, an en-
abler in this process. 

Any knowledge management installation may involve multiple input sources, all
moving at different speeds of change. We require numerous steps in processing and
updating the input information, the ‘systems,’ if you will, to achieve our artificial in -
telligence and data interoperability purposes. The artifacts associated with these ac-
tivities range from functional code and code scripts; to parameter, configuration and
build files; to the documentation of those files and scripts; to the logic of the systems;
to the process and steps followed to achieve desired results; and to the documenta-
tion of the tests and alternatives investigated at any stage in the process. The kicker
is that you will need updates to all of these components. Without a systematic ap-
proach, you will not easily remember the script code of what you previously did,
leading to costly re-discovery and re-work.

Build Scripts

We seek simplicity in our code scripts through modularity and aggressive use of
the OWL API. This API gives us the ability to manipulate the graph connections and
structure, using direct triple assertions (often in N3 or Turtle). We seek modularity
to segregate code for testing and debugging, and because of the use of simpler data
input files, again based on triples. We tightly couple the scripting approach with the
platform’s Web services design, how we set parameters, and how we ingest or export
datasets. 

We initially require build scripts for installing the apps on the platform and in-
stalling other build scripts. Since we recommend open source configurations for the
platform, the multiplicity of tools included with the platform can impose installation
challenges. Project build utilities such as Maven or Ant can be very helpful here. For
a new build, you may need to create local directory structures, backup prior ver-
sions, install input knowledge structures, update metadata and any hardwired script
references (which,  should,  over  time, evolve to  more sophisticated control struc-
tures), log setups, and reboots. Your actual build process may take dozens or hun-
dreds of runs as you test changes, errors get generated from various tests (see next
section), and then you resolve them. Throughout the entire process of data ingest
and error resolution, we strongly recommend you enforce UTF-8 encoding across all
knowledge representations. 

In our KBpedia experience, we employ a series of testing scripts during builds
(next section) to debug the knowledge structure in its current implementation. We
build the base knowledge graph (in the case of KBpedia, this is KKO) first. To that, we
add the various typologies used for classifying the structure instances. We perform
separate build checks against the typologies, particularly the identification of orphan
concepts (types) and fragments of types within the typologies. We make modifica-
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tions to the basic input files that guide these scripts, often using a triples format. I
overviewed the kinds of build steps requiring scripting in Chapter 13. These kinds of
iterations are what account for the many runs necessary to produce an integral, con-
nected knowledge structure. Though we could make these modifications via an on-
tology editor such as Protégé, which is still used during inspection to identify the
needed changes, by working with the input file structure, we have a more stream-
lined basis for full, complete build routines. Modifying the input files keeps the build
routines simpler and, therefore, repeatable. 

We advise securing sufficient memory for the build process. In the case of KBpe-
dia, we recommend a commodity server with a minimum of 8 GB of RAM. More is
preferred, though your domain needs may raise or lower memory needs. Once build
issues are worked out, and the graph appears complete and consistent, we advise
adding further scripts to generate statistics,  which we run at this time. You may
want to add standard ontology metrics such as concept and assertion counts at this
time. You may also invoke more detailed stats or fragments, including graph-wide
statistics, at this point. Some of the statistics runs require a census of the knowledge
structure involving multiple, repeated SPARQL queries, which can take quite a bit of
time to run.

Only deploy the updated knowledge structure when the build scripts run to com-
pletion and all tests pass. You may find small projects at the department level re-
quire little in the way of formal deployment; systems in enterprise-wide use may re-
quire staging through multiple servers with various approval steps before official de-
ployment. If you have complicated deployments, perhaps involving multiple servers
to host key platform components, you may need to give these aspects scripting at-
tention.  You  may  need  to  conform  mature  installations  with  broader  enterprise
workflow steps and procedures.

We have progressed KBpedia through this growth and renewal process uncounted
times. Our automated build scripts mean we can re-generate KBpedia on a commod-
ity machine from scratch in about 45 minutes. If we add all of the logic, consistency
and satisfiability checks, we can create a new build in about two hours. One of our re-
cent  expansions  to  KBpedia  involved  reciprocal  mapping  (see  Chapter  15)  to
Wikipedia, and added about 40% new nodes to KBpedia’s then-current structure. Re-
markably, using the prior KBpedia as the starting structure, we were able to achieve
this expansion with even better logical  coherence of the graph in a few hundred
hours of effort due to our build philosophy and scripts.

Testing Scripts

We invoke various test scripts as an integral part of the build procedure. We apply
scripts against platform tools, for coherency and consistency checks, for reference
standards used for placements or machine learning, or for general incremental im-
provements to the KBpedia structure. Each build invokes some structure tests. Stan-
dard tests include 1) ‘unsatisfied’ classes, which lack characterizations sufficient to
standards or degree of connectedness; 2) misassigned classes, where subsumption re-
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lationships are contradicted; 3) wrong relations in terms of degree or probability of
relationship;  4)  wrong SuperTypes;  5)  missing,  new,  or  misassigned attributes;  6)
general ontology checks such as orphans, fragments, or splits; 7) various graph and
connectedness measures; 8) OOPS! consistency and completeness checks; 9) Protégé
and add-on checks; and 10) others of your choosing. We try to provide common de-
tails and organization to error messages and labels, a consistent approach we also try
to extend to Web services and tools. Every error type should have an error code and
adequate explanatory text.

Incremental builds (with version numbers, even if not released) are the secret to
being able to maintain these knowledge structures. Accumulating too many changes
between builds can lead to multiple error sources and greater difficulty to debug. In-
cremental builds surface errors quickly and fewer at a time. Still, we may require
various build runs before we fix all errors. We only release builds that pass all tests,
when we assign a new version number.

We can train using ‘dirty’ training bases that have embedded error no better than
the quality of their inputs. If we want to train our knowledge applications with Dick
and Jane reader inputs, too often in error to begin with, we will not get beyond the
most basic of knowledge levels. We need clean reference standards. On average, we
can create  a  new reference standard  for  a  given  new type in  20-40 labor  hours.
Specifics may vary, but we typically seek, at a minimum, about 500 true positive in-
stances per standard, with 20 or so true negatives. This criterion is a minimum for a
reference standard. For machine learning purposes, more is better. We could con-
ceivably lower the requirement for a reference standard below 500 true positive in-
stances as we see the underlying standards improve. We are not seeking definitive
statistical test values but a framework for evaluating different parameters and meth-
ods. In most cases, we have seen our reference sets grow over time as new wrinkles
and perspectives emerge that require testing.

In all cases, our most critical success factor is  to engage users, the knowledge
workers and managers, in manual review and scoring of the reference standards. We
document and train this process so that we may repeat and refine it. User analysts
understand and detect  patterns  that  then  inform improved methods.  We believe
clean, vetted training sets and reference standards that move toward ‘gold’ ones are
essential to any KM/KR project.

Literate Programming

The only sane way to tackle knowledge bases at these structural levels is to seek
consistent design patterns that are easier to test, maintain and update. Open world
systems must embrace repeatable and mostly automated workflow processes, plus a
commitment  to  timely  updates,  to  deal  with  the  constant,  underlying  change  in
knowledge. Code and scripts do not reside in isolation. We need to explain the opera-
tion of the code to others so they may fix bugs or maintain it. If the software is a pro-
cessing system, we learn much from testing and refinement, which we should docu-
ment for subsequent iterations. We must install and deploy our systems. We need to
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update libraries and languages frequently for security and performance reasons; we
need to update executables and environments as well. When we update systems, we
need to run tests for expected performance and accuracy. The severity of some up-
dates may require revision to whole portions of the underlying systems. New em-
ployees need tech transfer and training, and managers need to know how to take re-
sponsibility for the systems. These are all needs that literate programming can help
support.

Literate programming is a style of writing code and documentation first proposed
by Donald Knuth. In any aspect of a project that uses code or scripts — tests, configu-
rations, installations, deployments, maintenance, or experiments — the developers
or users write narratives and documentation to accompany it. The documentation
should be robust by explaining what it is, the logic of it, and what it is doing and how
to exercise it. This documentation far exceeds the best-practices of inline code com-
menting. Literate programming narratives might provide background and thinking
about what is being tested or tried, design objectives, workflow steps, recipes, list-
ings of data or discussions of datasets, or whatever. The style and scope of documen-
tation are similar to a scientist’s or inventor’s lab notebook. Indeed, the breed of
emerging electronic notebooks, combined with REPL coding approaches, which allow
the embedding of live code demos within notebooks, now enable interactive execu-
tion of functions and visualization and manipulation of results, including supporting
macros. Thus, we can include working demos and code in-line with our narratives.

Notebook  systems  that  support  literate  programming,  such  as  Org-mode,  can
‘tangle’ their documents to extract the code portions for compilation and execution.
They can also ‘weave’ their documents to extract all of the documentation in the
code now formatted for human readability, including using HTML. Some electronic
systems can process multiple programming languages and translate functions. Some
electronic systems have built-in spreadsheets and graphing libraries, and most open-
source systems can be extended (though with varying degrees of difficulty and in dif -
ferent languages). Some of the systems interact with or publish Web pages.

Leading notebook software includes the  iPython Notebook (Jupyter), Org-mode,
Wolfram Alpha,  Zeppelin,  Gorilla, and others. Literate programming requires a fo-
cused commitment. The objective of programmers should not be solely to write code
but to write systems that can be used and re-used to meet desired purposes at an ac-
ceptable cost. Documentation is  integral  to that objective.  Experiments should be
documented, codified, and improved. A lines-of-code (LOC) mentality is counter-pro-
ductive to effective software for knowledge purposes. Literate programming is the
most conducive workflow to achieve these ends, with notebooks as the medium for
tracking and training work tasks.

One question is what language to use for the literate programming or scripts. Lisp
(defined as a list processing language) is one of the older computer languages around,
dating back to 1958, and has evolved to become a family of languages. ‘Lisp’ has many
variants, with Common Lisp one of the most prevalent, and many dialects that have
extended and evolved from it. Most recently our scripting choice has been Clojure, a
modern language based on Lisp, but able to run in the Java virtual machine (JVM),
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which  makes  integrating  with  existing  Java  tools  much  easier.  In  the  context  of
knowledge management and semantic uses,  fully 60% of existing applications can
now  interoperate  with  Clojure  apps,  an  instant  boon  for  leveraging  many  open
source capabilities.  Java gives  us  certain  advantages,  including platform indepen-
dence and the leverage of debugging and profiling tools, among others. Clojure is a
functional programming language, which means it has roots in the lambda   calculus  
and functions  are  ‘first-class  citizens  .  ’  Functions  can pass  as  arguments  to  other
functions, and return as values, or assign as variables in data structures. These as-
pects make the language well suited to mathematical manipulations and the building
up  of  more  complicated  functions  from  simpler  ones.  Because  of  Clojure’s  REPL
(read-event-print-loop) abilities, we can interpret code immediately as we execute
instructions at the time of input, leading to a very dynamic and responsive code-de-
velopment and -testing environment, also well suited to literate programming.

Alternatives like  Scheme,  Erlang,  Haskell, or Scala offer some of the same JVM
benefits. Further, tooling for Clojure is still limited, and it requires Java to run and
develop. Even with extensions and DSLs, learning Lisp’s mindset may be awkward for
some. The point here is not to point to a specific language alternative but to enumer-
ate the kinds of evaluation criteria that may go into such a software decision. Exter -
nal factors, too, such as popularity and skills knowledge, certainly can and should en-
ter into language decisions.

As a summary observation, a knowledge management project brings substantial
technical debt,  defined as the overhead and overlooked consequences of adopting a
given technological solution, and then needing to develop, stage, manage, and use it.
Technical debt is broader still for knowledge management projects because all as-
pects of the source knowledge are dynamic. Keeping current with changes is a posi -
tive thing, and no responsive KM solution would last long without it. Literate pro-
gramming captures all of these dynamics.

SOME BEST PRACTICES

We have discussed at length build components and practices over the past five or
six chapters. While we have not been prescriptive, since techniques and tools are
continually improving, we have tried to cover the major steps and background that
goes into building a knowledge representation and management platform. We have
also  discussed  the  approaches  for  building  the  knowledge  structures  and  graphs
upon which these systems run. As we wrap up these discussions, let me recount some
of the best practices we apply in these steps. We have learned most of these best
practices from client deployments in areas such as data treatment and dataset man-
agement, creating and using knowledge structures, and in testing, analysis and docu-
mentation. 

No  bright  line  separates  recommended  steps  and  best  practices,  so  we  have
touched  upon  many  key  arguments  already  in  our  presentation.  Modularity  in
knowledge graphs, or consistent attention to UTF-8 encoding in data structures, or
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the emphasis on ‘semi-automatic’  approaches, or the use of literate programming
and notebooks to record tests and procedures, are just a few of the examples where
lines blur between standard and best practices. The key point is that best practices
are also an integral part of doing standard tasks right.

Data and Dataset Practices

We have emphasized the importance of using only one or a few internal canonical
forms for representing our data, including the importance of testing and ensuring we
maintain  UTF-8  encoding  throughout.  UTF-8  is  important  to  maintain  multi-lan-
guage capabilities and the uniform treatment of different language character sets
and accents. We have noted the use of basic triple assertions (often in N3 or Turtle)
for use in our data transfer protocols. We have also noted the importance of using
language tags for all of our labels as one means to promote multi-lingual use and
internationalization (sometimes referred to as  i18n).  We want to  add on to these
points in this section by pointing out best practices in dataset packaging and the use
of linked data.

Dataset Best Practices

Datasets are one of the fundamental dimensions for organizing content within
our recommended design. Some consideration needs to go into how best to bound
these structures. The first consideration relates to the domain, or the scope of the
dataset: What is the applicable scope or business purpose of this information? It is
best to think of this question from a perspective of access, which is, after all, the
most pragmatic way to think of it. We also want to capture the source of the data,
and whether it may vary by publisher or source location. For example, provenance or
download location or format may be an important distinguishing factor in release or
access and may have copyright or royalty implications. That leads to the need to
record when we create the data, perhaps adding metadata for whether the data has
periodic update or creation times. It may be helpful to distinguish between prelimi-
nary data and final data or to segregate data because of workflow or processing con-
siderations. We also need to record all data by type; that is, does the data vary by
class or kind? For example, we may find it desirable to keep records about schools
separate from records about churches, though at a different level both may be con-
sidered buildings. We should be attentive to the data attributes for specific instances,
and to use common vocabulary and schema for organizing those characteristics. We
may also want to record the completeness of records in regards to attributes or de-
scriptions, since we may want to prefer using better-characterized data in parts of
our analysis or may want to flag areas needing future attention. Any of these differ-
ences may warrant creating a separate dataset or adding new metadata. Ultimately,
these structural considerations of how to organize for the data comes down to possi -
ble differences in access rights, both at the record and attribute level. Access differ-
ences may warrant altered dataset organization. No limits occur to the number of
datasets that may be managed by a given KM instance.
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Once you set such boundaries, then think about common attributes or metadata
that should be applied.  The KBART Recommended Practice is worth review since it
suggests  a  file  format  and common sense set  of  metadata  fields  and formats  for
transmission of metadata from content providers useful to linked knowledge bases. 10

Still, further, datasets and their records (as all decision or information artifacts in an
enterprise) go through natural work stages or progressions. Even the lowliest writ-
ten document goes through the steps of being drafted, reviewed, characterized, ap-
proved, and then possibly revised. Whatever such workflow steps may be, including
versioning, may argue to assign some records to a different dataset. Lastly, whatever
operational mode you devise, find naming conventions to reflect these variations in
your dataset files. These considerations show that datasets are meaningful informa-
tion artifacts in and of themselves.

Linked Data

Linked    d  ata   is a set of best practices for publishing and deploying instance and
class data using the RDF data model, naming the data objects using uniform resource
identifiers (URIs or IRIs), and exposing the data for access via the HTTP protocol,
while emphasizing data interconnections,  interrelationships and context useful to
both humans and machine agents. The challenge is not the mechanics of linking data,
but the meaning and basis for connecting that data. Connections require logic and
rationality  sufficient  to  inform  inference  and  rule-based  engines  reliably.  It  also
needs to pass the sniff test as we ‘follow our nose’ by clicking the links exposed by
the data.

Most linked data uses a woefully small vocabulary of data relationships, with even
a smaller set used for setting linkages  across existing linked data sets. Linked data
techniques are a part of the foundation of overall best practices, but not the whole
foundation. We do not, for example, have sufficient and authoritative linking predi-
cates to deal with common ‘sort of’ conditions. Just as SKOS is a generalized vocabu-
lary for modeling taxonomies and simple knowledge structures, we need a similar
vocabulary for predicates that reflect real-world usage for linking data objects and
datasets with one another.11 KBpedia provides this. Practice to date suggests that un-
curated, linked datasets in the wild are unlikely useful nor used in combination with
other datasets. On the other hand, users desire and readily consume quality linked
data. Where you want your KM installation to interact with outside parties, employ-
ing linked data is one way to help ensure interoperability.

Knowledge Structures and Management Practices

A central role of ontologies is to describe a ‘worldview,’ and in specific organiza-
tions, this means a shared understanding of the concepts, relations, and terminology
to describe the participants’ shared domain. In turn, these shared understandings es-
tablish the semantics for how to effect communication and understanding within the
population of domain users. All of this means that finding ways to identify and agree
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upon shared vocabularies and understandings is central to the task of modeling (cre-
ating an ontology) for the domain, and it involves practices in collaboration, naming
and use of these knowledge structures. Sometimes this perception of shared views is
too strictly interpreted as needing to have one and only one understanding of con-
cepts and language. Far from it. 

Organizational and Collaborative Best Practices

One of the strengths of ontologies and language modeling within them is we can
accommodate multiple terms for the same concept or slight differences in under-
standings about nearly similar concepts. It is perfectly OK to have differences in ter-
minology and concept understandings so long as those differences are also captured
and explicated within the ontology. Embedding collaboration as an implementation
best practice is important. We should understand that prior investments in agreed-
upon structures and vocabularies deserve respect and we should review them for in-
corporation. We should capture essential differences, not smudge or obscure them.
We want to organize our work teams, and support processes for consensus making,
including tools support, so that our teams identify and decide upon terminology, def-
initions, alternative labels (semsets), and relations between concepts. These processes
need not be at the formal ontology level, but at the level of the concept graph that
underlies the ontology.

Naming and Vocabulary Best Practices

 We recommend in our standard build practice to define all concepts and termi-
nology, use semsets to capture alternative ways to name things, and to sometimes
treat concepts as either classes or instances. While consensus building and collabora-
tion methods are at the heart of effective ontology building, we should not impose
language and concepts by fiat. Try to name all concepts as single nouns. Use CamelCase
notation for these classes (that is, class names should start with a capital letter and
not contain any spaces, such as MyNewConcept). Name all properties as verb senses (so
that we may easier read triples); e.g., hasProperty. Try to use mixedCase notation for
naming these predicates (that is, begin with lower case but still capitalize each word
after and do not use spaces). Try to use common and descriptive prefixes and suffixes
for related properties or classes (while they are just labels and their names have no
inherent semantic meaning, it is still a useful way for humans to cluster and under-
stand your vocabularies). For examples, properties about languages or tools might
contain suffixes such as ‘Language‘ or ‘Tool‘ for all related properties. Provide  in-
verse properties where it makes sense, and adjust the verb senses in the predicates to
accommodate. For example, <Father> <hasChild> <Janie> would be expressed in-
versely as <Janie> <isChildOf> <Father>.

Give all concepts and properties a definition. We conduct the matching and align-
ment of things by concepts (not merely labels), which means each concept must be
defined.12 Provide clear definitions (along with the coherency of its structure) to give
your ontology its semantics. Remember not to confuse the label for a concept with its
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meaning. (This approach also aids multi-linguality). Provide a preferred label annota-
tion property that is used for human readable purposes and in user interfaces. KBpe-
dia uses the property of skos:prefLabel. Include a class semset, robustly harvested
and populated, for all concepts and ambiguous entities. Try to assign logical and short
names to namespaces used for your vocabularies, such as  kbpedia:XXX or  skos:XXX,
with a maximum of five letters preferred. Enable multi-lingual capabilities in all defini-
tions and labels. This language requirement is a somewhat complicated best practice
in its own right. For the time being, it means attending to the xml:lang=”en” (for
English, in this case) property for all annotation properties.1 

Best Ontology Practices 

To my knowledge,  the most empirical  listing of ontology best  practices comes
from Simperl and Tempich.14 In that 2006 paper they examined 34 ontology building
efforts and commented on cost, effectiveness and methodology aspects. Various col-
lective ontology efforts also provide listings of principles or best practices. The OBO
(The  Open  Biological  and  Biomedical  Ontologies)  effort,  for  example,  offers  a  useful,
organized listing of criteria15 for an exemplary ontology. Their recommendations in-
clude their own best practices and to formulate and use a unified methodology. Sim-
perl and Tempich emphasize modularity in their findings, consistent with our stan-
dard recommendation. They also recommend metrics for ontology evaluation and
tools  to  extract  ontology  components  from existing data  sources,  also  consistent
with our recommended standards.

One best practice we recommend is to embrace a mindset that ontologies can, and
should, start small, and may grow incrementally. Another best practice is to keep re-
lationships (predicates) simple at first until you gain fluency. Use simple, well-de-
fined and documented attributes. Aggressively mine and re-use existing knowledge
and structure. Knowledge graphs, like knowledge, must be a continuous, dynamic
structure, designed for (comparatively easy) updates and automatic builds. Another
best practice is to enter items once, and relate them only to direct parents, not more
removed upper categories. The upper categories can be inferred, and single, proper
placements lead to a cleaner graph structure that is easier to interpret. Be cognizant
of the many internal platform needs in workflow management and user interfaces
and widgets where administrative ontologies may also contribute. If this mindset if
followed, your initial ontology development need not be comprehensive nor expen-
sive.  You may grow efforts  as  you realize  benefits.  You can adopt pragmatic  ap-
proaches to testing and then building out a knowledge management system. Starting
with a stable structure like KBpedia is likely your most efficient path.

Testing, Analysis and Documentation Practices

The usefulness of a KM platform depends on its accuracy, consistency, and con-

1 The Protégé manual13 is also a source of good tips, especially with regard to naming conventions and the 
use of the editor.
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currency for the domain. We need to ensure these factors remain true as we extend
our use of the knowledge and grow the domain further. We need to identify, charac-
terize, and vet concepts. We need to teach this process, and to master tools. We need
to assign responsibilities and manage the practice. We find testing and documenta-
tion central to this process.

Testing Best Practices

You should embed testing for functionality and testing your knowledge struc-
tures for consistency and coherency in all phases and steps of your KM platform.
Testing is  best when it  is  incremental and best  as part of any build process. You
should assign domains and ranges to  properties,  and invoke reasoners  and other
tools during update efforts to find inconsistencies. You should test all new concepts
and properties at the time of introduction, which you may batch so long as you can
manage the increments.  Test  external  class  assignments because they work to ‘ex-
plode the domain’16 and surface other inconsistencies. Use already vetted knowledge
bases as reference testbeds when testing the coherence of concepts in a new domain
ontology; if the domain ontology describes concepts quite differently than standard
practice, or if relationships between concepts are at variance, then you likely have
coherency problems. As you work with the system, continue to evolve ontology spec-
ifications to include necessary and sufficient conditions for complete reasoner testing. 

Analytical Best Practices

The two core opportunities of a KM system in data interoperability and knowl-
edge-based artificial intelligence place a premium on analysis, principally in natural
language understanding and machine learning. External search engines also fit into
this category. In all cases, these analytic tools or learners are third-party applica-
tions, with varying degrees of ease-of-use and documentation. Three areas of best
practices apply to these external tools. First, it is important to discover, test and se-
lect the tools. Second, employ documentation and support structures, such as input
data files or run-control specifications, to help make analytic runs repeatable. Third,
be cognizant of the technical debt that each adopted tool may bring.

Every  new  analytical  task  should  begin  with  a  survey  of  available  tools.  You
should include standard search,  plus  a search of major code repositories  such as
GitHub,  plus  monitoring  of  technical  publications  sources  (blogs,  RSS  feeds,
arXiv.org,  etc.),  in your initial investigations.  As you research the tools, you may
need to migrate from simple spreadsheet listings to detailed characterization of the
alternatives. You should download leading candidates, install them, and initially test.
This research is a good place to use the notebook paradigm. The choice of tools is
fundamental to a KM system built from multiple parts from multiple parties with
multiple purposes. Performance and scalability may rapidly become concerns as a
KM system grows within larger enterprises.

As tools progress from candidates to provisional, we need to integrate them into
the existing platform. Though you likely used support for the internal canonical data
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forms as an initial screening criterion, you now need to stage and test data exchange
for the tool. As in other areas, you should document steps thoroughly for broader
training and adoption. In the evaluation process, every new analytic area, even more
so than the specific tools involved, will  also incur some degree of technical debt.
Scully et al. provide one example for a machine learning installation of how to think
about various categories of technical debt potentially arising from new tools. 17 An-
drew Ng also provides a concise listing of practical machine learning tips.18

In varied guises, other analytical tools impose similar or related overhead costs.
Search, as we discussed in  Chapter 12,  also poses debt and changes to work proce-
dures. We always have hard-to-quantify benefits and the costs at the more intangible
ends of the spectrum when using tools. Our benefits might be qualitative; our costs
may hide. If we are to include intangible benefits in the positive column, then we
must also be expansive in how we think of the costs of adoption as well.

Documentation Best Practices

Let me emphasize strongly we need to bake documentation into the cake.  We
need to document every step of our efforts, like is done for good science notebooks
but leveraging today’s  modern electronic versions.  We must adequately comment
and annotate our ontologies. We should document the entire ontology vocabulary via a
dedicated system that allows finding, selecting and editing of ontology terms and
their  properties.  We  should  document  ontology  maintenance  and  construction
methodologies,  including  naming,  selection,  completeness  and  other  criteria.  We
find wiki documentation useful for training purposes , which is easily updated and
maintained.  Try  to  accommodate  both  standard  wikitext  and  WYSIWYG  editors;
users have split preferences. Supporting the output of notebook files to wikis or Web
pages is a best practice. Also, find large-scale graph and visualization tools so that
you can prepare and distribute navigable versions of your knowledge graphs. You
may also find other  diagrams and flowcharts, including  UML diagrams, useful for
documenting and training workflows or defining use cases for tools. 

While  it  is  not  yet  seamlessly  achievable,  try  to  move  toward  s  ingle-source  
publishing, where one can author once and then publish selected portions in a vari-
ety of formats (HTML, PDF, doc, csv). We want wiki-like environments where multi-
ple authors may contribute, and we have easy collaboration and rollback of versions.
Simple import  and export versions,  such as  XHTML or XML,  helps facilitate  this,
though it is still difficult to theme or layout content easily for multiple publication
venues. We also want to adopt single-source publishing environments that enable us
to characterize and label workflow steps as part of our natural interaction with the
content. These systems should allow user-defined steps and labels and rules.

Best practices, like worldviews, depend on the circumstance and the players. We
may need to modify broad guidelines that work in general  for the specific.  In all
cases, KR and KM systems tailored to particular needs, and scoped to specific do-
mains, will have their own set of capabilities and configurations. Today’s require-
ments will evolve to different ones tomorrow. The work environment in which you
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need to embed these systems and their workflows will vary greatly. That is why it is
practical to consider standard and best practices as guidelines, and not prescriptions.
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POTENTIAL USES IN BREADTH

e begin this last  Part V looking at  potential applications. These knowledge
management uses, made possible by following Peirce’s guidelines, leverage

KBpedia and domain extensions to it. I have assembled these examples to illustrate
our intent in this  practionary to attain what Peirce called “the third grade of clear-
ness of apprehension”: 

W

“It appears, then, that the rule for attaining the third grade of clearness of apprehen-
sion is as follows: Consider what effects, that might conceivably have practical bear-
ings, we conceive the object of our conception to have. Then, our conception of these
effects is the whole of our conception of the object.” (1878, CP 5.402)

It is, of course, impossible to conceive of all practical effects from a thing. However,
in this chapter, and the one that follows, I try to share what I see as some important
practical effects of applying Peirce’s guidelines to knowledge representation. To my
knowledge, few have implemented the ideas listed in this or the next chapter. The
practical effects of these ideas are strong potentials with reasonable prospects for
being realized. These ideas, collectively, help us begin to apprehend this ‘third grade’
of clear understanding.

I have selected these case examples both to highlight the diversity of potential
uses and to showcase those with the highest likelihood of impact. Because what man-
ifests in the future often ‘surprises,’ I am likely overlooking some impactful and prac-
tical effects of what may unfold in the future. Nonetheless, this method of selection
does conform to what Peirce called the pragmatic maxim as a way to sift through the
myriad of possible explanations for things to focus on those with the most economy
and likelihood of bearing fruit.

I introduce each case with some context and a problem statement, then an intro-
duction of concepts and existing building blocks that pertain to it, then to possible
generalizations and potential practical effects were the case implemented. I do not
exhaust the potential high-impact applications in these chapters. Recall we provided
a long list of other possible uses of our approach in Table 4-1 in Chapter 4. Consult that
list for a fuller picture of potential applications. You will see, for example, that the
case studies in this concluding Part V do not include applications such as ontology-
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driven applications (ODapps), concept alignment, entity and concept extraction, and
semantic search, to name just a few of the important missing ones. 

In this first concluding chapter, I  briefly present about a dozen possibilities in
breadth that introduce a variety of practical KR uses. These possibilities are more of
an overview than the in-depth cases in the following chapter, but in their totality
provide a good sense of potentials. We split these dozen possibilities into near-term
potentials, logic and representations, and other more speculative potentials. The or-
der of presentation is from the near-at-hand to the speculative. In the next Chapter
16, we present three practical applications, also pretty near at hand, in a considerable
amount of  depth. The combination of these two chapters of breadth and depth, the
dimensions of  Peirce’s  definition of  information (Chapter  2),  broadly  captures  the
sense of practical and potential uses of our approach.  Chapter 17 concludes this last
Part V of the book, re-capping Peirce’s guidelines for knowledge representation.

NEAR-TERM POTENTIALS

We have already discussed how ontologies may drive bespoke applications and
Web services. We have seen the importance of organizing attributes and mapping to
them for instance characterization and intensionality. Four further potentials  are
also  near  at  hand  in  word  sense  disambiguation,  relations  extraction,  reciprocal
mapping, and extreme knowledge supervision. These potential applications all are
examples of leveraging the rich structure of KBpedia and its extensions.

Word Sense Disambiguation

 Word sense disambiguation is picking the correct meaning for a word where it
has multiple meanings.1 Vocabularies grow by either minting new words or giving
new meanings,  also  called  senses,  to  existing words.  Multiple  senses  for  common
words is a historical linguistic result of the bifurcated chaining of new word senses
for new uses based on adjacent metaphors.1 This mode of how new word senses get
coined conforms to the least ‘cognitive cost’ for generating, interpreting, and learn-
ing them.2 Some of these senses, such as game for hunted fowl or game for an amusing
pastime, may have diverged long ago with a broad span of meaning.

The traditional approach to word sense disambiguation (WSD) uses dictionaries to
look up the various senses of a word.  Lesk is a leading method, wherein we search
the various word senses in a dictionary based on the neighboring text for the search
term. The Lesk algorithm calculates the overlap of the sense definition of a word and
the contextual definitions of the terms that surround its use, with variants allowing
us to control the sliding window or other parameters.3 The limitation of the Lesk ap-
proach is that it depends on the wording of the definitions. We may also base word
embeddings on other factors, including structure and other features.4 

1 WSD is also closely related to named-entity recognition or named-entity disambiguation. The dictionary ba-
sis shifts from word senses to entity characterizations (attributes), but much else in approach is similar. 
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Unsupervised learning surfaces other rules and insights useful to WSD. Nearly a
quarter-century ago Yarowsky showed a strong tendency for one word sense per dis-
course and collocation.5 Choosing the most frequent sense for a multi-sense term is
one of the best performing heuristics.6 On a more abstract front, Sun has shown a
framework that regularizes the structure of feature-rich corpora, which can derive
training models that can converge rapidly and reduce generalization risk.7

 Methods for word sense disambiguation may also learn from large knowledge
sources, with  Banko and Brill one of the first.8 One of their findings was that the
larger the number of annotations for term entries, the better is the resulting accu-
racy. More recently, Ponzetto and Navigli have demonstrated that knowledge har-
vested from Wikipedia can be efficiently used to improve the performance of a WSD
system.9 Adding Wikipedia links to baseline approaches can further enhance disam-
biguation performance.10 Still, WSD for state-of-the-art systems has 2% to 5% error,
not including inter-annotator differences.  These performance figures  are also for
very limited domains with corpora and training sets known in advance. Word sense
disambiguation applied to new domains needs to overcome what is  known as the
knowledge acquisition bottleneck, which is the cost of finding, structuring or anno-
tating knowledge for WSD and other natural language processing applications. Many
difficulties occur in acquiring tagged senses for WSD.

The potential of KBpedia and how it is structured to improve the WSD picture is
profound. First, we have an instance-rich knowledge structure. Not only does that
structure bring direct benefits, but the hundreds to thousands of instances per type
also provide a rich content base for various word- and sub-graph embedding models.
Second, the KBpedia structure is coherent. Third, we base KBpedia on Peircean ideals
of knowledge representation. Its features are mostly  lexically based (relations, at-
tributes, senses, and meanings), which means that abstraction layers through the use
of neural nets have a higher prospect for being interpretable (and coherent). Fourth,
because of the degree of semantic relatedness in the structure, chances are greater
that neighbor-based methods to WSD will perform better than alternatives. Fifth, the
KBpedia features, as Appendix C describes, are a richer base for structure regulariza-
tion methods than what Sun has analyzed.7

So, what we see with a KBpedia-based approach to WSD is one that combines all of
the best methods in a single package. Its contextual understandings can extend to
entity recognition and disambiguation, as well as for concepts and relations. KBpe-
dia’s graph structure, with its emphasis on trichotomies and typologies, should also
promise better performance because of its comparative simplicity and cleanliness.
We have strong dictionary and synonym bases, combined with a coherent and robust
graph structure with millions of instances with content, which is expandable for new
domains, and testable with the potential for continuous improvement. 

Relation Extraction

In the context of relation extraction, most define ‘relation’ as a form of connec-
tion between two objects. The objective of relation extraction, then, is to identify and
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extract this relation. In contrast, we have seen in the context of Peirce that a general
relation may specialize into one of three forms: attributes, external relations, or rep-
resentations. Our Peircean approach also gives us better tools to identify and extract
general relations, and then to organize and reason over them. 

Relation extraction attempts to correctly identify and extract what is essentially
an RDF triple of subject-predicate-object. Sometimes the subject placeholder is blank or
unknown; sometimes the object placeholder is blank or unknown. (Theoretically, we
could also treat the predicate slot as a blank.) Because of these structural aspects to a
relation, the earliest forms of extraction put forward by Hearst in 1992 used many
heuristics applied to lexico-syntactic patterns.11 These techniques are surprisingly ef-
fective for many relation patterns; many systems still use them. The kernel method
builds on this approach by looking for patterns within generalized tuples. Supervised
approaches can also work quite well since we can pose the problem as one of binary
classification. Relation extraction was also one of the first applications of the use of
knowledge bases to inform labeled examples, what we now call distant supervision,12

which remains one of the better-performing methods. More recently, joint inference
on both entities and the relations looks to improve extraction efficiency further.13

Relation extraction has some unique uses within NLP methods. First, of course, it
is the method for extracting relations (though, as mentioned, this has not yet been
distinguished from attributes and representations). Second, we may find patterns to
help narrow the identification of new concepts  or entities by analogy to existing
complete patterns. In the most effective sense, we should be able to narrow the ap-
plicable types for the new concepts or entities as well, but that is little applied. The
potential exists to improve significantly our ability to identify previously unseen en-
tities, not already in our dictionaries or  gazetteers. Third, because of its patterned
nature, we also value relation extraction as a technique used in  data mining and
question answering.14 Last, the potentials for relation extraction are even more vast,
which I get to in a moment.

The  TextRunner and then  KnowItAll and  ReVerb efforts from the  Etzioni lab at
the University of Washington, and more recently the Nell project from Carnegie Mel-
lon University, have been mining Web sources to discover relations and their associ-
ated  entities.  These  efforts  use  open  information  extraction as  a  technique  for
knowledge base population. These approaches are useful,  for example, to identify
new entity members for specific types, sometimes called ‘slot filling,’ with millions of
candidates identified. Another application is to disambiguate entities based on con-
text. Besides these university efforts, commercial entities have been doing the same.
Still, relation extraction is a comparatively inaccurate NLP task due to the variability
in the triples structure in language and the immense number of potential entities.

KBpedia can improve all aspects of extracting, identifying, reconciling, and orga-
nizing the three aspects of relations, which also should lead to new capabilities in
ontology learning and better capabilities in question answering and data mining. In-
spections of the object slot may also aid in error detection of values and other possi-
ble misassignments. We can realize these potentials due to the better characteriza-
tion and structure of KBpedia. 
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If we someday want to create ontologies from raw input text, the dream of ontol-
ogy learning, we will require broad and accurate characterizations of relations to de-
compose the meaning of text structure. We have already mentioned the fine-grained
structure of relations in KBpedia. The three segments of attributes, external rela-
tions, and representations, organized by types, provide better structure for evaluat-
ing relations. An initial task is to inspect and map relations from  VerbNet and the
open IE projects. The Nell project also provides domains and ranges, which should be
helpful to relate types to specific predicates. These characterizations, in turn, would
enable better mapping and inference of entity types to predicates and other pat-
terns. The feedback from this process would undoubtedly surface improvements to
KBpedia, which would feedback into better extractions anew. Computerized machine
reading or natural language understanding will need these capabilities. The area of
relations extraction should be a fruitful research focus for many years to come.15

Reciprocal Mapping

The standard method of mapping is to relate new concepts and entities in an ex-
ternal knowledge ‘source’ (B) to the master or governing one in a ‘target’ resource
(A).  The  use  case  typically  uses  the  target  resource  as  a  reference  for  external
sources, possibly for data federation or integration. The mapping statements take
the form of A:B or B:A. However, the external source may also be a valuable contribu-
tor to new concepts or entities for the target resource. In this use case, our interest is
adding more A’ to A, rather than simply mapping statements. We call this use case
‘reciprocal mapping,’ a topic in Chapter 13. Reciprocal mapping is not warranted in all
cases, and only best applies when we encounter a quite complete external source, as
is the case of Wikipedia contributing to KBpedia.16 It is also a particularly useful tech-
nique where one wants to augment an existing knowledge graph, perhaps in adding
domain extensions to a starting basis in KBpedia.

First, let’s assume that we have already mapped the matching concepts between B
 A and B itself is a rich external source.→ A and B itself is a rich external source. 1 What we want to do is to use this linkage

to propose a series of new sub-classes that we could add to A (KBpedia in our example
case) based on the sub-categories that exist in B for each of these mappings. The
challenge we face by proceeding in this way is that our procedure potentially creates
tens of thousands of new candidates. Because the B category structure has an en-
tirely different purpose than the KBpedia knowledge graph (A, in this case), and be-
cause B’s creation rules are completely different from those of A (KBpedia), many
candidates  are inconsistent  or incoherent to  include.  A cursory inspection shows
that we should drop most of the candidate categories. It is not tenable to review hun-
dreds of thousands of new candidates manually, as is the case when B is the size of
Wikipedia; we need an automatic way to rank potential candidates.

Several factors differ for reverse (reciprocal) mapping from our standard B  A→ A and B itself is a rich external source.
mapping case. First, we need to find missing clusters or new concepts or types in B

1 Any sufficiently complete or robust external ontology closely related to the current domain needs may ful-
fill this role.
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that fit, but are missing, in A. Second, we need to ensure the scope and boundaries of
concepts or types in B are roughly equivalent to those in A. We may expend consider-
able effort to clean the source B type and category structure prior to the reciprocal
mapping. Third, we also need to capture structural differences in the source knowl-
edge graph (B). Possible category matches fall  into three kinds: 1)  leaf categories,
which represent child extensions to existing KBpedia (A) terminal nodes; 2) near-leaf
categories, which also are extensions to existing KBpedia terminal nodes, but which
also are parents to additional child structure in the source; and 3)  core categories,
which tie into intermediate nodes in KBpedia that are not terminal nodes. By segre-
gating these structural differences, we can train more precise placement learners.

We automate this process with an  SVM classifier trained over graph-based em-
bedding vectors generated using the DeepWalk method.17 DeepWalk learns the sub-
category patterns that exist in the B category structure in an unsupervised manner.
The result is to create graph embedding vectors for each candidate node. Our initial
B  A maps enable us to create training sets with thousands of pre-classified sub-cat→ A and B itself is a rich external source. -
egories quickly. We split 75% of the training set for training, and 25% for cross-valida-
tion. We also employ some hyperparameter optimization techniques to converge to
the best learner configuration. Once we complete these three steps, we classify all of
the proposed sub-categories and create a list of potential subClassOf candidates to
add into KBpedia, which we then filter by relevance score and vet manually. 

The reference ‘gold’ standards in the scored training sets (see Chapter 14) provide
the  basis  for  computing  all  of  these  statistics.  We  score  the  training  sets  as  to
whether a given mapping is true or false (correct or not). (False mappings should be
purposefully introduced.) Then, when we parse the test candidates against the train-
ing set, we note whether the learner result is either positive or negative (indicated as
correct or indicated as not correct). When we match the test to the training set, we
thus get one of four possible scores: true positives (TP), false positives (FP), true neg-
atives (TN) and false negatives (FN). Those four simple scoring categories are suffi-
cient to calculate any of the statistical measures, as we discussed in Chapter 14. 

We capture the reciprocal mapping process using a repeatable pipeline with the
reporting of these various statistical measures, enabling rapid refinements in param-
eters and methods to achieve the best-performing model. Once appropriate candi-
date categories are generated using this optimized model, we then manually inspect
results and make final selections. We then run these selections against the logic and
coherency tests for the now-modified graph and keep or modify or drop the final
candidate mappings depending on how they meet the criteria. Our experience sug-
gests this semi-automated process may take as little as 5% of the time it would typi-
cally take to conduct this process by comparable manual means.

So, machine learning methods may reduce the effort required to add new con-
cepts or structure by 95% or more. Machine learning techniques can filter potential
candidates automatically to reduce greatly the time a human reviewer has to spend
to make final decisions about additions to the knowledge graph. A reusable pipeline
leads to fast methods for testing and optimizing parameters used in the machine
learning methods. We can systematically tune and rapidly vet this pipeline.
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Extreme Knowledge Supervision

Recall from Chapter 4 that knowledge supervision is the purposeful use and structur-
ing of knowledge sources and graphs to provide features and training sets for KBAI.
Distant supervision uses the same sources, though employed as is and not purposefully
staged. In knowledge supervision, we design and prep the knowledge base so that its
structure  enables  query  selection  of  labeled  positive  (and,  with  repeatable  tech-
niques, negative) training sets for supervised machine learning. This pre-staging of
the knowledge sources eliminates 80% of the effort or more required for most super-
vised learning tasks. We also showed a virtuous circle of interaction between prop-
erly designed knowledge bases and a knowledge graph such that we can add new as-
sertions and facts to the knowledge base and improve its quality by a higher ratio of
true positives (see Figure 4-2). 

When repeatedly and purposefully carried out through many cycles, we can call
this  extreme knowledge supervision. In the case of KBpedia, remember, we already
have important structural splits between concepts, entities, events, attributes, exter-
nal relations, and representations, all organized according to the triadic universal cat-
egories of Charles Peirce, and further sub-typed by scores of modular typologies. Theo-
retically, we may use the intersection of any of these dimensions to create and train
supervised learners. Further, because of this richness of structure, we also can de-
velop better language parsers (see  Chapter 16) and reasoners (see next) to apply to
our  tasks.  Also,  combinations  of  these  features  through  inference  over  category
structures  is  a  patented  way18 that  brings  significant  efficiencies.19 Here  is  the
breadth of tasks to which we may apply extreme knowledge supervision:

 Entity identification (recognition) and extraction; 
 Attribute identification and extraction (‘slot filling’); 
 Relation identification and extraction; 
 Event identification and extraction; 
 Entity classifiers; 
 Phrase (n-gram) identification; 
 Entity linkers; 
 Mappers; 
 Topic clusterers; 
 Topic classifiers; 
 Disambiguators;
 Duplicates removal; 
 Semantic relatedness; 
 Inference and reasoning; 
 Sub-graph extraction; 
 Ontology matchers; 
 Ontology mappers; 
 Sentiment analysis; 
 Question answering; 
 Recommendation systems;
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 Language translation; 
 Multi-language versions; 
 Artificial writing; and 
 Ongoing knowledge base improvements and extensions. 

I have listed these areas in rough order from the simpler to the more complex analy-
ses.  Distant  supervision efforts  have concentrated on information extraction,  the
first items on the list. However, all are amenable to knowledge supervision with ML.

A vetted knowledge graph with millions of supporting instances also provides
some graph-level benefits. The first area is in ‘deep graphs.’20 The basic idea behind
‘deep graphs’ is to segregate graph nodes and edges into types, which form supern-
odes and superedges, respectively. In our terminology, ‘deep graph’ node types are
akin to types of similar  attributes, and edge types are akin to types of  relations. The
‘deep graph’ algorithm can partition these grouped types into lattices, which can be
intersected (combinations of nodes and edges) into representing deeper graph struc-
tures embedded in the initial graph. We can use these deeper graph structures as
new features for machine learning or other applications. A second area, important to
data interoperability, is in ‘symbol grounding’21 (also see next chapter). The useful-
ness of symbol grounding resides in associating symbol tokens as understood by the
computer with actual language meanings. Besides interoperability, such groundings
are crucial to natural language understanding.

The idea of large knowledge bases providing enabling technology for knowledge
sharing goes back at least 30 years.22 We are still in the early phases of such iterative
refinements of KBpedia. As this process continues, expect to see faster and more ac-
curate learners, the incorporation of still-additional knowledge sources and datasets,
and more sophisticated combinations of features and methods for extreme knowl-
edge supervision. Song and Roth provide an excellent current survey with hundreds
of references for how machine learning based on using world knowledge may create
such potentials.23

LOGIC AND REPRESENTATION

The previous section begins to scratch the surface for how KBpedia, as structured
using the guidelines of Peirce, may improve many knowledge-based tasks, especially
in the areas of natural language processing (NLP). I would now like to move beyond
this traditional baseline and address more fundamental questions of logic, reasoning,
and representation. These kinds of fundamental questions can take the use and con-
tributions of knowledge-based systems to new levels. The four initial topics we cover
in this section include automatic hypothesis generation, encapsulating KBpedia for
deep learning, measuring classifier performance, and the thermodynamics of repre-
sentation itself.

I do not touch on all of the logical potentials in this section. For example, the use
of fuzz  y logic  , or intensional logic, or methods of inducti  ve reasoning   provide enor-
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mous potential. Areas in non-classical logics such as three-valued logics24 or triadic
logic25 also deserve attention given their relationship to Peirce’s universal categories.
These are worthy topics for future attention.

Automatic Hypothesis Generation

One of Peirce’s signal contributions was to bring the importance of abductive rea-
soning to the fore in matters of epistemology. We discussed the now three classical
logical methods of deduction, induction, and abduction in  Chapter 8.  Deduction,  the
most widely employed method in the semantic Web and knowledge graphs, evaluates
correct placement by traceable logic chains, most of a hierarchical nature. Induction,
little used but with great promise for knowledge graphs, can look to shared or com-
mon features to make probable assertions.  Abduction,  which Peirce brought to the
fore, is the logic of new knowledge and scientific discovery. It is rarely used and not
well understood, some due to Peirce’s own changing views.

What Peirce early called abduction he later acknowledged was, in fact, induction.
Peirce’s confusion — and how he eventually worked out the issue — is instructive.
What Peirce initially called abduction is what we now call inference to the best expla-
nation (IBE). The basic idea is given a particular outcome, what is the most likely
path through the knowledge graph that leads to that outcome? It is a form of back-
ward chaining, where all parts of the syllogism are known, and therefore is a true in-
ferential  method.  Still,  many combinations  are  possible,  and reasoning backward
across available choices can soon become computationally intractable. Since in ab-
ductive reasoning we are ultimately seeking the explanation to a question or phe-
nomenon, this kind of IBE reasoning is quite valuable for knowledge graphs in gen-
eral26 and has applicability to instance characterizations in the ABox as well.27

Still, this view of abductive reasoning is but a part of what Peirce intended in his
mature formulation. Peirce was seeking no less than an understanding of how the
scientific method (purposeful inquiry) worked and its logic,  in a broad sense.  His
characterizations redound with expressions of ‘surprising facts,’ ‘flashes,’ ‘guesses,’
‘instinct,’ and ‘new knowledge.’ Dewey, a fellow pragmatist, saw similar things, but
particularly looked toward abductive reasoning also as a way to explicate learning.28

Peirce well understood the combinatorial problem and sought to understand how we
winnow through the myriad of options, recognizing the factors of economy, effort,
the likelihood of producing results, and all of those things we now understand as
‘pragmatic.’  Peirce understood there was a transitional space between perception
and hypothesis that held the key to this unique logic. Flach, throughout his many
writings, has noted the importance of abductive and inductive logic to the develop-
ment of scientific knowledge, and also usefully split Peirce’s ideas of abduction into
explanatory and confirmatory reasoning.29The nut to crack around abduction re-
sides in explanatory reasoning. Flach has attempted to refine Peirce’s conception of
explanatory reasoning into a form amenable to logical analysis.30

Prying open the heart of the logic of science is an exciting prospect. Kapitan made
a powerful argument for why IBE was not the nub of abductive reasoning, and sug-
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gested heuristic aids, while not inferences, could still be used to discover new knowl-
edge, often based on analogy.31 Kapitan also compiled eight reasons from Peirce for
what we should seek in a candidate hypothesis to explain an observation or surpris -
ing fact: 

1. The cost (in time, money, and effort) of testing the hypothesis (1901, CP 6.533;
1901, CP 7.230);

2. The intrinsic  value of the hypothesis  regarding its  ‘naturalness’  and ‘likeli-
hood’ (1901, CP 7.223);

3. The fact that the hypothesis can be readily broken down into and elements and
studies (1901, MS 692:33);

4. The simplicity  of  the hypothesis  (i.e.,  it  is  more readily  apprehended, more
facile, more natural or instinctive) (1902, MS L75:286; 1901, CP 6.532; 1908, CP
6.477);

5. The breadth of the hypothesis or the scope of its predictions (1902, MS L75:241,
457:37);

6. The ease with which we may falsify the hypothesis (1902, MS L75:285);

7. The testability of the hypothesis using severe tests based on ‘incredible predic-
tions’; and

8. The analogy of the hypothesis with familiar knowledge (1901, MS 873:16).

These guidelines feel incomplete. As part of his treatment of logic within the uni-
versal categories, Peirce held abductive reasoning as irreducible from the other two
forms of logic, deductive (2ns) and inductive (3ns). We are still missing the essence of
what makes abductive reasoning different. If we can truly get at the essence of the
scientific  method and purposeful  inquiry,  we will  have  unlocked a  tremendously
powerful door to new knowledge and discovery.

Kapitan held that missing piece was the creative, what it is that underlies knowl-
edge.32 He did not see this as an inferential step, but as one ‘suggested’ by the facts,
by a general cognition. Kapitan likened the transition from the perception that leads
to the idea as arising by analogy, from the unconscious. Selected quotes by Peirce
support parts of this interpretation.

More recently, Tschaepe questioned some of this interpretation, choosing to fo-
cus more on ‘guessing.’33 Successful guessing is both piecemeal and done in an or-
derly  fashion,  guided  by  ethics  and  aesthetics,  situated  to  logic  as  Peirce  did.
Tschaepe notes that a more metaphorical kind of logic is in play, and is indeed play-
ful (‘musement’ in Peirce’s term). Some scholars see it as likely based on the detec-
tion of patterns. Yes, the process is logical in a broad sense but is also a rapid surfac -
ing and evaluation of candidate explanations arising from patterned similarities and
metaphors.  This  critical  stage between perception and hypothesis  evaluation is  a
multi-factorial, synthetic, broad contrast of iconic options rapidly screened for prag-
matic likelihood. The methods of this critical phase in abduction appear more ori-
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ented to pattern matching than inference, which, in any case, appears weak. Once a
potential hypothesis is chosen for some level of evaluation, it becomes indexical.

KBpedia, or its derivatives, has the raw grist to begin feeding tests of these broad
factors.  In the near-  to  intermediate-term, backward chaining and IBE look quite
tractable within the KBpedia structure. Longer-term, however, getting at the true
‘guessing’ game involved with abductive reasoning — unique and broad — is where, I
think, some surprisingly useful payoffs may result where KBpedia may contribute.

Encapsulating KBpedia for Deep Learning

Geoffrey   Hinton   is a founder of deep learning. He and his team at the University
of Toronto helped promote the idea of backpropagation as a way to send weights to
adjust supervised labels to unsupervised layers in a neural network, with the increas-
ingly propagated layers leading to the term of deep learning. Deep learning is excep-
tionally effective for image and pattern recognition tasks, less so for natural lan-
guage. Unfortunately, the representations at all layers of deep learning are opaque,
meaning we can glean no meaning from the information at a given layer. This ‘black
box’ aspect is the weakness of deep learning. The concern, of course, with methods
that lack explanation is that it is hard to know how to make further improvements.
Inexplicable methods always seem to top out at some limit of performance. 

Hinton  likely  understands  these  limits  better  than  anyone.  Well  before  deep
learning became such a buzz phrase, Hinton and his team in 2011 were experiment-
ing with how to package features together to act as a unit during the deep learning
process.34 Hinton’s group has been more focused on image representations than text.
Still, this paper was the first mention of defining these feature packages as ‘capsules.’
Hinton has continued to work on this ‘capsule’ concept and has come to understand
that clean features about single entities are the best ones to include.35

‘Capsules’ may offer a path for better aggregating natural language features into
discernable packages. KBpedia’s unique way of organizing and classifying related fea-
ture types based on the universal categories may also offer a better way to create
meaningful ‘capsules’ for NLP. The ‘capsule’ approach, or other similar ways to pack-
age features into meaningful sets, may provide the missing technique for making
deep learning more understandable in the context of natural language.

Measuring Classifier Performance 

We presented statistical measures for binary classification and NLP tasks in Chap-
ter 14. We touched upon but did not elaborate two additional measures of  ROC and
AUC. ROC, the receiver operating characteristic (also called the relative operating
characteristic), is a curve that plots the true positive rate versus the false positive
rate at various settings. AUC measures the area under this curve and reduces the
standard error from the use of ROC alone. Researchers use these two measures to
compare  the  performance  of  machine  learning  classifiers,  though they  are  noisy
methods with challenges in interpretation.36 We need better performance measures.
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In the 1930s the Italian statistician Bruno de Finetti wrote much on probability,37

and  likely  was  instrumental  in  resurrecting  interest  in  Bayesian  conditional
probabilities. De Finetti developed a method of plotting three variables against one
another called the ternary plot. It has found wide use in genetics, for example, in
plotting the frequency of diploid genes (AA – Aa – aa) against one another using the
display within an equilateral triangle, which can, for example, capture the distribu-
tion of the Hardy-Weinberg frequency of a gene, a standard measure.

About  15  years  ago,  the  Spanish  statistician  Valverde-Albacete  and  his  team
adopted the de Finetti ternary plot to provide a more accurate means to compare
machine learning classifiers. The plot uses the three corresponding values of change
in entropy, versus what they termed the variation of information, and the  mutual
information surfaced by the classifier.38 The group calls this display the ‘entropy tri-
angle.’ One can see a striking resemblance of these de Finetti entropy triangles to the
semiotic triangles of Peirce (see Figure 2-1). Further, the relation to Shannon entropy
and  the  potential  correspondences  to  object-representamen-interpretant  at  the
apexes  also  draws  attention.  Though  tentative,  intuition  about  these  correspon-
dences suggests two possible lines of inquiry. First, we may apply de Finetti ternary
plots to a more quantitative treatment of the Peircean sign representation. Second,
the existing entropy calculations and insights might have either a Peircean interpre-
tation or applicability to signs about Shannon information theoretics. For now, we
should view these  correspondences  as  wholly  speculative,  but  thought-provoking
nonetheless. Whether these intuitions bear fruit, the apparent superiority of the en-
tropy triangle as a measure of classifier performance remains.

Thermodynamics of Representation

The close relation of information to energy as discussed in  Chapter 2 — and the
findings of Landauer showing the energetic and physical aspects of information —
provides possible guidance for how we should think about and model knowledge rep-
resentations going forward. Susanne Still has taken this viewpoint to heart, and rou-
tinely uses the thermodynamic and informational aspects of information engines in
her work.39 This area, too, applies to measuring classifier performance, as well as
other relevant topics.

For example, Still has shown information engines to require predictive inference
to function well, which requires memory and favors a minimum of redundant infor-
mation. In non-equilibrium conditions (namely, life), the most favored information
engine is that which is most efficient in predictive power for a given level of mem -
ory. Of course, no information engine may extract more work than is contained in its
useful informational inputs, and the best engines use more available information and
dissipate less. (Dissipation under non-equilibrium conditions is average work minus
the change in nonequilibrium free energy.) Still has also related her work to learning
theory,40 data representations, 41 and information bottlenecks.42

The idea of information bottlenecks to test for better data representations or bet-
ter predictive inferences is but one method where we may exploit the convergence of
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information theory and knowledge. It is clear that we can apply these methods of en-
tropy measurement to help screen data representations and models and even to test
model parameters. These kinds of tests are hardly standard in ontology building and
maintenance, though such efforts using the proxies of information engines provide a
useful means for doing so.

We can apply these same perspectives and tests to evaluate the use of Peirce’s
universal categories as an organizational framework for knowledge graphs. We also
should consider monitoring reference concepts by use to discover over-specified or
redundant information in our systems. As was pioneered in biomedical research with
‘knock-out’ mice, we can remove selected pieces or portions of our knowledge graphs
to measure their after and before information theoretic contributions. 

As we pull together more evidence for the linkage between information theory
and various entropy and free energy measures, we will undoubtedly discover more
insights regarding composition and construction of our knowledge systems to make
them more efficient. The beautiful thing about information-theoretic metrics is that
we can negate empty arguments about philosophy or ideology and focus on what
works with the most efficiency, a clear reflection of Peirce’s admonitions for pragma-
tism. Routinely testing for information bottlenecks should also aid our ability to con-
tinue to refine better performing predictive inferences. Still states, 

“Predictive inference can be interpreted as a strategy for effective and efficient com-
munication: past experiences are compressed into a representation that is maximally
informative about future experiences. The information bottleneck (IB) framework can
thus be applied, either in a direct way, or in its recursive form (RIB). Both methods
find, asymptotically, the causal state partition, i.e., minimal sufficient statistics. RIB
additionally recovers, asymptotically, the ɛ-machine, which is a maximally predictive
and minimally complex deterministic HMM [hidden Markov model] , believed  to be
the best predictive description of a stochastic process that can be extracted from the
data alone.” (p. 985)

It appears pretty evident that we should adhere more to energetic factors (dissipa-
tion,  entropy)  in  evaluating alternatives.  These methods  may also help  us  better
quantify the benefits of organizing our knowledge structures using Peirce’s universal
categories and typologies as compared to traditional dichotomous representations.

POTENTIAL METHODS AND APPLICATIONS

New applications and uses for knowledge graphs remain untapped. We have listed
some of these areas as potential applications for years, such as self-service business
intelligence or semantic learning. We conclude this section and chapter by discussing
the relation of Peirce’s ideas and guidance to nature and questions of the natural
world. 
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Self-Service Business Intelligence

I have been hearing about self-service business intelligence for more than two
decades, yet it remains as elusive as ever. The definitions have changed over time
and now include concepts like ‘big data,’ but the basic idea is to enable users, who
lack IT or coding skills, to access enterprise data for their queries and reports.43 The
genesis of the idea arises from the promise of placing data analytics directly in the
hands of the users who need it, matched with frustrations for how long specific re-
quests to IT for queries or reports take to fulfill.44 Part of the problem in achieving
this ideal is parties tackled early attempts at self-service BI as some new application,
only ‘dumbed down’ with slick user interfaces (UIs) to overcome the lack of comput-
ing skills by its users. In retrospect, it is not hard to see how attempts to fulfill this
need settled upon supplying still another application as a separate product. Enter-
prise-level applications were the rage over those same decades. Naturally, to address
the need of business analysts, the trick was to modify the business intelligence tools,
such as they were, used by IT and then re-package them for easier use. The joke
through at least the 1990s was that an ‘executive information system’ was the one
with the big buttons with the big labels.

Those older visions fail for at least two reasons. The first reason is to consider
business intelligence as some form of separate application. Early attempts at busi-
ness intelligence or data warehousing failed and disappointed at high rates. We dis-
cussed at length in  Chapters 3 and 4 the challenges in data interoperability and im-
pediments to information access and sharing. The general challenges of business in-
telligence and knowledge management remain unsolved. The second reason for fail-
ure is to consider the hurdle for non-technical users as mainly one of user interfaces.
Sure, UI considerations are important. However, the real hurdles are fitting with ex-
isting work tasks and flows.  The users of business intelligence create that intelli-
gence. These knowledge workers must be involved in feeding and adding to the en-
terprise knowledge stores, as well as tapping them. Knowledge workers should stew-
ard their knowledge assets.  This imperative needs to  put users in the knowledge
recording  role,  as  well  as  the  knowledge  using  one.  Knowledge  is  not  an  after-
thought, but part-and-parcel of the daily activities seamlessly integrated into cur-
rent work tasks and flows.

Though KBpedia and its structure are well-suited to knowledge capture and use,
the question of self-service goes beyond that. Self-service is not a matter of user in-
terfaces and buttons, though at some point those items are worthy of attention, but a
matter  of  mindset  and making knowledge  management  integral  to  current  work
tasks. As we discussed in Chapter 12, this approach includes being attentive to work-
flows and piecing apart specific tasks such that they can integrate well with current
daily activities (see further Chapter 16). As for knowledge creation, we must integrate
new concepts and add and modify instances as we encounter them. These activities
occur while researching online, writing or reading documents, or while interacting
with co-workers and colleagues.

We need to deploy our specific KM apps where we engage in these activities — be
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they browsers, word processors, spreadsheets, calendar systems, or chat. BI systems
would benefit from a similar distribution with standard work tasks. We want to en-
courage continuous access and constant availability. In these senses, we solve the UI
challenge more by embedding knowledge functionality in existing applications than
by dashboards or big buttons. While we have not been prescriptive in this book, I do
think the guidelines we offer  provide pragmatic  approaches to  adopt self-service
ways in your organization.

Semantic Learning 

Many aspects of what some anticipated as a semantic learning Web by 2020 have
failed to materialize.45 We have tried and used both latent and explicit ways to learn
from text. We do not have multiple knowledge bases talking to each other or anno-
tated or guided educational resources or commercial semantic browsers. We lack the
connectedness portions of the vision. We have achieved talking to personal devices
and leveraging massive knowledge bases like Wikipedia, mostly through supervised
means, but the learning and interoperability aspects still appear weak. The lack of
connection or connected learning sources is not one of technology or standards but
provenance and authoritativeness. We have learned in our two decades of using the
Web that it is a medium as prone to spamming and misuse as it is for access and con-
venience. We have found that the latent methods, applied to either text or images, do
not perform as well as supervised methods. Still, though, even with supervised learn-
ing, we do not see much active learning or connectivity (defined as two separately
maintained sources interacting automatically with one another). 

We will not see marked improvements in latent semantic indexing -- and unsu-
pervised methods in general -- until we have better parts-of-text segmentation and
classification. We need a true foundational set of semantic primitives. I believe Peirce
offers such (see next chapter). We have not yet tested this premise. Further, with its
graph structures and inherent connectedness,  we also have some exciting graph-
learning methods that we can apply to KBpedia and its knowledge bases. The perhaps
best-known method for conducting unsupervised learning on a sub-graph is the  k-
nearest  neighbor method,  with  the  latent  Dirichlet  allocation and  conditional
random fields (CRF)  methods growing in popularity.  We also have emerging sub-
graph alternatives. With KBpedia’s rich feature set, we have many additional options
for  discovering  better-performing  semantic  learning.  Whether  the  approach  is
Peircean or not, we likely need to see a more grounded set of semantic primitives
emerge before we see production-grade performance with latent indexing or vectors.
Without these primitives, there remains too much of a ‘black box’ aspect for these
methods, similar to what we see with the opaque explanations for deep learning.

We do, however, have adequate means for production-grade methods for mean-
ingful semantic connections using supervised learning with human editorial vetting.
We need to take care of what resources we select for our learning purposes. We need
automated ways to screen through the myriad of candidates. Then, we need to re-
view those manually that remain ambiguous after tests, feeding our final selections
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back into the system to improve the performance of the learner when next used. 
KBpedia thus is a potential contributor to semantic learning in two ways. The first

way is to move toward a more logical, defensible set of semantic primitives for char-
acterizing and indexing text, perhaps including unsupervised methods. The second
way is by mindset and example, where builds and testing are constant against an al -
ready coherent structure.  A key insight is  in how to construct and maintain our
knowledge structures. Users of the open Web, as is,  do not trust it  as a coherent
knowledge source. Still, we will use quality sources, determined by editorial over-
sight or supplied by trusted brands. We need to discriminate and then depend on
vetted resources, like from industry standards groups or proven resources like the
Wikimedia  properties.  A  key  lesson  is  that  we  cannot  fully  automate  the  entire
process  of  discovery,  harvesting,  vetting and connecting;  humans must be in  the
loop, only accepting what meets editorial standards.

Nature As An Information Processor

It is clear that information is central to the idea of life (through DNA) and lan-
guage  and  communications  (through  symbols).  We also  saw  in  the  discussion  in
Chapter  2 that Landauer had shown the physical  nature of  information and from
Jaynes onward that many had pointed to the energetic nature of information. These
indicators suggest that nature acts as an information processor.

The least controversial interpretation of information processing in nature occurs
through genetic and cultural information. This overlap has led Sweller and Sweller to
posit  five  common principals  of  natural  information processing  systems,  which I
have taken the liberty to edit slightly:46

Principles Cognitive Case Evolutionary Case Function

Store information Long-term memory Genome Store information for 
indefinite periods

Borrow and reorganize Transfer information 
to long-term memory

Transfer information 
to the genome

Permit the rapid build-
ing of an information 
store

Random genesis Create novel ideas Create novel genetic 
codes

Create novel informa-
tion

Narrow limits of change Working memory Epigenetic system re-
lated to environmental
information

Input environmental 
information to the 
store

Organize and link Long-term working 
memory

Epigenetic system re-
lated to genetic infor-
mation

Use information from 
the information store

Table 15-1: Natural Information Processing System Principles

Wiesner — after reviewing developments in dynamical systems theory, informa-
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tion theory, physics, and computation theory — goes much further.47 She claims that
formal language theory, such as the examples of transformations provided by Noam
Chomsky,48 provides the key to understanding information processing in natural sys-
tems. Her synthesis leads to methods based on how quantum processes store and ma-
nipulate information, what Wiesner calls ‘intrinsic quantum computation.’ 

In a broader sense, the mathematician Burgin and his co-authors over the years
have been looking at commonalities and classification of various kinds of computa-
tional algorithms (for example, see49). Burgin claims the basic structure of the world
is triadic (physical, structural, mental), which corresponds to Plato’s triad (material,
ideas/forms, mental) or may be related to Peirce's semiotic sign triad of object, sign,
and interpretant. This existential triad leads Burgin and Dodig-Crnkovic to propose
the three following types of computations:49

1. Physical or embodied (object) computations;

2. Abstract or structural (sign) computations; or

3. Mental or cognitive (interpretant) computations.

The authors note that the abstract or mental forms are themselves based on physical
or embodied computations. In any case, the authors stress that we need a much bet-
ter understanding of computation as an activity of information processing.

Quax, I believe, in his 2014 Ph.D. thesis50 and associated papers, may have done
just that. Returning to the roots of computation in Shannon information theory, as
discussed in  Chapter 2, Quax notes that the topological analysis of network interac-
tions, while often posited as an explanatory basis, has proven insufficient to identify
which nodes “drive the state” of networks.51 Their idea, which supplements the topo-
logical relationships, is grounded in Shannon entropy and mutual information. Infor-
mation theory is often applied to statistical inference when an external observer de-
scribes the state of a system. As applied to dynamical systems, such as knowledge
systems, each component of the system (e.g., a chunk of information) is an observer
that stores the information and records state. 

Quax  and  his  co-authors  derive  two  dynamic  measures  from  these  aspects  of
Shannon information. First, the authors calculate the influence of this information as
it moves further from the source node, incurring losses on the way. They call this the
‘information dissipation length.’ (They measure IDL to the 50% dissipation level since
the decay rate is asymptotic with a long tail.) IDL is a measure of the size of the sub-
system that is affected by a particular element. IDL is somewhat akin to ‘influence’ in
traditional graph measures that lack dynamic considerations (that is, are only topo-
logical). Second, the authors also calculate how the usefulness of the information dis-
sipates over time. IDT is a proxy for how long the network remembers the particular
state of a node, another measure of its influence. 

This combination of structural (topographic) and dynamic (IDL and IDT) may not
be exactly the right mix, but it does show how basing the analysis on information
theoretics offers up new ways for understanding the nature of graphs and their in-
teractions over time. For example, one finding is that it is intermediate players, not
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the central hubs or most popular nodes, that may have the most influence on dynam-
ical processes within complex networks.52 We may apply IDL and IDT to any complex,
dynamic network. Mutual information (I) is that which nodes share. Here is a  two-
node example:

‘Deep  information  networks’  use  somewhat  similar  information-theoretic  ap-
proaches to reduce the dimensionality of knowledge graphs,53 though with poten-
tially better understandability of the intermediate layers than deep learning. As we
apply such techniques to more systems, we should gain further insights to improve
our predictive power, perhaps getting to such seemingly intractable questions such
as emergence, state transitions, or self-organization. 

We see the potential relatedness or interactions between Peirce’s semiosis, uni-
versal  categories,  and information theory.  If  we find that Peirce’s  universal  cate-
gories indeed capture some fundamental truths about nature, for which some combi-
nation of the categories and information theory provides insight, then we can begin
to apply lessons from natural science to the questions of language, knowledge, and
representation. Each subsequent insight will feedback upon those that came before
to improve our ability to model and predict our natural world.

Gaia Hypothesis Test

The chemist  James Lovelock first posed the  Gaia hypothesis1 in the 1970s, soon

1 Gaia   was the Greek goddess who personified Earth.
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getting collaborative support from the microbiologist Lynn Margulis.1 They hypothe-
sized that life is  an integral part of the Earth’s development. Organisms have co-
evolved with changes in Earth geology and chemistry and climate; high oxygen lev-
els, which are highly reductive, grew in the atmosphere due to the presence of life;
life adapted to salinity changes due to salt run-off from terrestrial sources; and a
complete weave of interacting forces and effects intertwined. The hypothesis has led
some to consider the Earth a form of ‘living thing.’ Though derided when first postu-
lated, advocates have refined the hypothesis to reflect emerging science better and
scientists now largely embrace the idea of an evolving and interacting biosphere.

We also see another trend. The initial  understanding of entropy as something
that led to disorder caused thoughtful physicists,  such as  Erwin Schrödinger, dis-
cussed in Chapter 2, to posit explanations in the 1940s for how life did not violate the
2nd law of thermodynamics. That subject, too, has evolved much, whereas now a sig-
nificant portion of scientists see entropy as operating in either equilibrium or non-
equilibrium circumstances. The Earth, with massive influxes of solar radiation and
the evolution of life that has created its ‘Gaia-like’ effects, is the quintessential non-
equilibrium case.

Under non-equilibrium conditions with massive external influxes of energy, the
equilibration principle, what one might also think of as selective pressure, is to dissi-
pate this free energy as rapidly as possible. That idea, in turn, promoted on both
statistical mechanics and biological terms by some, is known as the maximum en-
tropy production (MEP) principle.54 The principle favors structures that utilize and
then dissipate free energy fastest and most efficiently. Ludwig Boltzmann, the expli-
cator of  entropy and statistical mechanics, is now praised by some for  quantifying
what is not (that is, entropy), akin to the contribution of the Arabian mathematicians
who invented the number zero.55

Researchers have applied MEP to the Earth at planetary scale56 and related it to
more prosaic observations like water flows in soils.57 Kleidon, in a comprehensive
treatment  of  this  topic  with  wonderful  illustrations  of  various  global  fluxes,
stated,“This  seeming contradiction [of  standard interpretations of  entropy]  is  re-
solved by considering planet Earth as a coupled, hierarchical and evolving non-equi-
librium thermodynamic system that has been substantially altered by the input of
free energy generated by photosynthetic life.” 58 

Herrmann-Pillath has woven these threads of the Gaia hypothesis, MEP, Charles
Peirce’s semiotics, and other factors into a complete speculation.59 He includes the
‘fourth law of thermodynamics’ from Stuart Kauffman,60 another theorist on the ori-
gin of life, who posed the role of work and the “tendency for self-construction bio-
spheres to construct their own workspace.” (p. 244) This view bridges from Peirce’s
statements about semiosis and its applicability to crystals and bees. We call the appli-
cation to living organisms  biosemiotics, and for inanimate or broader applications,
such as what Herrmann-Pillath proposes, ‘physiosemiosis.’ This term arises from the
proposition that “the biosphere is a system of generating, processing and storing in-
formation, thus directly treating information as a physical phenomenon,” and fol-

1 I discuss Margulis in a different context in Chapter 3.
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lows  the triadic  semiotic  model.  A  few researchers  have speculated  that  Peirce’s
ideas of semiosis may even extend as far as the formation of matter after the  Big
Bang,61 though it would be 15 years after Peirce’s death before Hubble discovered the
redshift. Still, Peirce intended his views on semiosis to infuse nature.

 Peirce’s advocacy that first, second, and third are the necessary and sufficient
building blocks for all of reality may provide some missing insight into these basic
questions of evolution and cosmology. His placement of randomness and chance into
Firstness appears to conform with what we continue to learn about what is possible
and where it arises. Peirce’s prescience about signs, the universal categories, and the
roles of chance and continuity quite possibly were truly cosmic. If indeed Peirce did
grok the nature of nature at its most fundamental levels, then how we can apply his
insights to our understanding of existence and reality is but at the beginning stages.
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nformation, Peirce tells us, is like a spatial function covering the complete area
of a topic. We have just covered a dozen topics in breadth regarding the potential

of Peircean ideas to the subjects of knowledge and its representation. Now, let’s turn
our attention to the treatment of three additional topics, only now in  depth. These
three new topics are not as speculative as some from the prior chapter. I have chosen
them based on highest impact, near-term potentials. The three areas are workflows
and business process management (BPM), semantic parsing, and applications and in-
teractions in robotics. The challenge in all three areas is to automate as much as pos-
sible while leaving to the knowledge worker what is uniquely human. For space rea-
sons, I shorten the two bookends to allow a fuller treatment of the middle case.

I

WORKFLOWS AND BPM

Business processes and their management is the most neglected area of business.
Business process management, or BPM, is about how businesses identify, select, im-
plement, and refine their bases of production, and the actions to perform them. BPM
embraces two kinds of knowledge: that needed to do a task, and the knowledge of
what to do when a process goes off track. BPM is the action side of the business, anal-
ogous to the things of business, which is what KM manages.1 Indeed, in this very man-
ner of verb-noun, we see similar failings and lack of attention for BPM as we see for
knowledge management.2 It is telling that service-oriented, knowledge-based busi-
nesses still do not see that the fundamental basis of their products is knowledge. At-
tending to the production and consumption of knowledge warrants as much atten-
tion to efficiencies as do the actions or processes on the factory floor. 

We first touched upon the subject of content workflows in Chapter 12. Here, I give

1 BPM may also refer to business process modeling. We retain the management sense here, noting the model-
ing part only comes after thinking through the management portion.

2 The exception to this observation is advanced manufacturing. Some of these businesses, inherently action-
oriented, have pioneered BPM’s related cousin of manufacturing process management. However, it is an 
open question whether manufacturing businesses are better at KM as well.

325

https://en.wikipedia.org/wiki/Manufacturing_process_management
https://en.wikipedia.org/wiki/Business_process_management


A KNOWLEDGE REPRESENTATION PRACTIONARY

better detail to these flows and argue that knowledge management itself deserves
business process management. Ideas in Peirce and KBpedia enable us to better repre-
sent actions and events,  critical  aspects of workflow. We will see real differences
from BPM once we learn how to incorporate it into our actual, daily workflows.

 We may group BPM activities in many ways but, fundamentally, they represent
how to  satisfice multiple business  objectives,  not always in concert.  The goals  of
profit and public service, for example, are not weighed equally by companies and
non-profit institutions. A business process initiative should consider a scope that at
least includes:

1. A logical conceptual model of process and terminology for the business process
agreed by the user community of workers and managers;

2. An agreed design and implementation plan; 

3. Technology support to implement that system; 

4. How users and administrators interact with the system, including user inter-
faces and approval steps and actions; and 

5. Agreed and documented process and governance. 

Initiatives require both semantic technologies and management commitment. 
Today, however, we are not even at the preliminaries. For the majority of compa -

nies,  agreed workflow procedures for business processes or operational workflow
management systems do not exist. Gaps arise because BPM deals with abstract pro-
cesses and intimately involves people, work practices, and management. Workflows
cut across organizational boundaries and thus need to be attentive to terminology
and semantics. To raise the question of ‘what is your workflow?’ is to disrupt the
workflow of your standard knowledge worker. Many BPM efforts are bass-ackwards.
We do not need a separate application upon which to focus our ‘workflow’ attention.
We need workflow considerations rooted in how we currently work. While it is OK to
disrupt the knowledge worker for a short period to help understand their implicit
workflows, it is not OK to put in place BPM systems that divert knowledge workers
from their standard work.

Semantic technologies are essential to the task because shared communication is
at the heart of workflow management. Semantic business process management has
been a steady research interest over the past 15 years or so (see Heppe et al. for one
of the seminal early papers1). One theme is the potential role of ontologies in BPM.2

Through this work we learn the imperative of incorporating ‘action’ in our ontolo-
gies and the need to handle branching and merging in evolving workflows. Unfortu-
nately, however, besides some notable research initiatives from Europe, we have not
seen broad commercial success for semantic BPM.

Concepts and Definitions

We focus on digital  c  ontent   in the context of BPM for knowledge work,  which
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refers  to all documents, datasets, records within them, the ontologies used by the
system, and internal control vocabularies and structures. A content lifecycle embraces
all content stages and workflow steps within those stages, from inception to use. In
its entirety, we capture a content lifecycle by the complete controlled vocabulary and
sequencing of all stages and steps. A content stage is a broader concept than workflow
step and represents a state within the content lifecycle ranging from experimental to
working to archived. Figure 12-2 is one example of various content stages.

A state is an instantiation of a workflow step that represents a change in content
or an evaluation of it. (For example, a manager approving the release of content even
without making any changes to the actual content.) An event is an occurrence that
causes a change in state. A w  orkflow   is a sequence of connected steps representing a
business activity where each step follows without delay or gap and ends just before
the next subsequent step may begin. A workflow step is a discrete step in a workflow
that has  an explicit  label,  where the general  progression proceeds  from creation
through editing and review to approvals. Workflow step is a narrower concept than
content stage within a content lifecycle. We organize workflows around discrete and
definable business objectives such as authoring, harvesting (ingest), archiving, and
the like. Upon completion of various workflows, we may deem the content ready for
different stages in a content lifecycle. In an authoring workflow, for example, new
content may proceed from creation to editing to completion of tagging and then re-
view  (with  potential  approval).  Approval  of  authored  content  thus  represents  a
change in the content stage from working to readiness for public release and use. 

We can thus see the ‘stages’ of a content lifecycle as a broader organizing frame-
work than the individual ‘steps’ of the workflows we embed within these content
stages. All workflows, though individual steps may differ, share the basic conceptual
progression of drafting or creation proceeding through editing or modification and
then to testing and review before acceptance for public use or readiness. Because of
these conceptual similarities, we can develop and share controlled vocabularies to
represent these progressions across workflows, preferably using consistent terminol-
ogy we draw from actual work practice.

We need to intimately relate these stages and steps to governance and quality
control. We introduce known checks, reviews, and sign-offs into the workflow to en-
sure releases meet the organization's quality standards. ‘Business processes’ are the
combination of an orderly progression in workflows with governance. By adopting
such BPM practices, we help ensure the repeatability and generalizability of our or-
ganizational efforts. 

Providers have developed workflow engin  es   to keep these specifications persistent
and to execute some of them, incorporating the various decision rules and triggers
that  enable  the  progression  to  proceed  step-by-step  through the  workflows.  The
workflow engine is a software application that manages and executes modeled com-
puter processes, and thus provides a coherent and standard way for specifying vari-
ous business workflows and then executing them depending on the governance and
quality checks desired by the organization. We may base events or triggers for mov-
ing from state to state within the progression on user or manual review, timing or
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duration checks, applications of scripts or automated tests, and the like.  Workflow
management is the collection of processes and governance by which we oversee the
entire content lifecycle, including guidance for how steps progress across the cycle
and how we conduct reviews and approvals. 

We  may  represent  these  steps  and  activities  with  controlled  vocabularies  or
graphic notations. BPEL (business process execution language) was the leading stan-
dard  in  the  early  days  of  service-oriented  architectures.  Today,  BPMN (business
process model and notation) is the leading approach whereby we use graphical edi-
tors to create visual workflows that generate XML instructions to the workflow en-
gine. Optionally, we may represent the individual steps in a workflow process using a
work breakdown structure (WBS), a management approach used for many decades.

The BPM Process

The business process management (BPM) cycle should begin with a l  ogical    m  odel  ,
starting, in the case of KM, from the viewpoint of content lifecycle and work stages.
We should involve creators and users of the content, especially including responsible
managers, in agreeing to the major stages and terminology of this model, as well as
transition and decision points for state changes. We need to inspect and define spe-
cific stages of this cycle; adding steps to the process requires consultation with the
stakeholders. The products of this part of the cycle are the initial controlled vocabu-
laries and representations of content stages, similar to what we show in Figure 12-2.
The result of this process creates the ‘backbone’ to the overall BPM effort.

We then need to express this logical model and its controlled vocabulary and ter-
minology in an ontology to take advantage of semantic technologies. The stages and
steps naturally lend themselves to class specifications. Review and approval levels
become properties, all again governed by the agreed common vocabularies. At this
juncture,  we  advise  to  discuss  and  decide  upon  required  or  optional  annotation
guidelines and metadata for events and state transitions. Noting the name of the ap-
proving employee and timestamps are a couple of standard fields. Rejection or re-re-
view steps may warrant more elaborate notes. Some of these annotation standards
may require input from legal counsel or be attentive to the regulatory requirements
of the business.

It is important to balance current terminology in use with consistency across the
full business process for:

 Content lifecycle stages; 
 Workflow steps;
 Events; 
 Actors (agents) and roles; and
 Transitions and alerts. 

We must update the logical model and ontologies to reflect any changes to the con-
ceptual model. The net result should be an updated workflow model in specification
form that uses consistent terminology. This model will now become the baseline for
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workflows moving forward, which we may further refine or update or use as tem-
plates for other workflows as needed. 

We configure the workflow engine in parallel to this effort. The major aim is to
add the workflow logic and business rules, in addition to the install and configura-
tion parameters. Many proprietary and open source workflow engines exist for both
BPEL and BPMN, though choosing the right one is a complicated task involving a
panoply of  anticipated functions  and the types  of  integration desired with  other
tools (such as graphical changes to a BPMN specification flowing through to the en-
gine). As noted earlier, we have seen semantic integrations in research projects, but
we appear to lack turnkey off-the-shelf systems that incorporate semantics. Aside
from the need to integrate a workflow engine, prior chapters provide the guidelines
for one.

Optimal Approaches and Outcomes

One has to wonder about the relatively low uptake of BPM for knowledge manage-
ment functions. I think we can point to two reasons for this lack. First, as we dis-
cussed for the lack of use of information and knowledge in  Chapter 3, managers do
not have a  bred-in-the-bones belief in the importance of process and workflows in
knowledge management. Somehow we know we are involved with important tasks of
discovery and pursuit of knowledge, but we do not understand these are purposeful
and refinable activities. Second, I think the implementation of BPM has been bass-
ackwards. Business process or workflows are not applications; they are an articula-
tion of what we do. Recording or changing workflows must occur at the point of
work, not in a separate app. A workflow system that gets used must be unobtrusive
and linked to the content work at hand. This point-of-action imperative means we
should split the BPM functions into atomic operations distributed across current ap-
plications, all governed by consensual workflows and terminology.

We need to embed state transitions and state designation changes into existing
workflow screens. We need to look to our major content platforms (word processors,
spreadsheets, content management systems, and the like) and find where we can em-
bed simple workflow-related functionality. Some of this may be as simple as record-
ing  state  transitions;  others  might  be  specific  tabs  or  operations.  Plug-ins  are  a
proven  model  and can  emit  simple  data  structs  recording  their  actions,  invoked
manually or automatically depending, to a REST-ful Web service linked with the con-
tent ontology. From a UI perspective, this should be done consistently in context
with the host tool for all workflows. Some of these activities, such as editing or man-
aging ontologies (knowledge graphs), tagging content, mapping content, or further
refining terminology and semantics, are new tasks and not merely state changes of
current tasks. These functions become a bit more complicated Web services, as we
discussed in Chapter 12.

Based on today’s standards, it would be wise to link our ontology design to some
form of meta-model that would enable us to talk directly with BPMN. This notation
covers the range of known and anticipated BPM and workflow activities and states.
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Third-party tools allow users and analysts to inspect and modify workflows graphi-
cally and to emit their specifications in canonical forms.3 A good design would let
users and analysts examine and refine workflows directly.

What we are seeking is a framework and workflow that naturally allows us to
present all existing and new content through a pipeline that extends from authoring
and review to metadata assignments. Making final assignments for subject tags from
the candidates and then ensuring we correctly assign all other metadata may be ei-
ther eased or impeded by the actual workflows and interfaces.  The trick to  such
semi-automatic processes is to get these steps right. Analysts need manual overrides
when suggested candidate tags are not right. Sometimes new terms and entries are
found when reviewing the processed content;  these need to be entered and then
placed  into  the  overall  knowledge  graph  as  discovered.  The  process  of  working
through steps on the tag processing screens should be natural and logical. Some ac-
tivities benefit  from very focused,  bespoke functionality, rather than calling up a
complicated or comprehensive app.

In business settings these steps need to be recorded, subject to reviews and ap-
provals, and with auditing capabilities should anything go awry. Potential revision
means there needs to be a workflow engine underneath the entire system, recording
steps and approvals and enabling things to be picked up at any intermediate, sus-
pended point.  These support requirements tend to be unique to each enterprise.
Thus, we favor an underlying workflow system that can be readily modified and tai-
lored — perhaps through scripting or configuration interfaces. We also want version
control systems for our knowledge graphs so that we may record, compare, and roll-
back changes as required.

Respect for workflows is also a first principle, expressed in two different ways.
The first way is that we should not unduly disrupt existing workflows when intro-
ducing interoperability improvements. While workflows can — and should — be im-
proved or streamlined over time, initial introduction and acceptance of new tools
and practices must fit with existing ways of doing tasks to see adoption. Workers re-
sist jarring changes to their existing work practices. The second way that workflows
should be respected is the importance of being aware of, explicitly modeling, and
then codifying how we do tasks. This focus becomes the ‘language’ of our work and
helps define the tooling points or points of interaction as we merge activities from
multiple  disciplines  in  our  domain.  These  workflow  understandings  also  help  us
identify useful points for APIs in our overall interoperability architecture. These con-
siderations provide the rationale for assigning metadata to characterize our informa-
tion objects and structure, based on controlled vocabularies and relationships as es-
tablished by domain and administrative ontologies.

Peirce’s guidelines and KBpedia provide some unique strengths to a BPM initia-
tive. Events, states, roles, and actions are well-characterized and structured. We have
repeatedly seen the semantic technology influence in KBpedia, an essential perspec-
tive  for  capturing  consensus  and  terminology  related  to  business  processes  and
workflows. We have put forward a ‘pay-as-you-benefit’ strategy for incremental test-
ing and adoption of new scope and functionality, an approach that also fits well with
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implementing what may prove to be a broad, or business-wide, BPM implementation
plan.  Moreover, from an architectural standpoint, we have put forward a WOA de-
sign that supports atomic and distributed functionality interacting via Web services,
the only approach that makes logical sense for a workflow management system.

An effective BPM system would bring tangible benefits in three ways. The first is
that for us to gain efficiencies by climbing the learning curve, we must have a docu-
mented business process that we can repeat and refine. The second benefit is that we
gain a basis for learning about learning. Today, knowledge gets produced. Still, we
have little insight into how to do it  nor how we can do it  better.  The third  and
longer-term benefit is that with a better understanding of states, actions, and events,
we provide a possible entry point into real-time knowledge supervision. Processes
are a Thirdness, and mediation is a dynamic process of what exists and how chance
and change may affect it.

SEMANTIC PARSING

Parsing is the identification and segregation of string symbols into the constructs
of a formal grammar.1 A  formal grammar is a set of rules for how to process these
symbols, often including defined classes (lexemes) to which the processed symbols
may be assigned, the aggregate of which is called the lexicon. The processing of text
is like Pac-Man chewing through tokens in either left-right or right-left directions,
top-down or bottom-up, by character, word or phrase, deciding at each token how to
transform it  or  terminate.  The  parser  might  be  simple,  perhaps  relying  only  on
heuristics or  regular expressions and seeking only to define token boundaries. The
parser might be quite sophisticated and based on machine learning of the optimal
methods and parameters to parse domain content for specific domain purposes.

Different NLP methods may benefit from different parsers or grammars. Some
output from the parse such as tables, trees, or vectors may be suitable for different
purposes or content. The tree structure, for example, is a proven storage structure
for parsed documents and Web pages. Some  parser generators can also effectively
operate in ‘reverse,’ in which case they may perform as compilers (for computer lan-
guages) or syntax or grammar checkers (for languages) or theorem provers (if logic
based). Thus, much research is potentially transferrable among disciplines.2 

Lexical analysis is often the first stage of parsing, wherein the system ‘chunks’ or
tokenizes the string into lexical units. For natural language understanding, the lexi-
cal constructs are parts-of-speech, word senses, sentence structure (syntax), and the
like. These constructs intimately link to the formal grammar. Parsers need to se-
quence the string in specific ways and often rely on recursion to keep the algorithm
simpler and better performing. The recursion method may thus impose other re-
quirements on chunking order or storage or perhaps add pre- or post-processing

1 The word grammar is derived from a Greek word meaning ‘writing,’ though at one time the knowledge of 
Latin grammar was viewed as endowing one with magical power, from which arose our word glamour.4

2 In many areas of computational linguistics, care should be taken when comparing findings from the con-
tributing disciplines. 
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steps.  We may impose simplifications or feature reductions to  keep the language
analysis decidable or have it complete in acceptable time. Circumstances of use may
also  require  us  to  attend  to  other  tasks  during  the  parse  steps,  including
normalization,  word  forms,  word  segmentation,  stemming,  case  adjustments,
lemmatization, or sentence detection (end, beginning).

Formal grammars have different degrees of expressiveness. Once we process a
natural language into a formal grammar, its reverse translation may not retain the
same expressiveness, making the grammar ‘lossy.’ We may choose to accept some
loss, since capturing the full expressiveness of natural language may require larger
and more complicated formal grammars with weaker performance and greater stor-
age.5 Parsing and their accompanying grammars are the keys to  n  atural language  
understanding. Peirce has much to offer in these areas, though toolmakers have yet
to exploit parsers and grammars based on Peircean principles to any real degree.

A Taxonomy of Grammars

At the  syntax  level,  we can classify  grammars  into  phrase  structure  (or  con-
stituency)  ones  and  dependency  ones.6 The guiding  idea  behind  constituency
grammars is that groups of words may act as a single unit, such as a noun-phrase
(NP) or verb phrase (VP). Dependency parsing can express word dependencies (such
as some semantic relationships) and is getting more attention because of its suitabil-
ity to some forms of machine learning. Dependency parsing works well for natural
languages that have free word orders (e.g., Turkish, Czech). Dependency parsing can
also be used to generate treebanks, which have become popular reference structures
for use by tokenizers  or text  annotators.  Example dependency grammars include
word grammar, fu  nctional generative description  , and link grammar.1 However, the
more common parsers use constituency grammars.

A formal grammar provides a set of transition rules for evaluating tokens and a
lexicon of types that can build up, or generate, representative language structures.
The  tokens  are  either  terminal  or  symbolic,  with  the  terminal  ones  causing  the
process to continue to the next token or to stop entirely. Formal grammars act like
abstract  machines (or  automata).  Automata  theory,  the  basis  of  finite-state
machines, is also closely related in that an automaton is a finite representation of a
formal language that may be an infinite set. Grammar with a larger lexicon of types
or more sophisticated steps encourages more straightforward representations and
better generalizations, including recursion, to reduce evaluation times. 

Categorial  grammar,  a  constituency  grammar  derived  from  the  simply  typed
lambda  calculus,  is  based  on  types  and  is  built  according  to  the  principle  of
compositionality, wherein we understand complex expressions from the meaning of
their components and the rules (grammar) of their construction. This grammar is a
phrase-structure grammar, better known as a context-free grammar, in which a ter-
minating symbol never appears on the left-hand side of a transformation step. Con-

1 Nivre argues that a dependency grammar is not a grammar formalism, rather a specific way to describe the 
syntactic structure of a sentence.7
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text-free languages are the theoretical basis for the syntax of most  programming
languages.

Since formal grammars are a branch of formal language, we can draw upon a rich
mathematics literature of theory, constructs, and algorithms. In the 1960s, theoreti-
cal research in computer science on regular expressions and finite automata led to
the  discovery  that  context-free  grammars  are  equivalent  to  nondeterministic
pushdown automata.8 This discovery led to the interaction of formal grammars with
compiler  construction.  It  also  led  to  the  design  of  de  terministic  context-free  
grammars that  could  be  parsed  sequentially  by  a  deterministic  pushdown
automaton, a requirement in early programming language designs due to computer
memory constraints. 

Noam    Chomsky   was  the  first  to  formalize  the  idea  of  the  hierarchical  con-
stituency with a phrase-structure grammar in 1956, which he proceeded to expand
upon and develop over the ensuing decades, called  the  Chomsky hierarchy,9 which
splits into four types. Deterministic context-free grammars (DCFGs), an intermediate
grammar in the Chomsky hierarchy, are a proper subset of the context-free gram-
mars, which can derive from deterministic pushdown automata. As benefits, we can
parse DCFGs in linear time, and a parser generator can automatically generate them. 

For natural languages, practitioners favor context-free grammars, another inter-
mediate type in the Chomsky hierarchy. Here is a sampling of the methods or gram-
mars that have emerged from context-free grammars (CFGs): 

 Affix grammar  ,
 Attribute grammar  ,
 Categorial grammar  ,
 CYK algorithm  ,
 Earley algorithm  , 
 Generalized context-free grammar  ,
 Generalized phrase structure grammar  ,
 Head-driven phrase structure grammar  ,
 ID/PL grammar  ,
 GLR parser  , 
 Lambek calculus  ,4

 Lexical functional grammar  ,
 LL parser  ,
 Minimum recursion semantics  ,
 Parsing expression grammar  , 
 Pregroup grammar  ,
 Phrase-structure grammar  , and
 Stochastic context-free grammar  .

Categorial grammars create fixed lexicons that assign a category (type) to each
symbol and inference rules for what type of symbol follows, sufficient to specify a
particular language grammar. The CYK algorithm is widely taught and implemented
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and is a good basis for understanding context-free grammar aspects.10 Head-driven
phrase structure grammar (HPSG) marks entries with a hierarchy of types. As more
rules get added to HPSG, the approach takes on the form of what researchers call a
construction grammar. Minimal recursion semantics is a meta-level language for de-
scribing semantic structures in a typed formalism that the authors claim is an easy
way to decompose,  relate and compare semantic  structures.11 In phrase-structure
grammars feature sets are attribute-value pairs, where the value may be single, mul-
tiple, or complex, including lists, sets, or functions.1 Another nice aspect of a feature
structure is that we can represent them as a directed acyclic graph (DAG), with the
nodes corresponding to the variable values and the paths to the variable names. Fur-
ther, we can effectively transform every context-free grammar (CFG) into a  weakly
equivalent one without unreachable symbols (unprocessed tokens in the string). 

Researchers strive to find a sufficiently expressive grammar, perhaps with some
heuristics for rare edge cases, to capture and re-write back natural language suffi-
cient for effective communication. It is clear that some features of languages are not
context-free. It turns out, as Joshi showed for some leading-edge grammars, that we
need only capture partial aspects of context-sensitivity to obtain sufficient expres-
sivity, what he classed as mildly context-sensitive grammars. Here are some promi-
nent options:

 Combinatory categorial grammar  ,
 Embedded pushdown automaton  ,
 Head grammar  ,
 Linear-indexed grammar  , and
 Tree-adjoining grammar  .

We may associate the elements of combinatory categorial grammar (CCG, which is
grounded in  combinatory logic), such as verbs or common nouns, with a syntactic
‘category’ that has a function with specified arguments and a type of result.12 CCGs
combine descriptive adequacy — that is, applicability to the constructions and inter-
pretations of a wide range of diverse languages — with explanatory adequacy, in the
sense of having the fewest expressions to obtain an adequate level of theoretical lin-
guistic competence. This level of ‘mildly context-sensitive grammars’ is the current
‘sweet spot’ within the Chomsky hierarchy for trading off performance with expres-
siveness. The generalized linear context-free rewriting system has proven an enabler
for formulating and testing new grammars at this leading edge of performance.

Not all formal grammars are generative, either. Constraint grammars are entirely
rule-based, often embracing hundreds of rules. Constraint-based grammars state the
rules that are disallowed, with many acting as constraint analogs to standard genera-
tive models. Functional theories of   grammar   try to model the way language is used in
communications under the assumption that formal relations between linguistic ele-
ments are functionally motivated. 

1 We talked of this simple data struct in Chapter 9.
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Computational Semantics

So, we now have a broad view of the mechanics of formal grammars and parsing,
but what about the meaning of language, its semantics? We can see the processing
rules and approach; we still need to understand the semantics of the chunks involved
and their contribution to a representation of meaning.  Computational    s  emantics   is
the  study  of  how  to  automate  the  process  of  constructing  and  reasoning  with
meaning representations of natural language expressions.13 Semantic parsing breaks
natural language into logical forms14 — that is, an unambiguous artificial language —
with the logic intended to express the meaning of the language components.1 Shal-
low semantic parsing uses discriminative models, like recurrent neural networks, to
label the roles in a sentence. 

Joachim Lambek was one of the pioneers of the mathematics of sentence struc-
ture and syntax and formulated many algebraic approaches of early computational
linguistics using his Lambek calculus. He acknowledged that the idea behind this ap-
proach could be traced back to Charles Sanders Peirce’s ideas about valency in chem-
istry.4 Lambek grammars, built using the Lambek calculus, extend basic categorial
grammars. The Lambek calculus helped stabilize approaches and notations and was a
forerunner to Montague grammar. 

The central idea of Richard Montague’s first paper in 1970 was to frame linguistic
semantics as a homomorphic mapping between two algebras, one syntactic and the
other semantic. In a series of three papers in the early 1970s Montague2 fleshed out a
formal theory that represents the standard theory for computational semantics for
most of the last of the 20th century. We call this basis the Montague grammar (MG).5

Montague expressed the semantics of the source into a logical form based on a the-
ory of the semantics. He provided a functional mapping between the syntax and the
logical form that preserves the structure and equivalences. While the statement of
this approach seems straightforward, maintaining the homomorphism (same shape)
between the forms is the tricky part.2 The intensional logic of Montague grammars is
a typed lambda calculus.3 Before Montague, linguists had no methods for assigning a
compositional semantics to natural language syntax due to the mismatch with first-
order logic. Montague’s type theory represents a solution to Gottlob Frege’s desire to
use function-arguments as the basic ‘glue’ to combine meanings, a view unknown in
linguistics at the beginning of the 1970s, yet now viewed as standard.17

Montague grammars have been a stepping stone in many different directions.
One direction is that MGs presume a tree structure, which favors  FSTs, HMMs, and
other finite state methods of syntax analysis.5 Another direction is to generalize into
algebraic terms, making the system more functional with better information theo-
retics. One direction has been to combine different ideas of semantic primes as the
starting lexicon. 

Much of the work in semantic linguistics has focused on the commonalities be-

1 For a sample detailed description see SLING, a frame-based semantic parser using a dependency grammar.15

2 Montague’s contributions came to an untimely end when he was violently murdered at age 40.

3 This makes these grammars well suited to functional languages like Lisp.
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tween human languages. One way is to use semantic primes, a basic list of primitives
under which to categorize terms. Anna Wierzbicka first posed these ideas in a semi-
nal work  in 1972.18 The  universal dependencies provide shared starting points be-
tween scores of human languages. The ‘universal semantic tagset’ (a different con-
cept) provides a (growing) set of cross-language primitives.19 These initiatives show
how  data  gathering  and  comparisons  between  human  languages,  made  available
through the Web, are remaking how computational semantics may move forward.

Three Possible Contributions Based on Peirce

Let us now weave Peirce and his potential contributions into the narrative. Con-
sistent with the Peircean guidelines through this book, we should look to be:

 Real —  Peirce  advocated  empirical  truth  for  describing  and  organizing  the
things in the world. Definitions or arrangements based solely in the mind are
psychological and not phenomenological. Hewing to a test of reality means what
we retain should be true in relation to what we have already modeled, helping
to ensure our methods remain consistent and coherent;

 Organized according to the  universal  categories — continuing to maintain rea-
soned splits into Firstness, Secondness, and Thirdness may offer some surpris-
ing keys and insights for our knowledge representations going forward;

 Logical — since logic is at the heart of the Peircean view. Logic fits well with the
ideal of formal grammars;

 Consistent with the logic of relations — Peirce has already provided us with signif-
icant guidance in his identification of relations and his logical treatments of
them, including algebraic notions to inform modeling;

 A good entity-attribute distinction — we have already pointed to the importance of
separating out attributes (a Firstness) from entities (a Secondness);

 Capable of distinguishing generals from particulars — we want discrete class-level
types (generals, a Thirdness) and item-level (particulars, a Secondness) ones;

 Attentive to the  sign representativeness in Peircean semiosis — Peirce’s ten sign
classes (see Table 2-2), or even analysis of his later 28- and 66-sign classifications,
are a rich target for applying mathematical or logical analysis for teasing out
rules for analyzing problems;

 Reflective of the probabilistic nature of truth — we should favor learning models
that support inductive reasoning and allow the use of probability distributions
to characterize some nodes; and 

 Contextual — in that we capture both the intensionality and extensionality of our
lexemes and chose word senses based on the overlap with accompanying text. 
The inclusion of inference and background world knowledge support this aim.20
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I discuss below three different approaches by which we may embrace these Peircean
guidelines in whole or part. I present the approaches in relative order of complexity
of  implementation,  starting  with  the  simplest.  We  begin  with  Peircean  part-of-
speech  tagging,  move  to  machine  learning,  and  then  conclude  with  a  dedicated
Peircean grammar. We can also combine these three approaches in various ways.

#1 - Peircean POS Tagging

The first and most direct incorporation of Peircean themes likely resides in relat-
ing  these  constructs  to  off-the-shelf  part-of-speech  taggers.  One  quick  approach
might be to map an existing schema to the KBpedia components, which we have al-
ready organized in  a Peircean manner.  Chen, the originator of  the  E-R modeling
ideas,  understood the entity-attribute  split  well.  I  have taken Chen’s  mapping of
word senses 21 and related it to existing KBpedia components:

Word Sense KBpedia Component

common noun
proper noun

transitive verb
intransitive verb

adjective
adverb

concept / type / entity /event
entity/event

relation
attribute
attribute

attribute (property)

Table 16-1: Simple POS Mapping

These senses map pretty well but lack consideration of sub-types within entities,
external relations or types. They also neglect many of the ‘gluing’ parts-of-speech
such as determiners, conjunctions or prepositions.22 Some modifications to an E-R
model approach might be undertaken to embrace the full structure of languages bet-
ter as found in some reference tagsets, but that is a demanding, manual task. Ninio,
in a recent review informed by Peirce, also put forward an approach to syntactically
label parts of speech.23

We need to go deeper into Peirce’s ideas about signs, language, and grammar to
understand how a Peircean approach to POS tagging might better proceed.  Peirce
had strong interests in word categories, more from a semantic than syntactical per-
spective, with original ideas about common nouns, proper nouns, pronouns, verbs,
and prepositions.24 Peirce understood a sentence as a formal proposition split into
two fundamental parts, the subject and the predicate (1902,  CP 2.318).1 In a formal
proposition,  the subject  is  definite.  Subjects  often  begin  as  indefinite  individuals
(such as ‘selectives’,25 e.g., some person), proceed as better understood and character-
ized into a definite individual (a ‘proper noun,’ e.g., Jimmy Johnson), and then may be
related to a type, a definite general (a ‘common noun,’ e.g.,  football coach). (1905, MS

1 By formal proposition I mean a sentence in the indicative mood; “for a proposition is equivalent to a sen-
tence in the indicative mood” (1903, CP 2.315), for which Peirce was mostly concerned. Contrast this to the 
other moods (1893, CP 2.291) or ‘quasi-propositions’, see below.
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280:41)  However, common nouns are not universal,26 with proper nouns providing
the ultimate subjects.27 Some predicates bring with them the need to also specify a
direct object as a complement to the intended subject, as in ‘Cain killed Abel.’ (1899,
CP 2.230) Other sentence constructions may also require multiple subjects through
the use of conjunctions (‘Bob and Mary went shopping’) or triadic relations (‘Bob do-
nated a scholarship to Mary’).

It is these kinds of constructions that help instruct what Peirce meant by a predi-
cate, or what he termed a rheme. A rheme is an ‘unsaturated’ term (1902, CP 2.317),
meaning it stands as the function within a propositional phrase that lacks (is ‘blank’)
a subject. Here is Peirce’s definition for verb:

“A verb, being understood in a generalized sense, may be defined as something logi-
cally equivalent to a word or combination of words, either making a complete propo-
sition,  or  having certain  blanks,  or  quasiomissions,  which being filled  each with a
proper name, will make the verb a complete proposition.” (1896, NEM 4:278)

Peirce goes on to say that “The places at which lines of identity can be attached to
the verb I call its blank subjects.” (1898, NEM 4:338)

This idea of blank subjects, and the role of the index in relation to them, is one of
Peirce’s pivotal perspectives. As Nöth notes, “indexical signs had traditionally not
been associated with the concept of representation, and indeed, the terminological
tradition had been to subsume only iconic and symbolic signs under this term.” 28

Peirce helps show and generalize the range of relations between things,  between
subjects and predicates, which indicate ranges of determinacy or selectiveness. We
see, for example, that we may characterize clauses, verb and noun phrases, preposi-
tions,  indicatives,1 adverbs,  and  adjectives  according  to  their  indexicality  and
whether the subject is determinant. 

Of course, the initial split of sentences into subject and predicate masks the fact
their syntax may be somewhat complex. Peirce applies the same logic, though, to
noun phrases and verb phrases as well as to other constructs he calls ‘quasi-proposi-
tions.’ This construct, which Peirce named a dicisign or dicent, is information-bear-
ing and adds further characterization to its subject. When decomposed, a dicisign
acts like a value pair with its two signs, like a full proposition, providing a function
sign (predicate) and a denotation sign (subject). The subject may itself be an index or
indeterminate, one of the reasons why Peirce called them ‘quasi-propositions.’ Like
Peirce’s viewpoint of the  breadth of  information,  the  dicent sinsign points to more
characteristics, or attributes, of the intended subject. Like the depth of information,
the dicent indexical legisign points to subsumption (‘ ___ is a man’ implied by the man
common noun) or external relations.  Hilpinen provided some of the first detailed
analysis of how Peirce viewed the proposition.29 

Table 16-2 combines these insights to characterize Peirce’s ten signs linguistically.
Note that the order in this table changed from Table 2-2 where the dominant ordering
was qualisign-sinsign-legisign (consistent with Peirce’s 1903 ordering in his Syllabus

1 Such as this, that, something, anything.
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[EP 2:294-295) to rheme-dicisign-argument (consistent with Peirce’s 1904 ordering in
a letter to Lady Welby [CP 8.341]):

Sign Name
(redundancies) Comments KBpedia POS1

(Rhematic Iconic) Qualisign onomatopoeic,30 ideophones, un-
countable (mass) nouns (?) abstractives

(Rhematic) Iconic Sinsign indefinites, conjunctives, disjunc-
tives attributes N, VI, ADJ,

ADV

Rhematic Indexical Sinsign direct experience, relations external relations DT, N,VT

(Rhematic) Iconic Legisign metaphors, puns, analogies, dia-
gram-like, genres (?) associations N, VI, ADJ,

ADV

Rhematic Indexical Legisign demonstratives, pronouns, proper 
names particulars N, VI

Rhematic Symbol (Legisign) common nouns types N, AUX

Dicent (Indexical) Sinsign ‘quasi-propositions’ for adjectives, 
adverbs, modifiers (in depth) attributes NP, VP,

ADJP, ADVP

Dicent Indexical Legisign ‘quasi-propositions’ for information
in breadth

external relations, 
subsumption, is-a NP

Dicent Symbol (Legisign) proposition (full), sentence OPEN NP + VP

Argument (Symbolic 
Legisign) multiple sentences graph measures ---

Table 16-2: Peirce’s Ten Signs for KR Relation to Linguistics

The sense that emerges is that Peirce’s strong links to information and represen-
tation mean there is much of value in Peirce’s linguistic views to KR and knowledge
management. While the information in this section could be used to set different
bases for labeling syntactic categories, it may be better to logically continue the ef-
fort to develop a tokenizer more attuned to Peirce’s unique views, as I discuss next. 

#2 - Machine Learning Understanding Based on Peirce

The index acts as a reference to the object, ultimately representing an individual
thing (including individual collections). (EP 2:407) The interpretant must have some
previous  (or  ‘collateral’)  acquaintance  with  the object  to  identify  that  individual
thing, what Peirce termed ‘collateral observation.’2 By this term, Peirce meant “previ-
ous acquaintance with what the Sign denotes.” (EP 2:494) Nothing of this observation
is psychological since the interpretant contributes no part to the observation. The
collateral observation plays a parallel role to context but is not the same. Collateral
observation is central to disambiguation since presently observed characters may be
compared with previous observations to separate out identities. Collateral observa-

1 I view these assignments as provisional. There is not much in the literature (or Peirce directly) on these as-
signments. I anticipate further research to refine these assignments somewhat.

2 Peirce also termed this collateral experience, collateral information, and collateral acquaintance.
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tions extend beyond the boundaries of the sentence.
Context and most arguments also extend beyond the boundaries of the sentence.1

If we are to hope for acceptable levels of  natural language understanding through KR
formalisms, we must also tackle these issues of collateral observation, context, and
the reasoned argument. To get at these aspects we perhaps want to combine some
form of semantic parser, better attuned to our organization of KBpedia by the uni-
versal categories and types, and machine learning, possibly leveraging knowledge su-
pervision, as we discussed in Chapter 4. 

 A semantic parser requires us to formulate a semantics, including language con-
struction, and then to learn how to apply it to new content with acceptable computa-
tional times.14 Sarbo and Farkas suggest a rather simple parsing method grounded in
their interpretation of Peirce.30 I agree with the authors that we want simple models
because most formal models of natural language are too complex. I also like their ap-
proach  using  a  pushdown  automaton,  which  is  more  capable  than  a  finite-state
machine. However, I do not agree with their grammar basis or some of their con-
struction rules. We have a different mindset and structure in KBpedia in the univer-
sal categories and typologies.

A couple of approaches look promising for next steps.  One of the approaches,
combinatory categorial grammar (CCG), we introduced above. The other approach,
Lambek categorial grammar (LCG) is closely related. CCG is an efficiently parseable,
yet linguistically expressive grammar formalism.  Because of its strong lexicon ap-
proach and suitability to types, CCG should be a good match with the typology design
of KBpedia. Researchers have developed a probabilistic CCG from question-answer
pairs using supervised learning from ontologies and knowledge bases.31 As shown for
transitive verbs, we can substitute meaning vectors as the learning basis.32 Perhaps
more promising is a tensor-based semantic framework that can be “seamlessly inte-
grated” with CCG for a “practical, type-driven compositional semantics based on dis-
tributional representations.”33 Edward Grefenstette’s thesis provides excellent guid-
ance on how to relate distributional representations of meaning to CCG.34 

Another useful aspect of KBpedia is the availability of a text corpus (largely from
Wikipedia) for all of the reference concepts in the system. By leveraging this content,
we can create distributional representations that enable us to overcome fixed-pair
inputs (such as question-answer) used to train many of these CCGs. This additional
distributional  component  improves  generality  beyond  the  fixed  input  vocabulary
used in training, making it more suitable for open-vocabulary applications.35 Lastly,
CCGs warrant testing against KBpedia due to the availability of open source imple-
mentation kits. OpenCCG is perhaps the best known, with helpful online tutorials.

Though invented before CCGs and overlooked for a period, LCGs provide a simpler
and more transparent mapping between phrase-structure trees, dependency struc-
tures, and semantic terms. 36 CCGs, in practice, have tended to need a large number
of non-categorial rules, making them harder to understand and less generalizable.36

One trend we see in computational linguistics is to combine logical and statistical

1 Of course, it is possible to write out full syllogisms in the confines of a single sentence, but most often argu-
ments are made over multiple sentences.
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approaches to natural language.1 Logical, or compositional, approaches relate syntac-
tical phrases to the meanings of their parts and how they are combined. These are
the traditional approaches of semantic parsers to map messages to logical  forms,
which lend themselves to dealing with inference, ambiguity, and vagueness. On the
other hand, statistical approaches, including machine learning, focus more on the in-
dividual word and phrase meanings or broader notions of content (and context) be-
yond the sentence.39 What is exciting about a combined approach is that we can look
at the compositional and semantic aspects of our language, mapped into the catego-
rial perspectives of Peirce’s logic and semiosis, and then convert those formalisms to
distributions over broad examples provided by KBpedia’s knowledge.

#3 - Peirce Grammar

At a more speculative level, we can look to going to the heart of the matter: fully
adopting Peirce’s views on logic and relations regarding how we specify our gram-
mars. Full adoption is not such a wild idea since there have been attempts and probes
around a ‘Peircean grammar’ for at least a couple of decades. The basic advantage of
this approach is that we do not need to shoehorn Peircean ideas into existing ap-
proaches, but are free to set up a clean infrastructure from scratch.

Patrick Suppes was one of the first to question the traditional approach of trans-
lating sentences into the formal notation of predicate logic.40 He observed that infer-
ence in predicate logic bore little resemblance to the informal reasoning in English.
He began to explore what he called  extended relation algebras, which were a model-
theoretic semantics for English that used neither quantifiers or variables, but only
constants on operations on sets and relations. 

Chris Brink, in his 1978 thesis,  was explicit about the influence of Peirce. 41 He
noted that Peirce’s first 1870 paper on the “Logic of Relatives”42 was instrumental in
guiding his  thinking.  Peirce  classified logical  terms into three classes  — absolute
terms,  (simple)  relative terms, and conjugatives  — which correspond roughly to
monadic, dyadic, and triadic predicates.43 Within a decade Brink and his students
were referring to this approach as the ‘Peirce algebras,’ a term which has stuck. One
of the basic operations was the ‘Peirce product,’ R:A, which is the set of all elements
related by R to some element in A (a basic matrix algebra). Relatives, as dyadic rela-
tions, can be represented algebraically rather than by conventional model theoretics.
We can perform arithmetic over the individual identities. Boolean modules formalize
the calculation of  sets  interacting with relations via  the Peirce product.  This  ap-
proach enables us to treat the system as a two-sorted algebra (Boolean algebra with
multiplication via the Peirce product). A two-sorted algebra makes explicit the im-
plicit relation of concepts and roles, a concern for early KR languages for AI.

Eventually, this algebra was shown able to express the semantics of reasoning
over sets, including for subsumption relations.44 Using an algebraic approach to rea-
son over sets becomes simpler since equations are sufficient to capture first-order

1 One genesis of this grand synthesis is a 2010 paper by Coecke et al., “Mathematical Foundations for a Com-
positional Distributional Model of Meaning,”37 first unveiled in 2008.38
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reasoning using the calculus of relations for unions, intersections, and complements.
De Rijke provided proof for full Peirce algebras in his 1993 thesis and showed the link
with dynamic modal logics.45 This confluence of work naturally led to efforts to try to
find a grammar to match this algebra.

Michael Böttner defined a ‘Peirce grammar’ in 2001 and applied it to natural lan-
guage.46 It is a context-free grammar. The basic idea of the grammar is a direct one
using Peirce algebra. Rather than translating the semantics first to a set-theoretic
metalanguage, the Peirce grammar uses only algebra with the equation sign ‘=’ as the
single predicate. A Peirce grammar allows computations on strings directly rather
than to variables or a pre-computation of an intermediate representation. Böttner
introduced tree structures to handle more efficiently the inherently ‘flat’ nature of a
Peirce algebra representation (useful for programming languages; it may be less so
for natural language sentences, which are shorter). A Peirce grammar can support
references outside of the sentence, again as a function of storage design, attractive
for context. Böttner presents a strong definition of a Peirce grammar for English (see
his Table II). While the approach neglects some nuances, the approach does appear to
handle the ideas of context and language fragments (such as clauses) in a computa-
tionally efficient manner. 

Hans Leiß later took up some of the weaknesses and provided some extensions to
overcome them.47 Leiß noted that prior Peirce grammars had only modeled exten-
sional aspects of natural language. It was unclear how to handle intensional aspects
(attributes) or verbs with propositional arguments. The ‘trick’ of coding linguistic
strings directly means the unit boundaries (sentence, paragraph, arbitrary window)
should be finite; the limits have not been tested. Leiß raises questions about whether
and how we should handle noun phrases.1 On the other hand, the approach does not
use variables. We can construct meanings from a few basic ones with equality and
subsumption capturing the relations between sets and their relations. Leiß, as well,
looks to the tree structure to provide a more tractable approach to the inherent ‘flat’
structure of a pure Peirce grammar. As Leiß concludes:47

“Peirce grammar differs from other grammatical theories in that meanings are first-
order objects, abstract sets and relations, which can only be composed by algebraic
operations. Extended Peirce grammar adds a further sort of meanings, finite trees of
sets and relations, from which constituent meanings can be extracted. These ‘second-
class’ values have no ontological motivation—they only serve as intermediate stages
in the evaluation of sentences, allowing us to give the context of an expression an ac-
cess to the meaning constituents of the expression.” (p. 162)

From there, for more than ten years,2 the trail goes cold. Relational grammars, in
general, have gone out of favor. It very well may be fundamental limits exist with re-
lational grammars, or particularly Peirce grammars, that relegate them to a minor
footnote in the history of computational linguistics. However, I suspect that Peirce
grammars, as they may evolve, may yet prove a seminal player in that history.

1 We are also missing a design or approach to compositionality.

2 Leiß’s publication is dated in 2009, but based on a conference paper presented in 2005.
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COGNITIVE ROBOTICS AND AGENTS

Robotics is a potential testbed for Peircean ideas about representation and KBpe-
dia. One reason, of course, is an economic demand for greater autonomy combined
with  cognition.  Advances  tend  to  appear  where  the  most  imperative  resides.  A
Peircean approach will also aid robotics designers, and much in the ideas about rep-
resentation will benefit robotics, particularly in the interface with cognitive systems.
Further, while language is symbolic, cognition and understanding are more. For the
idea of Thirdness to become a general, it must pass the threshold of the habitual as
Peirce explains the matter. An emphatic ‘Fire!’ is five symbols combined into a string
symbol on a page, but shouted in a dark theatre with an intonation that signals real
fear, invokes immediate action.  There is nothing to ‘think through’ before acting,
though that starts immediately as well.

C  ognitive robots   embrace the ideas of learning and planning and interacting with
a dynamic world. When combined with mobility and perception sensors, this leads to
greater autonomy. When combined with speech recognition and natural language
understanding (NLU), we can instruct the robot by voice commands or interact with
it as a virtual agent for Q & A or knowledge assistance. Over time, researchers have
tested and designed various cognitive   architectures   for integrating cognitive and ro-
botic functions, with a preference for a modular design with generic interfaces.48

Time coordination for how long it takes modules to process their tasks require
trade-offs in expressiveness; simpler and more abstract representations appear best.
We also see open-source, modular robot languages and operating systems emerge
(such as the Robot Operating System, ROS), the Robobrain knowledge engine initia-
tive  and even relatively  affordable  autonomous robot  platforms (such as  iCub or
ROBOTIS OP2) emerge. Cognitive robotics promises to improve our baseline under-
standing of knowledge representation. Perception of and interaction with the exter-
nal world are integral to sign communications. If we are ever to approach anything
like true natural language understanding, then we need to incorporate all of the uni-
versal  categories in our reality.  Autonomous,  cognitive robots are the anvil  upon
which these understandings may get hammered out.

Lights, Camera, Action!

Peirce’s semiosis is not consistent with traditional computational views of cogni-
tion, which are a variation of input-output models. How the symbol gets interpreted
is neglected by the traditional view.49 Peirce’s semiosis more closely represents the
theory of  e  mbodied cognitive scien  ce  , which differs from the tradition in pursuing
three goals. These goals are to elevate the importance of the body as an explanation
for various cognitions, to understand the body as a contributor to cognition, and to
broaden our view of how agents use the environment to affect cognition (mood light-
ing, staging, arranging and positioning).50 

Similar to our example of shouting ‘Fire!,’ awareness of the environment is an es-
sential factor in cognition. The h  omunculus argument   of the little man interpreting
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things in our heads must be grounded in some external reality to keep that interpre -
tation from cascading into an infinite regress. This ‘interpretation solely in the mind’
is the fallacy in Descartes’ worldview, as well as in the traditional view of cognition.
Successful cognition also requires learning, and epigenetic robots depend on percep-
tions or kinesthetics (learning from physical actions) for the new information from
which to learn. The forming of symbols from that learning is one way to achieve a
certain Thirdness. Further, as long as we look at knowledge as only symbolic, we will
miss the importance of Firstness and Secondness. Everything has its place.

Peirce indeed acknowledged the unconscious reaction and the role of instinct in
signs and how we interpret them. Peirce believed in an unconscious aspect of the
mind (1903, EP 2.188; 1903, CP 5.108; 1882, CP 7.64;  c.f., 1902, CP 7.363-367). Formal
reasoning, the sphere of theory and analytics and logic, is part of the conscious mind,
but the realm of action and pragmatic knowledge is a function of the unconscious.

“Reasoning, properly speaking, cannot be unconsciously performed. A mental opera-
tion may be precisely like reasoning in every other respect except that it is performed
unconsciously. But that one circumstance will deprive it of the title of reasoning. For
reasoning is deliberate, voluntary, critical, controlled, all of which it can only be if it is
done consciously. An unconscious act is involuntary: an involuntary act is not subject
to control; an uncontrollable act is not deliberate nor subject to criticism in the sense
of approval or blame. A performance which cannot be called good or bad differs most
essentially from reasoning.” (1903, CP 2.282)

Peirce held belief, which we saw in Chapter 2, as an important aspect of knowledge
that occurs mostly in the unconscious. (1905, EP 2:336; 1905, CP 5.417) Habitual stuff
and reactive actions are part of common sense and not (generally) part of conscious-
ness. However, the informal ‘reasonings’ in the unconscious are often more reliable
than conscious reasoning and logical inference:

“Association is the only force which exists within the intellect, and whatever power of
controlling the thoughts there may be can be exercised only by utilizing these forces;
indeed, the power, and even the wish, to control ourselves can come about only by the
action of the same principles. Still, the force of association in its native strength and
wildness is seen best in persons whose understandings are so little developed that
they can hardly be said to reason at all. Believing one thing puts it into their heads to
believe in another thing; but they know not how they come by their beliefs, and can
exercise no control over the inferential process. These unconscious and uncontrolled
reasonings hardly merit that name; although they are very often truer than if they
were regulated by an imperfect logic, showing in this the usual superiority of instinct
over reason, and of practice over theory. They take place like other mental sugges-
tions  according to the two principles  of  similarity  and connection in experience.”
(1886, CP 7.453)

I think two implications arise from Peirce’s observations. First, we begin to unveil
a bit of the role of knowledge bases as ‘belief’ bases insofar as they make direct asser-
tions. We can know that balls are round and squares have four equilateral sides and
can act on these assertions without further analysis. Second, ‘instinct,’ as ephemeral

344

https://en.wikipedia.org/wiki/Kinesthetic_learning
https://en.wikipedia.org/wiki/Developmental_robotics


POTENTIAL USES IN DEPTH

as it is to define, plays an essential role in guiding actions. Still, what does Peirce
mean by ‘instinct,’ one of his most common descriptors?

Peirce first sees two sources of instinct, one innate or biological, the result of evo-
lution, what he calls  inherited, and the other one of infant training and inculcation,
what he calls traditional. Peirce notes that instincts may change when circumstances
change, but that is rare since circumstances hone our instincts over generations of
trial and error. Peirce splits his views of logic into a logica docens, the logic of theory
and study, and a logical utens,51 the internal logic of practice as influenced by instinct.
The first logic is that of the scientist, the second that of the practical actor.

“If an action, although complicated, has very often to be performed, and is almost al-
ways performed in nearly the same way, it frequently happens that we have an in-
stinct for performing it. The action of walking is an example; the action of throwing a
stone is another. Now instinct is remarkable for its great accuracy, as well as for its
adaptedness to its purpose; and it would usually be unwise in the extreme to attempt
to perform such an act under the guidance of theory; for theories have to be studied
very long and very deeply before they can be entirely freed from error; and even then
the application of them is laborious and slow.” (n.d., NEM 4:187)

Peirce did not view instinct as inferior to formal reasoning while noting that “action
in general is largely a matter of instinct.” (1905, CP 5.499) He saw that “we all have a
natural instinct for right reasoning.” (1902, CP 2.3) 

“If so, in what respect do you hold reasoning to be superior to instinct? Birds and bees
decide rightly hundreds of times for every time that they err. That would suffice to
explain their imperfect self-consciousness; for if error be not pressed upon the atten-
tion of a being, there remains little to mark the distinction between the outer and the
inner worlds.” (1902, CP 2.176)

“Of excessively simple reasonings a great deal is done which is unexceptionable. But
leaving them out of account, the amount of logical reasoning that men perform is
small, much smaller than is commonly supposed. It is really instinct that procures the
bulk of our knowledge; and those excessively simple reasonings which conform to the
requirements of logic are, as a matter of fact, mostly performed instinctively or ir-
reflectively.” (1902, CP 2.181)

Peirce saw that instinct and abduction are linked.1 (1903, CP 5.171) While Peirce held
that pragmatism is a conscious discipline (and thus in the realm of  logica docens),
there may be instinctual aspects of how we conduct it. We often instinctively screen
through the multiplicity of abductive options to select those for more expensive in-
ductive attention.  We need to  evaluate  options  and potential  outcomes  based on
practical measures and instincts. Our conscious reasonings need to incorporate an
inspection and role for instinct.

Practical  implications for robotics  arise from this  discussion.  We can envision

1 Note that Peirce specifically excludes consideration of instinct in the scientific method and its quest for 
truth, since all assumptions should be open to question. Pragmatism, however, adds action and instinct to 
the equation.
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sub-systems that deal with direct knowledge — based on the ABox and perhaps direct
typing — tied more closely to the perceptual sensors and kinesiology of the agent.
These subsystems may be linked more closely to instinctual actions such as resource
acquisition, risk avoidance, and protection. Perhaps this perspective offers insight
into how to monitor the external environment while all inputs are within expected
parameters versus outliers or disruptions that may need to trigger more analytic
modules. It would also seem that instinctual sub-systems may be more attractive ar-
eas for rules-based approaches or unsupervised machine learning. The underlying
idea of instinct is what is the best way to act under given contexts and events.

Cognitive versus reaction sub-systems also require different time demands and
impose different time delays. Robot information architectures need to define mod-
ules and optimize effectiveness-performance trade-offs. The integration of NLU re-
quires complements to perceptions and actions, a current area of active interest.52

The conventional perspective is to ask how we can better import existing knowledge
representation and systems into cognitive robots. However, perhaps we need to pose
that question the other way around. 

“Wisdom lies in nicely discriminating the occasions for reasoning and the occasions
for going by instinct. Some of my most valued friends have been almost incapable of
reasoning; and yet they have been men of singularly sound judgment, penetrating and
sagacious.” (1903, CP 7.606)

Grounding Robots in Reality

One  way  to  avoid  the  homunculus’  infinitely  regressing  explanations  is  to
‘ground’ our symbols into some base truth, called the ‘symbol grounding problem.’
Grounded symbols no longer have free variables and become the ‘indecomposable’
primitives of the representation. The implication is that higher-order concepts are
derivations of lower-level concepts until the concepts can no longer be divisible. Ul-
timately, for cognitive robots, the processing of natural language, be it from com-
mands or interacting with humans, must be part of this grounding. It may take the
form of a semantic model underlying both language and robot commands that is also
related to robotic perception and actuation; see combinatory categorial grammars52

as mentioned in the prior use case. Cangelosi sees the symbol grounding problem in
similar  terms,  where  the  questions  of  perception  and  action  and  how  they  are
represented mentally is a core issue in cognitive robotics.53 Deb Roy sees the repre-
sentation more broadly, embracing the idea of symbols as included in semiosis based
on Peircean concepts.54 He also wants to specifically relate “sensing and motor action
to words and speech acts.”

While essential considerations, some argue that the question of grounding goes
well beyond mere representation.55 The nature of the question is evolving to one of
meaning1 and how that relates to grounding. That is because for a cognitive robot to

1 Note that meaning has many connotations including existential, linguistic, philosophical, psychological, 
semiotic, of life, and others. Our use embraces all of these senses.
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formulate new knowledge and symbols, there must be some guiding principles or
functions that go beyond a representative grounding. Some mechanism must exist
for emergence or how incorporation of new information may lead to new actionable
knowledge. Roy, again, tries to get at this question by posing a split of ‘meaning’ into
referential, functional, and connotative forms. He prefers a simple base language, mod-
eled on that used by young children.56 Stanton believes we should try to mimic the
evolution of the brain and include intrinsic ‘value systems’ in autonomous robots to
process novel experiences.57 Stanton nibbles around the edges for how Peircean con-
cepts may contribute to this task. We have also tended to overlook the adaptability
and emergent properties of symbol systems for robotic intelligence.58 Ricardo Gud-
win, steeped in Peircean viewpoints, takes the question to a different level when he
notes that we do not have a symbol grounding problem, yet one of grounding to the
icon.59 Icons are a representation of Firstness and perhaps better intimately tied to
the inputs of sensors in robots. 

No matter how framed, KBpedia provides three solid contributions to the ground-
ing problem. First, of course, it provides a complete and coherent view of representa-
tion,  knowledge,  actions,  events,  and  relations.  Second,  KBpedia  as  a  reference
knowledge graph grounds the system ultimately in Firstness (monads), Secondness
(particulars),  and  Thirdness  (generals)  no  matter  where  we  start  the  inspection.
Third, we construct KBpedia with multiple knowledge bases that can provide the ref-
erence base for both analytic and instinctual purposes and tests. The structural re-
cursion and richness of KBpedia structure  appear an excellent fit for cognitive ro-
botic architecture and purposes.

Robot as Pragmatist

As crucial as symbol grounding is, I think we still may be missing the pivotal im-
portance of robotics to knowledge-based artificial intelligence. Up to this point, we
have framed the challenge as one of getting AI advances — including ideas of repre-
sentation and meaning — into robots. What of the other way around?

What this short survey has shown us is that robots may bring their own contribu-
tions to these questions. We have seen how important it is to integrate the dimen-
sions of perception and action into a cognitive processing robot. We recognize both
analytic (cognitive,  thinking) tasks and activities more dominated by instinct and
kinesthetic action. Cognitive robots demand that we deal with the challenges of inte-
gration, coordination, and choreography. I think it fair to observe that doing KBAI in
a purely symbolic, unembodied state is likely to provide an incomplete testbed for
knowledge, cognition, and learning. Human intelligence evolved in a mobile, interac-
tive environment. We may need to embed artificial intelligence in dynamic, physical
contexts to approximate similar capabilities.

Parisi et al. argue how multimodal representations can improve the robustness of
recognizing actions, action-driven perception, sensory-driven motor behavior, and
human-robot interaction.60 Robot vision systems are providing a different perspec-
tive on how we need to represent best things like shapes, vectors, and objects. Brain
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studies show that 'what' and 'where' have separate recognition areas, lending cre-
dence to the need for modularity. 

Cognitive robots promise to help us improve our knowledge representations and
AI efforts. Cognitive robots may be the drivers for better capabilities in planning, co-
ordinated  action-cognition  responses,  human-robot  interactions,  and  learning  to
perform an ever-growing list of functions in real-time settings. Solving the compet-
ing demands for cognitive robots can only make us more pragmatic.

Chapter Notes
1. Hepp, M., Leymann, F., Domingue, J., Wahler, A., and Fensel, D., “Semantic Business Process Management: A 

Vision Towards Using Semantic Web Services for Business Process Management,” e-Business Engineering, 
2005, Beijing, China: IEEE, 2005, pp. 535–540.

2. Smith, F., and Proietti, M., “Ontology-based Representation and Reasoning on Process Models: A Logic Pro-
gramming Approach,” arXiv:1410.1776 [cs], Oct. 2014.

3. See, for example, the open-source Yaoqiang BPMN editor (http://bpmn.sourceforge.net/).

4. Lambek, J., From Word to Sentence: A Computational Algebraic Approach to Grammar, Polimetrica sas, 2008.

5. Kornai, A., Mathematical Linguistics, London: Springer, 2008.

6. This split somewhat reflects a similar one for discriminative versus generative machine learning models. Dis-
criminative models, also called conditional models, are a class of models used in machine learning for mod-
eling the dependence of unobserved (target) variables y on observed variables x. Example discriminative 
models include support vector models (SVM), conditional random fields (CRF), neural networks (xNN), lin-
ear regression, maximum entropy Markov, and random forests. Generative models use algorithms to try to 
reconstruct how the original data was generated, often through probabilistic means. Example models in-
clude hidden Markov models (HMM), naive Bayes, generative adversarial networks (GANs), Gaussian mix-
ture model, and other types of the mixture model.

7. Nivre, J., Dependency Grammar and Dependency Parsing, Växjö University, 2005.

8. See https://en.wikipedia.org/wiki/Deterministic_context-free_grammar.

9. Also known as the Chomsky–Schützenberger hierarchy.

10. Lange, M., and Leiß, H., “To CNF or Not to CNF? An Efficient yet Presentable Version of the CYK Algorithm,” 
Informatica Didactica, vol. 8, 2009, pp. 1–21.

11. Copestake, A., Flickinger, D., Pollard, C., and Sag, I. A., “Minimal Recursion Semantics: An Introduction,” Re-
search on Language and Computation, vol. 3, Jul. 2005, pp. 281–332.

12. Steedman, M., “A Very Short Introduction to CCG,” Unpublished draft note, Nov. 1996, p. 8.

13. Bos, J., “A Survey of Computational Semantics: Representation, Inference and Knowledge in Wide-Coverage 
Text Understanding,” Language and Linguistics Compass, vol. 5, 2011, pp. 336–366.

14. Liang, P., “Learning Executable Semantic Parsers for Natural Language Understanding,” arXiv:1603.06677 [cs], 
Mar. 2016.

15. Ringgaard, M., Gupta, R., and Pereira, F. C. N., “Sling: A Framework for Frame Semantic Parsing,” 
arXiv:1710.07032 [cs], Oct. 2017.

16. Hobbs, J. R., and Rosenschein, S. J., “Making Computational Sense of Montague’s Intensional Logic,” Artificial
Intelligence, vol. 9, 1977, pp. 287–306.

17. Partee, B. H., “Montague Grammar,” International Encyclopedia of the Social and Behavioral Sciences, N.J. Smelser
and P.B. Bates, eds., Oxford: Pergamon/Elsevier Science, 2001, p. 7 pp.

18. Wierzbicka, A., Semantics: Primes and Universals, Oxford University Press, UK, 1996.

348



POTENTIAL USES IN DEPTH

19. Abzianidze, L., and Bos, J., “Towards Universal Semantic Tagging,” arXiv:1709.10381 [cs], Sep. 2017.

20. Hassan, S., “Measuring Semantic Relatedness Using Salient Encyclopedic Concepts,” Ph.D., University of 
North Texas, 2011.

21. Chen, P. P.-S., “English, Chinese and ER Diagrams,” Data & Knowledge Engineering, vol. 23, 1997, pp. 5–16.

22. Tokenizers and POS taggers, plus any reference tagsets employed, should be attentive to syntax that is de-
clinable (noun, pronoun, verb, adverb)  The indeclinable terms (proposition, conjunction, interjection, par-
ticles, modals) are less of a problem since only single terms are required. Declensions of tense, case, plural-
ity or gender are very important topics in some languages, though I do not speak further of it here.

23. Ninio, A., “Learning a Generative Syntax from Transparent Syntactic Atoms in the Linguistic Input,” Journal 
of Child Language, vol. 41, Nov. 2014, pp. 1249–1275.

24. Nöth, W., “Charles Sanders Peirce, Pathfinder in Linguistics,” Digital Encyclopedia of Charles S. Peirce, Sep. 
2000.

25. A “selective” (1903, CP 4.408) is an indeterminant individual such as indicated by selective pronouns (any, 
every, all, no, none, whatever, whoever, everybody, anybody, nobody) or particular selectives (some, some-
thing, somebody, a, a certain, some or other, one) (1903, CP 2.289).

26. Peirce did not hold the common noun to be a universal POS (part-of-speech). He states, “I do not regard the 
common noun as an essentially necessary part of speech. Indeed, it is only fully developed as a separate part
of speech in the Aryan languages and the Basque, -- possibly in some other out of the way tongues.” (1904, 
CP 8.337).

27. Pietarinen, Ahti-Veikko, “Peirce’s Pragmatic Theory of Proper Names,” Transactions of the Charles S. Peirce So-
ciety, vol. 46, 2010, p. 341.

28. Nöth, W., “Representation and Reference According to Peirce,” International Journal of Signs and Semiotic Sys-
tems, vol. 1, Jul. 2011, pp. 28–39.

29. Hilpinen, R., “On CS Peirce’s Theory of the Proposition: Peirce as a Precursor of Game-Theoretical Seman-
tics,” The Monist, vol. 65, 1982, pp. 182–188.

30. Sarbo, J., and Farkas, J., “A Peircean Ontology of Language,” International Conference on Conceptual Structures, 
Springer, 2001, pp. 1–14.

31. Kwiatkowski, T., Choi, E., Artzi, Y., and Zettlemoyer, L., “Scaling Semantic Parsers with On-the-Fly Ontology 
Matching,” Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, 
Washington: Association for Computational Linguistics, 2013, pp. 1545–1556.

32. Clark, S., “Type-Driven Syntax and Semantics for Composing Meaning Vectors,” Quantum Physics and Linguis-
tics: A Compositional, Diagrammatic Discourse, 2013, pp. 359–377.

33. Maillard, J., Clark, S., and Grefenstette, E., “A Type-Driven Tensor-Based Semantics for CCG,” Association for
Computational Linguistics, 2014, pp. 46–54.

34. Grefenstette, E., “Category-Theoretic Quantitative Compositional Distributional Models of Natural Language
Semantics,” Ph.D., Balliol College, University of Oxford, 2013.

35. Gardner, M., and Krishnamurthy, J., “Open-Vocabulary Semantic Parsing with both Distributional Statistics 
and Formal Knowledge,” Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), Asso-
ciation for the Advancement of Artificial Intelligence, 2017, pp. 3195–3201.

36. Fowler, T. A. D., “Lambek Categorial Grammars for Practical Parsing,” Ph.D., University of Toronto, 2016.

37. Coecke, B., Sadrzadeh, M., and Clark, S., “Mathematical Foundations for a Compositional Distributional 
Model of Meaning,” Linguistic Analysis, vol. 36, Mar. 2010, pp. 345–384.

38. Coecke, S. C. B., and Sadrzadeh, M., “A Compositional Distributional Model of Meaning,” Proceedings of the 
Second Quantum Interaction Symposium (QI-2008), Oxford University Press, , pp. 133–140.

39. Liang, P., and Potts, C., “Bringing Machine Learning and Compositional Semantics Together,” Annual Review 
of Linguistics, vol. 1, 2015, pp. 355–376.

40. Suppes, P., “Direct Inference in English,” Teaching Philosophy, vol. 4, 1981, pp. 405–418.

41. Brink, C. H., “The Algebra of Relations,” Ph.D., University of Cambridge, 1978.

349



A KNOWLEDGE REPRESENTATION PRACTIONARY

42. Peirce, C. S., “Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the 
Conceptions of Boole’s Calculus of Logic,” Memoirs of the American Academy of Arts and Sciences, vol. 9, 1870, 
pp. 317–378.

43. Brink, C., “The Algebra of Relatives,” Notre Dame Journal of Formal Logic, vol. XX, Oct. 1979, pp. 900–908.

44. Brink, C., and Schmidt, R. A., “Subsumption Computed Algebraically,” Computers & Mathematics with Applica-
tions, vol. 23, Jan. 1992, pp. 329–342.

45. de Rijke, M., “Extending Modal Logic,” Ph.D., Universiteit van Amsterdam, Institute for Logic, Language and 
Computation, 1993.

46. Böttner, M., “Peirce Grammar,” Grammars, vol. 4, 2001, pp. 1–19.

47. Leiß, H., “The Proper Treatment of Coordination in Peirce Grammar,” Proceedings of FG-MoL 2005, Edinburgh, 
Scotland: 2009, pp. 149–166.

48. Scheutz, M., Harris, J., and Schermerhorn, P., “Systematic Integration of Cognitive and Robotic Architec-
tures,” Advances in Cognitive Systems, vol. 2, Dec. 2013, pp. 277–296.

49. Steiner, P., “CS Peirce and Artificial Intelligence: Historical Heritage and (new) Theoretical Stakes,” Philoso-
phy and Theory of Artificial Intelligence, Springer, 2013, pp. 265–276.

50. Shapiro, L., “The Embodied Cognition Research Programme,” Philosophy Compass, vol. 2, Mar. 2007, pp. 338–
346.

51. Chiasson, P., “Logica Utens,” Digital Encyclopedia of Charles S. Peirce, Jan. 2001.

52. Matuszek, C., Herbst, E., Zettlemoyer, L., and Fox, D., “Learning to Parse Natural Language Commands to a 
Robot Control System,” Experimental Robotics, Springer, 2013, pp. 403–415.

53. Cangelosi, A., “Solutions and Open Challenges for the Symbol Grounding Problem,” International Journal of 
Signs and Semiotic Systems, vol. 1, 2011, pp. 49–54.

54. Roy, D., “Semiotic Schemas: A Framework for Grounding Language in Action and Perception,” Artificial Intel-
ligence, vol. 167, Sep. 2005, pp. 170–205.

55. Williams, M.-A., “Representation = Grounded Information,” Trends in Artificial Intelligence, T.-B. Ho and Z.-H. 
Zhou, eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 473–484.

56. Roy, D., “A Mechanistic Model of Three Facets of Meaning,” Symbols and Embodiment: Debates on Meaning and 
Cognition, M.D. Vega, A.M. Glenberg, and A.C. Graesser, eds., Oxford, UK: Oxford University Press, 2008, pp. 
195–222.

57. Stanton, C. J., “The Value of Meaning for Autonomous Robots,” Proceedings of the Tenth  International Confer-
ence on Epigenetic Robotics: Modeling Cognitive  Development in Robotic Systems, B. Johansson, E. Sahin, and C. 
Balkenius, eds., Lund University: 2010, pp. 129–136.

58. Taniguchi, T., Nagai, T., Nakamura, T., Iwahashi, N., Ogata, T., and Asoh, H., “Symbol Emergence in Robotics:
A Survey,” Advanced Robotics, vol. 30, Jun. 2016, pp. 706–728.

59. Gudwin, R., “The Icon Grounding Problem,” International Journal of Signs and Semiotic Systems, vol. 1, Mar. 
2011, pp. 73–74.

60. Parisi, G. I., Tani, J., Weber, C., and Wermter, S., “Emergence of Multimodal Action Representations from 
Neural Network Self-Organization,” Cognitive Systems Research, vol. 43, Jun. 2017, pp. 208–221.

350



17

CONCLUSION

eirce posited a “third-grade of clearness of  apprehension” to better under-
stand a topic at hand, what he claimed as the ultimate expression of his prag-

matic maxim. One of the favorite quotes I have used in this book is Peirce’s first for-
mulation of this maxim:

P
“Consider what effects, which might conceivably have practical bearings, we conceive
the object of our conceptions to have. Then, our conception of these effects is the
whole of our conception of the object.” (1874, CP 5.402, EP 1:132, W 3:266)

Peirce came to believe that this initial formulation did not capture his exact intent.
Here is how Kelly Parker summarized it:1 

“In the proposal for Memoir 32, Peirce expressed his discomfort with this formulation
of the pragmatic maxim. He wrote that the paper ‘was imperfect in tacitly leaving it to
appear that the maxim of pragmatism led to the last stage of clearness’ (NEM 4:30). In-
deed, the phrasing of the maxim is potentially misleading. One might read this state-
ment as providing guidelines for an alternative means of defining concepts. If we think
of standard dictionaries as giving the ‘second-grade’ linguistic definitions of concepts,
we might take the pragmatic maxim as a guide to producing a super-dictionary of
‘third-grade’ definitions. Such a book (a ‘practionary’?) might endeavor to list all the
practical effects a thing could have in experience, and thus furnish the reader with a
better conception of the object.” (p. 182) (bold added)

Throughout this book, I have attempted to adhere strictly to this form, the first such
attempt to apply Peirce to the interpretation of a single concept, which, in our case,
is knowledge representation. This book is the first attempt to produce a practionary.

As I stated in the beginning, knowledge representation is a field of artificial intel-
ligence dedicated to representing information about the world in a form that a com-
puter system can utilize to solve complex tasks. We have explored this topic from
background to practice and then on to implications. In Part I, we set the stage for the
context of the concept by discussing the nature of information, knowledge, and rep-
resentation, as well as the challenges and opportunities facing KR. In Part II we pro-
vided a speculative grammar for KR, including the structural role of the universal
categories of Firstness, Secondness, and Thirdness, and the terminology, languages,
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logic, and models for knowledge representation. That foundation lets us discuss ex-
isting frameworks and KR constructs in typologies and knowledge graphs in Part III.
In our next part, we used these components to build KR and knowledge management
systems, including what to  construct and what to  test and best practices.  With a
working system in hand, we were then able in Part V to discuss fifteen possible appli-
cation areas of a Peircean approach to KR, covering informative examples in both
breadth and depth. These fifteen cases were in addition to the three main application
thrusts for this book in knowledge management, data interoperability, and knowl-
edge-based artificial intelligence. As we wrap up our survey of Peirce and KR, we con-
clude by teasing out some cross-cutting threads and implications from our journey.

I will let you, dear reader, judge whether this practionary achieved its objective of
attaining a “third grade of clearness of apprehension” covering “all of the conceiv-
able practical effects” of a Peircean interpretation of knowledge representation. For
me, the author struggling to understand a lone genius working in isolation more
than a century ago, I have found Peirce’s guidance invaluable. Now, as we wrap up
our discussion, I would like to stand back from this framework of a practionary and
offer some thoughts as to where this journey has led us. 

THE SIGN AND INFORMATION THEORETICS

Peirce’s understanding of semiosis and signs connects intimately with his views
and understanding of logic.  Both,  I  have argued, are themselves prescinded from
Peirce’s universal categories of Firstness, Secondness, and Thirdness. Indeed, I have
argued that the universal categories provide the overarching framework for how we
need to organize and categorize our world. The reality of the universal categories is
that fundamental.

In Peirce’s descriptions of prescission, which we introduced in Chapter 7:

“Now, the categories cannot be dissociated in imagination from each other, nor from
other ideas. The category of first can be prescinded from second and third, and second
can be prescinded from third. But second cannot be prescinded from first, nor third
from second. The categories may, I believe, be prescinded from any other one concep-
tion, but they cannot be prescinded from some one and indeed many elements. You
cannot suppose a first unless that first be something definite and more or less defi-
nitely supposed. Finally, though it is easy to distinguish the three categories from one
another, it is extremely difficult accurately and sharply to distinguish each from other
conceptions so as to hold it in its purity and yet in its full meaning.” (1880, CP 1.353)

By this understanding, we prescind Firstness and Secondness from Thirdness, which
Peirce reaffirms many places in other ways, often using the term ‘degenerate.’ Third-
ness, too, as we have seen, is where meaning resides and is also perhaps best charac-
terized as ‘continuity,’ the force which Peirce calls synechism.1

We certainly need to place knowledge representation in Thirdness. Knowledge

1 This topic is more fully discussed in Appendix A.
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representation is ultimately symbolic because we need to relate it to a computer. KR
also is tied intimately to meaning, since we have come to understand that knowledge
is information we believe and upon which we may act.

At the same time, we have ample evidence for information, the basis for knowl-
edge,  being energetic  and physical.  Shannon and following researchers  have pro-
vided quantitative ways and relationships for understanding the nature of informa-
tion, messages, transmission losses, and entropy. We have seen how structure is also
intimately related to this theory, providing the substrate by which free energy gets
dissipated in a high-energy input non-equilibrium system, characteristic of life here
on Earth. These ideas of structure and canonical forms further help us to think about
the architectural designs of our information systems.

Peirce’s  ideas  about  information  being  a  limit  function,  comprised  of  the  full
breadth and depth of what we can know about any given thing, approximate, for the
totality of things, what may be the limit of information in the absolute. It affirms
that much over which we may reason is best expressed as statistics or probabilities.
The absolute limit of information, though unknowable, should perhaps be estimable
on information theoretic bases.

As we first diagrammed in  Figure 2-1, I think a deep relationship exists between
Shannon’s information theoretics and Peircean semiosis. We have the building blocks
to tie together absolute information, messages and losses, recipient response, and
meaning and entropy. My intuition, still  to be tested, is that the absolute limit of
what we have come to understand as information is energetic and physical. Nadin,
also from a Peircean but different perspective, sees a similar complementarity be-
tween information processes and semiotic processes.2

In inspecting these relationships, we have seen the advantages of the simple over
the complex in our structures, and how recursion and automata make simpler pat-
terns act like engines. The combination of logic (broadly defined to include abduc-
tion as Peirce did) and mathematics and entropy, informed by the guidelines of the
universal  categories  and semiosis,  should  prove a  fruitful  playground for  musing
about knowledge representation and our tools to work with it. 

PEIRCE: THE PHILOSOPHER OF KR

I discuss Peirce the person and some of his unrelated aspects of philosophy in Ap-
pendix A. But, as our constant companion through this book, it is now apparent that
Peirce is something like a patron saint of knowledge representation. There has not
been a single topic within KR for which Peirce does not offer trenchant insights. This
illumination is not limited to the direct items of information, knowledge, and repre-
sentation. Most importantly, Peirce’s insights relate to how we think about and con-
duct knowledge representation, and how we choose practically amongst alternatives
moving forward.

It is not surprising that most perhaps best know Peirce is the founder of pragma-
tism, despite the depth and breadth of his contributions in other areas. The logical
endpoints of his inquiries most often lead to the practical aspects of how to act. Para-

353



A KNOWLEDGE REPRESENTATION PRACTIONARY

doxically, most still treat Peirce as a subject of theoretical discussion and rarely put
his guidance into practice. In computer science, for example, no working Peircean
semiotic systems exist to my knowledge, and the field has effectively ignored abduc-
tive reasoning. The lack of applying Peirce’s ideas of pragmatism to real problems
feels disappointing. We are overlooking manifest opportunities. It is time to square
this circle.

Knowledge and Peirce

Peirce wrote a series of papers arguing against a Cartesian view of the world, a
view that places truth solely in the mind and refuses to accept the primacy of exter-
nal reality.3 The world is not exclusively one of deductive logic. Objective truth can
be approximated by the scientific method. This approximation of truth can always be
the subject of inquiry based on different perspectives, or new facts or insights. Be-
liefs  imposed from without  or  driven by social  pressures alone are  dead ends to
knowledge and understanding. What is real is mostly external to us that we collec-
tively adjudicate through reason and consensus. How we think about, organize and
define our problem spaces is central to that process. In the words of Qiwei Chen:4

“Peirce teaches us that the human capacity for knowledge is both unlimited and lim-
ited. It is limited in the sense that perfect knowledge cannot be fulfilled in any one in-
dividual person and any one particular moment,  but  as the history of science has
shown, every presumed limit has been proved to break down and to be overcome by
the  progress  of  knowledge from generation to  generation.  If  it  is  considered as  a
process realized in all human beings both past and future, human knowledge is con-
stantly increasing and ‘may increase beyond any assignable point,’ that is, there is no
absolute limit that might restrict it. Indeed, ‘an absolute termination of all increase of
knowledge is absolutely incognizable, and therefore does not exist.’ (CP 5.330)” (p. 47)

Peirce insists that probabilities and chance amidst continuity also direct us to use
inductive and abductive logic to anticipate the future. Peirce provides clear guidance
on what is information, with meaning defined ultimately upon what we believe and
act. Information is a product function of what is intensional that characterizes some-
thing with what are extensional connections to external things. Through habit or re-
peated observations, we may come to believe this information sufficient to act, at
which point  we are  responding to  knowledge.  This  knowledge is  not  immutable,
though it does require a ‘surprising fact’ or loss of belief to stimulate new inquiry.
Abductive reasoning and then the choice of working hypotheses to test follows. 

Generating new ideas and testing the truth of them is a logical process that we
can formalize. Critical to this process is the proper bounding, definition, and vocabu-
lary upon which to conduct the inquiries. As Peirce argued, we need to express the
potentials central to the inquiries for a given topic through a suitable speculative
grammar. The guiding lens for how we do this thinking comes from the purpose or
nature of the inquiries at hand. In the case of machine learning applied to knowledge
bases, this lens, I have argued, should be grounded in Peirce’s categories of Firstness,
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Secondness,  and Thirdness,  all  geared to feature generation upon which machine
learners may operate. The structure of the system should also be oriented to enable
(relatively  quick and cheap)  creation of  positive  and negative training sets  upon
which to train the learners. In the end, the nature of how to structure and define
knowledge bases depends upon the uses we intend them to fulfill.5

We also see, however, that knowledge representation, while symbolic, is not lim-
ited to the realm of the symbolic. Some of our knowledge is unconscious or instinc-
tual and may be triggered by the dyadic kinesthetic or by the sudden alarm or alert.
The nature of the stimulus (or predicate) giving rise to these signals helps direct
what kind of signal and action-response might get triggered. Looking to embed our
efforts  to  understand  human  language  and  communication  in  robotic  testbeds
should help continue to guide our understanding of these factors.

These strands of argument point to Peircean insights about the nature of knowl-
edge. Peirce’s contributions extend to the representational as well. The general ideas
of signs and sign-making are the first level of contribution. We also gain much from
Peirce’s  concepts  of  denotations  and  indexicality.  The  rationale  for  splitting  our
predicates into the broad groupings of attributes, external relations, and representa-
tions is a significant advance over conventional upper ontologies. The fact we have a
working knowledge artifact, KBpedia, available for free to use in semantic technol-
ogy and knowledge representation instantiations is a crucial basis for testing and ex-
tending Peirce’s ideas about knowledge further.

Enticing connections occur between Peirce’s ideas and very topical fields in com-
puter science beyond machine learning, natural language understanding, and robot-
ics. Two of these are possible bridges between description logics and category the-
ory6 7 and the emerging field of homotopy type theory. We also have the links to the
many promising approaches to computational linguistics as discussed in Chapter 16. 

Time to Move from Theory to Practice

The semantic Web needs to play a central role in data integration and interoper-
ability.  Fortunately,  as  we  have  seen  in  other  areas,  semantic  technologies  lend
themselves to generic functional software that can be designed for re-use in most
any knowledge domain, chiefly by changing the data and ontologies guiding them.
This design means that we can build reference libraries of groundings, mappings,
and  transformations  over  time  and  reuse  them  across  enterprises  and  projects.
F  unctional programming languages   align well with the data and schema in knowl-
edge  management  functions  and ontologies  and DSLs,  domain-specific  languages.
These prospects parallel the emergence of knowledge-based AI (KBAI), which marries
electronic  Web  knowledge  bases  with  improvements  in  machine-learning  algo-
rithms.

We have ample evidence of the possible areas for which Peirce’s ideas may offer
unique and valuable insights to all areas of semantic technologies, knowledge repre-
sentation, and information science. It is time, after a hundred years and many books
and learned papers, for how we learn from and use Peirce to move from the theoreti-
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cal to the practical.
I hope that this practionary and KBpedia stimulate more practical use and testing

of Peirce’s insights. Whether KBpedia, an outgrowth of it, or something entirely dif-
ferent,  seeing  a  reference  standard  emerge  for  interoperating  across  multiple
datasets and communities would be a potent seed to nucleate still further insights
and understanding. We have not yet seen the catalyst that will trigger the cascade of
emergent properties one would see from the network effect. 

I think one of the reasons we have seen theory prevail over practice with Peirce is
the fear of failing, the intimidation of trying to encapsulate a working system that
captures the breadth and depth of C.S. Peirce’s genius. However, Peirce himself had a
pretty sanguine view of his limitations, as he stated in 1906 in “Pragmatism in Retro-
spect: A Last Formulation”:1

“I here owe my patient reader a confession. It is that when I said that those signs that
have a logical interpretant are either general or closely connected with generals, this
was not a scientific result, but only a strong impression due to a life-long study of the
nature of signs. My excuse for not answering the question scientifically is that I am, as
far as I know, a pioneer, or rather a backwoodsman, in the work of clearing and open-
ing up what I call semiotic, that is, the doctrine of the essential nature and fundamen-
tal varieties of possible semiosis; and I find the field too vast, the labor too great, for a
first-comer. I am, accordingly, obliged to confine myself to the most important ques-
tions. The questions of the same particular type as the one I answer on the basis of an
impression, which are of about the same importance, exceed four hundred in number;
and they are all delicate and difficult, each requiring much search and much caution.
At the same time, they are very far from being among the most important of the ques-
tions of semiotic. Even if my answer is not exactly correct, it can lead to no great mis -
conception as to the nature of the logical interpretant. There is my apology, such as it
may be deemed.” (CP 5.488)

Besides espousing ‘fallibility,’ Peirce took fallibility to heart. We have surely made
many mistakes in our efforts to apply Peirce’s guidance to a working knowledge rep-
resentation system in KBpedia. I have perhaps misunderstood what Peirce had to say
in  multiple  areas.  Likely,  some areas where we have accurately  followed Peirce’s
guidance may simply be wrong. We provide facilities on the KBpedia Web site to
communicate those mistakes to us and to participate in KBpedia’s ongoing improve-
ment. Charles Sanders Peirce, the philosopher of knowledge representation, would
undoubtedly prefer to see us struggle, fail, and improve upon his insights in making
our knowledge representations practical, than not try at all.

REASONS TO QUESTION PREMISES

One often finds at the end of a journey that what one thought they would dis -
cover or experience on the journey did not prove out. We learn things while on the
journey that may cause us to change our initial premises. We encounter new things

1 See also Buchler, p. 284,8
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and take forks in the road. These shifting directions are the idea of fallibility in ac-
tion, and it is also useful to look at why we got some of our premises wrong and what
we have learned.

I  remain  convinced  that  enormous  opportunities  exist  for  applying  Peircean
semiotics to knowledge representation. I  started with that premise, and end with
that premise. With half of the modern U.S. economy based on information, with a
rapidly growing percentage globally doing the same, figuring out how to turn that
information into knowledge and then to leverage that for economic benefit would be
a  Rosetta Stone. I  also began with the premise that the failures to adopt working
knowledge management systems were a combination of technology and culture. That
premise, too, remains unchanged, but I also do not have a better idea as to which of
culture or technology is more operative. What is clear is that a change in perspective
is required to unleash new growth, one which demands energy and management at-
tention. 

AI is a Field of KR

I have found Peirce’s idea of prescission powerful and subtle. It is powerful be-
cause it is an entirely logical, non-psychological way to decide a subsumption rela-
tionship.1 Prescission, or its verbs prescind or prescinded from, is the process of com-
paring two items and seeing if either may exist independent of the other. If so, we
say the independent one is prescinded from the dependent one; it is one way to de-
termine a subsumption relationship. The idea of prescission is subtle because, per-
sonally, I find getting the direction of the predicate correct is sometimes difficult,
and some cases require much thought to discern. In Peirce’s terms, ‘prescission’ is
not yet so general for me as being habitual.

When I began this book, I blithely assumed that knowledge representation was a
subfield of artificial intelligence. Every taxonomy that I have seen about AI subfields
and that included consideration of knowledge representation shows KR as a sub-
sidiary field. I frankly had never questioned the relationship.

 However, when considered, mainly using prescission, it becomes clear that KR
can exist without artificial intelligence, but AI requires knowledge representation.
We can only pursue artificial intelligence via symbolic means, and KR is the transla-
tion of information into a symbolic form to instruct a computer. Even if the com-
puter learns on its own, we represent that information in symbolic KR form. This
changed premise for the role of KR now enables us to think, perhaps, in broader
terms, such as including the ideas of instinct and kinesthetics in the concept. This
kind of re-consideration alters the speculative grammar we have for both KR and AI,
helpful as we move the fields forward.

So, rather than the definition at the beginning of this book as repeated a few
pages prior, we should now state knowledge representation is dedicated to symbolizing
information about the world in a form that a computer system can utilize to solve

1 Or a sibling relationship where precission works in both directions, as for red and blue, or squares and trian-
gles.
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complex tasks and useful to sub-fields such as artificial intelligence.

Hurdles to be Overcome

Unfortunately, many of the lessons learned deal with the impediments to effec-
tive knowledge use and management. Most of the critical obstacles to overcome are
not technological, rather social or attitudinal. We need to break away from dichoto-
mous or Cartesian thinking. We need to inculcate a better appreciation for informa-
tion and knowledge as assets, including the value of purposeful discovery and man-
agement. We need to understand the nature of signs and representation and commit
to the use of semantic technologies to bridge differences and capture meaning. These
are skills that can be learned. However, without the commitment of top-level man-
agers, incentives and processes will not be put in place to encourage their adoption.

Besides these failures of attitude and management, the manner in which we pro-
mulgate knowledge management in the organization fails for a further two reasons.
One failure is to view knowledge management as its own ‘application,’ somehow sep-
arate and independent of standard work tasks. As we have argued, we need to in -
clude distributed, specific functions within current applications, coordinated as ser-
vices to some form of governing workflow engine and ontologies. At the same time,
this realization also opens up opportunities across the board in business process im-
provements. Knowledge management is itself a leading candidate for these improve-
ments.

The second further failure is in not driving the KM function directly to the knowl-
edge workers and users. Knowledge nurturing, discovery, definition, and use should
be directly in the hands of those we pay for those responsibilities. KM, let alone the
questions of KR, should not be the responsibility of IT. (And RTFM while you are at
it.) Information technology has rightful responsibility for the security, operations,
and maintenance of the information infrastructure, and should hold sway on those
aspects for KM as well. Hegemony should stop there.

I noted before the advances shown in manufacturing in many of these areas. We
are also now witnessing how product and distribution fulfillment centers are starting
to see the fruits of automation and robotics. The next frontier is in the white collar,
knowledge-oriented portions of  the economy.  Here is  where the next  innovation
wave is due. Peircean approaches to knowledge representation combined with se-
mantic technologies are the bright path to follow moving forward.

Of Crystals and Robots

As first noted in Chapter 11, Peirce famously claimed thought does not necessarily
occur in the brain, that we may find thought in the work of crystals and bees, inani-
mate matter and insects. (1906, CP 4.551) We have also talked about its applicability
to robots and AI. The most important lesson to emerge from our investigations might
well be that some fundamental truths underlie the universal categories. During the
second great wave of artificial intelligence in 1988 Daniel Dennett wrote that:9 
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“AI is, in large measure, philosophy. It is often directly concerned with instantly rec-
ognizable questions: What is mind? What is meaning? What is reasoning and rational-
ity? What are the necessary conditions for the recognition of objects in perception?
How are decisions made and justified?” (p. 283) 

Peirce, I believe, gives us guidance on all of these questions. Still, as a voice of theory,
not yet validated by practice, Peirce may point the way, yet leaves many questions
tantalizingly open. 

Peirce understood graph structures. His language formulations and understand-
ing of relations are at the forefront of much current computational linguistic re-
search. His conception of mind embraced the external world if not was dominated by
it. His interest in moving algebra to geometric forms and then topology fits well with
the probability landscapes that now inform much thinking in machine learning and
statistical mechanics. His writing about logic machines and electrical computation
indicate he was anticipating much that has come to pass.1 His attempts to construct
more elaborate and structured sign systems foreshadowed many aspects of ontolo-
gies and knowledge graphs. We can construct every idea that Peirce advocated from
realities in the external world agreed to by the community. He was clear about the
fundamental concepts of reality, existence, actuality, being, truth, chance, and conti-
nuity. 

The neuroscientist Eugen Izhikevich in a recent debate with Roger Penrose said:10

“We are at the stage of understanding consciousness as we were for information be-
fore Shannon. We lack a theory and definition for it that is agreed as likely correct.”
That is a fair assessment. Hopefully, we have taken some tiny steps on the path to
that theory.

We want a theory grounded in reality, including quantum reality. We want a the-
ory that embraces Shannon’s information theory, yet one that extends its embrace to
include  meaning.  We want  a  theory  of  signification and  representation  that  can
model energy fluxes that extend from inanimate matter to human symbol systems.
We want a theory that captures the logic and message content of human language,
one that can effectively communicate a symbolic representation to computers. We
want a theory with a set of primitives that give us these capabilities while being
small and straightforward. It will take many minds and much tinkering to complete
the journey on this path that Charles Sanders Peirce has blazed for us.
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APPENDIX A:

PERSPECTIVES ON PEIRCE

harles Sanders Peirce (1839-1914), pronounced ‘purse,’ was an American logi-
cian, scientist, mathematician, and philosopher of the first rank. His profound

insights and writings spanned a half-century, and cover topics ranging from the na-
ture of knowledge and epistemology to metaphysics and cosmology. Well-known in
the Americas and Europe early in his career, his foibles, and challenges to social or-
thodoxies, led to a precipitous decline in his fortunes, such that he died nearly pen-
niless  and unable  to  publish.  Still,  Peirce  had a  deep influence  on many leading
thinkers of his time, and as transcription and publishing of his voluminous writings
moves to completion, an influence that will continue for generations.

C

My first attraction to Peirce began with my professional interests in the semantic
Web. 1 My earliest exposure to the semantic Web kept drawing my attention to ques-
tions of symbolic knowledge representation (KR). Like the genetic language of DNA in
biology, my thought has been that there must be better (more ‘truthful’) ways of rep-
resenting knowledge and information in digital form. My sense is that syntax or spe-
cific language is not the key, but that the basic building blocks of grammar and prim-
itives hold that key. We further need a set of primitives well suited to natural lan-
guage understanding, since humanity embodies so much of its cultural information
in text. Structured data, such as from databases, is not an appropriate starting point;
we critically need means to represent natural language. In Peirce, I have found the
guide for those interests.

I have maintained throughout this book that Peirce is the greatest thinker ever in
the realm of knowledge representation. Yet, KR, as a term of art, was not a phrase
used in Peirce’s time. Granted, Peirce wrote much on relations and representation
(via his semiotic theory of signs) and provided many insights on the nature of infor-
mation and knowledge, but he never used the specific phrase of ‘knowledge repre-
sentation.’ He never attempted to categorize knowledge such as what we have under-
taken with the KBpedia Knowledge Ontology (KKO), though he did make multiple at-
tempts to classify the ‘sciences’ (fields of study in today’s parlance). While Peirce had
more than a glimmer of an idea that reasoning machines might someday be a reality,
there was no need within his time to attempt to provide the specific representational
framework for doing so.
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Because of his influence — and his nearly constant presence throughout this book
— I wanted to share what I have learned about Peirce the person, the polymath, the
philosopher, and as a polestar guiding new directions in KR. I hope to convey a bit of
the perspective about why you, too, should study Peirce, and help add to the inter-
pretation of his fecund mind. I conclude this appendix with suggested resources you
may find helpful to study this most remarkable human thinker.

PEIRCE, THE PERSON

Charles S. Peirce was born into privilege in 1839 and was brought up among the
intellectual elite in Cambridge,  Massachusetts.  His father,  Benjamin Peirce,  was a
professor at Harvard and one of the prominent mathematicians of the 1800s. Charles
received a first-rate education, including much personal tutoring by his father, and
was given preference and sinecures at a young age, mainly through his father’s con-
nections.

Trained as a chemist at Harvard’s Lawrence Scientific School where he graduated
summa cum laude in 1863, Peirce was able to secure a deferment with his father’s as-
sistance from serving in the Civil War. Peirce was a working scientist for most of his
employed career at the Coast and Geodetic Survey, then perhaps the premier US gov-
ernment research facility, on gravitational differences around the globe, based on
meticulous measurements using pendulums, often of Peirce’s innovative designs. His
early writings in the mid-1860s in areas of logic and metaphysics received wide ac-
claim. He was frustrated in securing a teaching position at Harvard,1 but eventually
became a lecturer at Johns Hopkins University, which was innovating in American
graduate education, from 1879 to 1884, when he was summarily dismissed under un-
clear clouds of scandal. He subsequently had sporadic engagements in various entre-
preneurial activities and wrote and translated articles for hire, but never had a per-
manent position again. His last decades were spent writing at his Milford, Pennsylva-
nia home, Arisbe, which itself was in various stages of construction and disrepair
based on vacillating, but declining financial fortunes. By his death in 1914, he and his
second wife, Juliette, were essentially penniless, having been sustained in part due to
loans and charity from friends and family, orchestrated by his brother, James, him-
self a Harvard mathematician, and his life-long friend, William James. Peirce had no
children.

In a stellar biography, Brent often refers to Peirce as a dandy in his earlier years.2

Playing on the pronunciation of his name, two of Peirce’s favorite self-descriptions
were that he had ‘Peirce-istence’ and ‘Peirce-everence.’  He was certainly an icono-
clast,  and also flaunted society’s conventions,  living with Juliette before marriage
and after being abandoned by his first wife, Zina. Peirce was a prodigious writer and
very hard worker over fifty years, but was cavalier, if not unethical, in the abuse of
his positions and public funds. He was reportedly a user of morphine and cocaine, os-

1 In fact, due to enmity at Harvard, Peirce was barred from lecturing on campus for thirty years, only relaxed
when Peirce was in his 60’s. 
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tensibly for neuralgia, but a factor that may have contributed to his sometimes per-
plexing inconstancies. Peirce often pursued his intellectual interests at the expense
of his paid responsibilities. He created powerful enemies that ultimately kept him
from securing a professorship at a leading university, which he and his family be-
lieved his birthright. He made poor decisions concerning money and finances, often
disastrous ones, and died virtually penniless, with no fame and little notoriety. Still,
Peirce befriended and influenced many of the leading thinkers of his time, including
William James, Josiah Royce, John Dewey and Oliver Wendell Holmes.

After Peirce’s death, Harvard was scandalous in how it (mis-) handled his donated
papers and restricted access for many years to his unpublished writings,1 a continua-
tion of the vendetta brought by Charles W. Eliot, the longstanding Harvard president.
His  supposed  supporter  and  family  friend,  Simon  Newcomb,  routinely  undercut
Peirce. Thankfully, within two decades of his death, anthologies were published, and
his reputation and stature began to grow. The understanding of his insights and ac-
complishments continues to grow as researchers study and release his voluminous
unpublished writings. Peirce’s reputation now is the highest it has ever been in the
hundred years since his death, growing, and surely greatly exceeds whatever fame he
saw during life.

Peirce was often the first to acknowledge how he changed his views, with one set
of quotes from early 1908 showing how his thinking about the nature of signs had
changed over the prior two or three years.4 That example is but a small snapshot of
the changes Peirce made to his sign theories over time, or of his acknowledgments
that his views on one matter or another had changed.

Of course, it is not surprising that an active writing career, often encompassing
many drafts, conducted over a half of a century, would see changes and evolution in
thinking.2 Most Peircean scholars acknowledge changes in Peirce’s views over time,
particularly from his early writings in the 1860s to those after the turn of the century
and up until his death in 1914. Where Peirce did undergo major changes or refine-
ments in understanding, Peirce himself was often the first to explain those changes.
Many scholars have looked to specific papers or events to understand this evolution
in thinking. Max Fisch divided Peirce’s philosophy development into three periods:
1) the Cambridge period (1851-1870); 2) the cosmopolitan period (1870-1887); and 3)
the Arisbe period (1887-1914).6 Murphey split Peirce’s development into four phases:
1) the Kantian phase (1857-1866); 2) three syllogistic figures (1867-1870); 3) the logic
of relations (1879-1884); and 4) quantification and set theory (1884-1914). 7 Brent has
a different split more akin to Peirce’s external and economic fortunes.2 Parker tends
to split his analysis of Peirce into early and mature phases.8 It is a common theme of
major scholars of Peirce to note these various changes and evolutions. Some of this
analysis asserts breakpoints and real transitions in Peirce’s thinking. Others tend to

1 See further Nathan Houser, “The Fortunes and Misfortunes of the Peirce Papers.”3

2 Peirce’s lifetime writings have been estimated at 100,000 pages, and Case has estimated that as many as 
three-quarters of his writings still wait transcription.5 I doubt this estimate, but in any case, discovery of 
new entire manuscripts is unlikely, since untranscribed pages seem to constitute mostly drafts of prior 
manuscripts.
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see a more gradual evolution or maturation of thinking. Some of the arguments bol-
ster whatever particular thesis the author is putting forward. Such is the nature of
scholarship.

For me, I take a pragmatic view of these changes. First, some of Peirce’s earliest
writings, particular his 1867 “On a New List of Categories,’9 but also mid-career ones,
are amazingly insightful and thought-provoking. Tremendous value resides in these
earlier writings, often infused with genius. Peirce, after all, was in the prime of his
powers. Sure, I can see where some points have evolved, or prior assertions or termi-
nology have changed, but Peirce is also good at flagging those areas he sees as having
been important and earlier in error. I, therefore, tend to rely most on his later writ-
ings, when a hard life lived, maturity and experience added wisdom and perspective
to his thoughts. I tend to see his later changes more as nuanced or mature, rather
than radical breaks with prior writings. I see tremendous continuity and consistency
of worldview in Peirce over time.10

Peirce considered himself  foremost as  a  scientist,  who probed and questioned
premises with logic and purpose. Peirce’s critical attention and refinement of the sci-
entific method places him in the top tier of philosophers of science. Peirce believed
all questions lend themselves to scrutiny and logical analysis. Among the myriad of
possibilities available to us for inquiry as scientists, Peirce’s methods help point to
those options most likely to yield fruit within limited time and resources, the essence
of his philosophy of pragmatism. The universal categories provide us with a constant
and consistent framework for representing, analyzing and organizing knowledge.

Though many intellectual giants of history were recognized as such in their own
times — Newton,  Einstein,  Darwin, and Aristotle, come to mind — all of us like the
story of the genius unjustly ignored in his lifetime. In science, famous examples in-
clude  Copernicus,  Galileo,  Wegener, and  Mendel. Charles Sanders Peirce belongs in
this pantheon as well, a possible outcome I think he realized himself. The failure of
his grant application to the Carnegie Institution in 1903 to synthesize his life’s work,
supported no less by Andrew Carnegie and Teddy Roosevelt, was Peirce’s last attempt
at broad-scale recognition. Ill, in poverty, and shunned by the establishment of his
time, Peirce worked feverishly in his last years to get down on paper as much as he
could,  pretty  much laboring  alone and in  obscurity.  We are  still  plumbing  these
handwritten papers,  gaining new insights  and perspectives  of  what  we think we
know about Peirce’s philosophy and perspectives.

Philosophers, logicians, scholars, and laypersons study Peirce as a passion, many
for a living. Though Peirce was neglected by many during the heyday of analytical
philosophy throughout the 20th century, that is rapidly changing. Walker Percy and
Umberto Eco were two noted writers who have studied Peirce closely and written on
him. The reason for Peirce’s ascendancy, I think, is precisely due to the Internet, with
then ties to knowledge representation and artificial intelligence. Peircean views are
directly relevant to those topics. His writings in logic, semiosis (signs), pragmatics,
existential graphs, classification, and how to classify are among the most direct of
this relevancy.

However,  relevant  does  not  mean  agreed  upon,  and  researchers  understand
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Peirce through their  own lenses,  as  the idea of  Peirce’s  Thirdness  affirms.  Given
Peirce’s own constant questioning and revision of his theories, plus the fragmented
nature of the written record he left behind, I think it fair to assert that we will never
come to understand Peirce’s ‘truth’ fully. Peirce was a man of complexity, unlikely to
be fully plumbed. On the other hand, I also think we are only still beginning to un-
derstand how Peirce’s insights can inform our understanding of the world.

PEIRCE, THE PHILOSOPHER

Peirce did not view himself as a philosopher but as a scientist and logician. These
distinctions are mere shadings in Peirce’s philosophy, one that places high stock on
truth, logic, representation, and the scientific method. Much of Peirce’s philosophy
figures prominently in the main body of this book, specifically in the role of semiosis
and sign-making (Chapter 2); his universal categories, ‘truth’ and fallibility, and cate-
gorization (Chapter 6); logic of relations and logic types (Chapters 7 and 8); the role of
natural  classes  (Chapters  5 and  10);  and pragmatism (Chapter  14).  Here,  however,  I
want to highlight the more cross-cutting aspects of Peirce’s philosophy, not so di-
rectly related to KR, but also essential to understand his worldview.

Peirce’s Architectonic

Peirce’s  architectonic,  a  word  applied  to  the  worldview  for  certain  influential
philosophers such as  Kant or  Aristotle, is  built around the structure of all human
knowledge.  The  pivotal elements  of  Peirce’s  architectonic  are  his  universal  cate-
gories, as manifested in logic, and evaluated through the pragmatic maxim. Peirce
organized his classifications of science into disciplines using this system, in which he
also embedded such topics as ethics, esthetics (his spelling), philosophy, and meta-
physics, in addition to the classical sciences and humanities. Peirce evolved his clas-
sification of the sciences considerably over time. Beverly Kent conducted a thorough
analysis in 1987, much based on unpublished manuscripts at the time, that docu-
ments at least 20 different classifications over the period of 1866 to 1903 (the last, fi -
nal  one  called  the  ‘perennial’),  with  minor  ones  in  between. 11 The  three  main
branches of Peirce’s perennial  classification are mathematics,  cenoscopy (philoso-
phy) and idioscopy (the special sciences of traditional science and the humanities).
Peirce believed that  we should place philosophy within this systematic account of
knowledge as science, and adopted the idea of the architectonic from the philoso-
pher he idealized the most, Immanuel Kant. Peirce increasingly relied on this struc-
tural sense and the irreducible universal categories in most all of his later thinking.

Logic, as defined by Peirce, is only another name for semiotic. (1897, CP 2.227) The
clear thread through Peirce’s writings is the respect and attention he gives to the
primacy of logic, but also the role of community in deciding belief and terminology.
Though, as a normative science (along with ethics and esthetics), logic is not the cen-
ter root of his categorization of science, Peirce still bases all of his major arguments
and insights on logic.  Those insights include ones about the role and principles of
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logic itself.

“I do not, for my part, regard the usages of language as forming a satisfactory basis for
logical doctrine. Logic, for me, is the study of the essential conditions to which signs
must conform in order to function as such. How the constitution of the human mind
may compel men to think is not the question; and the appeal to language appears to
me to be made (and logicians generally do make it; in particular their doctrine of the
copula appears to rest solely upon this), it would seem they ought to survey human
languages generally and not confine themselves to the small and extremely peculiar
group of Aryan speech.” (NEM 4:243)

Via the classification of the sciences, Peirce attempts to organize and relate all as-
pects of knowledge and inquiry, and via the logic of semiosis, Peirce provides a way
to think about and represent that knowledge. Peirce subsumes these considerations
under the irreducible foundation of the universal categories, though  Peirce placed
the study of these categories within phenomenology, another branch of philosophy.
(Thus,  phenomenology,  normative  science,  and  metaphysics  provide  the  three
branches of cenoscopy, or philosophy.) Peirce is also clear about these same ground-
ings for his pragmatism. In a 1902 letter to William James, Peirce stated:

“[M]y three categories, … in their psychological aspect, appear as Feeling, Reaction,
Thought.  I  have  advanced my understanding of  these categories  much since Cam-
bridge days; and can now put them in a much clearer light and more convincingly.
The true nature of pragmatism cannot be understood without them.” (1902, CP 8.256)

Though we can see the universal categories subsuming logic, semiosis, and prag-
matism, we can also see a tight nexus between all of the concepts. For example, Ika,
in an overlooked doctoral thesis, provides lengthy analysis that places Peirce’s uni-
versal categories at the foundation of his pragmatism:12

“... it can be said that Peirce’s general philosophical project was most fundamentally
concerned with some kind of methodological quest; a quest that seeks to establish the
most fundamental categories that are both logically and metaphysically presupposed
in any inquiry. The categories are logical presuppositions in the sense that they are
principles or norms to be necessarily followed in the process of inquiry. They are also
metaphysical presuppositions in the sense that Peirce rightly regarded them as reflec-
tions  or  representations  of  reality.  Peirce’s  unique  brand  of  pragmatism,  with its
blend of logical rigour, practical orientation and realist metaphysical foundations was
the end result of his methodological quest.” (p. 23)

which also ties into the idea and importance of logic:

“According to his classification of the sciences, metaphysics depends on logic for its
fundamental principles, and logic depends on metaphysics for the data on which to
operate. Although this relation of inter-dependence between metaphysics and logic is
useful for determining certain aspects of his overall philosophical position, it is too
rigid to account for another sense in which logic is dependent on metaphysics for
Peirce, namely, that the whole end or intention of logic is  contained within meta-
physics.”12 (p. 139)
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but also recognizes that the categories subsume semiosis, providing the more gen-
eral tenets:

“While Peirce appears to be preoccupied with his theory of signs, and sees sign and
sign-action in every phenomenon, he did not seek to reduce reality to a semiotic sys-
tem, where the real would be construed as only that which is sign-like. For Peirce,
such a reductionist view of reality would result either in a dismissal of metaphysics or
require that metaphysics be reducible to logic…. both these views are inconsistent
with Peirce’s overall philosophical position, which recognises the distinction between
the logical and the real as important.”12 (p. 152)

We stride into a world with an uncertain future. We need to act and make deci-
sions in the face of that uncertainty. We evaluate that world by the three logical
methods of deduction, induction,  and abduction.  Peirce’s architectonic provides a
nexus of logic, signs and the universal categories to give us the tools we need to
move forward, what Peirce calls pragmatism:

“Pragmatism … had been designed and constructed … architectonically. Just as a civil
engineer, before erecting a bridge, a ship, or a house, will think of the different prop-
erties of all materials, and will use no iron, stone, or cement, that has not been sub-
jected to tests; and will put them together in ways minutely considered, so, in con-
structing the doctrine of pragmatism the properties of all indecomposable concepts
were examined and the ways in which they could be compounded. Then the purpose
of the proposed doctrine having been analyzed, it was constructed out of the appro-
priate concepts so as to fulfill that purpose. In this way, the truth of it was proved.”
(1905, CP 5.5)

We can thus understand Peirce’s  architectonic as the building blocks that go into
constructing our structure of  knowledge.  How we go about  thinking about  these
building blocks and then applying them to a given problem at hand, such as captur-
ing a domain or inquiring where we have doubt, is what I refer to as a mindset. The
universal categories are foundational to either of these two meanings.

Chance, Existents, and Continuity: Real

The three universal categories, as noted, are appropriately studied under the phe-
nomenology section of the cenoscopic (philosophic) branch of the sciences. Though
we earlier, in Table 6-2, listed many examples of Firstness, Secondness, and Thirdness,
let’s single out some phenomenological aspects of these categories that Peirce em-
phasized in his writings. These three aspects are absolute chance for Firstness; ac-
tual, existing individuals for Secondness; and continuity for Thirdness. In some ways,
these concepts are firsts among equals given their prominence in Peirce’s thinking. If
a grounding exists for the three universal categories, these may be it.

Chance

The fount of Peirce’s universal category of Firstness is  absolute chance. Peirce
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brings two remarkable insights about chance in his writings. The first insight, now
somewhat prosaic but new for its time, was the importance of probability to many
problems. The results, for many problems, are not absolute, but probable across a
distribution of possible outcomes. It is essential to sample randomly, or by chance, to
test these probabilities. Peirce was an early explicator about random sampling and
statistics. Indeterminant problems are common, and an understanding of chance and
probabilities is the only tractable way to assess them.

The second remarkable insight is more fundamental, and perhaps even more crit-
ical. It is what Peirce called tychism. Peirce was an early supporter of Darwin’s theory
of evolution and understood the role of variation. Peirce was first exposed to the
ideas of evolution at least since the time of the Metaphysical Club, under the strong
influence of friend and fellow club member,  Chauncey Wright. Peirce’s probability
studies also enabled him to see that our world was one of ‘surprising facts.’ A com -
pletely random world would signal no variety. Absolute chance must, therefore, be
leading to variants that cause us to inspect and understand emerging properties.
Chance is itself offering up variants, some which have the character of persistence
because of their stronger probability to be reinforced. These forces of chance give
our world the variety and diversity it possesses. Laws and habits lead to regularities
that both tend to perpetuate themselves as generalities,  but also flash surprising
variation that causes us to take stock and categorize and generalize anew. 

In Peirce’s  cosmogony, these primitives of chance (Firstness),  law (Secondness)
and habit (Thirdness) can explain everything from the emergence of time and space
to the emergence of matter, life and then cognition. Though it is true that Thirdness
(continuity) is the more synthesizing concept, the role of chance alone to drive this
entire reality suggests its essential character.13 Tychism is thus a philosophical doc-
trine that absolute chance is real and operative in the world, and it is the source of
irregularity and variety and the underlying force of evolution.

Chance alone could be the variant that led to the minute differences arising dur-
ing the Big Bang, which is posited to have led to matter and its structure. Chance is
what enabled self-perpetuating life to emerge from inanimate matter. Chance is how
forms of life could symbolically capture these variations via cognition and language.
While all of this may now seem inevitable — though unexpected in how manifested —
Peirce would maintain they are events arising from chance.  Perhaps most events
have a cause, but the fundamental ones result from chance. ‘Surprising facts,’ a fa-
vorite phrase of Peirce, mean the world is unpredictable and ultimately probabilistic.
The limits of Cartesian logic, the 0s and 1s, are likely never achievable. Reality is
shaded and nuanced.

When Peirce began putting forth these ideas, specifically in his Popular Science se-
ries in 1878 in “On the Nature,” 14 these were radical ideas. At the time of these publi-
cations, science was still decades away from quantum mechanics and the H  ei  senberg  
uncertainty   principle  . Moreover, even though Einstein (in) famously said that “God
doesn’t play dice with the world,”15 Einstein himself, and his unsettling of Newtonian
physics, were still three decades away. These examples are but a few of where Peirce
had insight and prescience well in advance of later supporting science.
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The reason for such insights, Peirce would say, and I would agree, is not that he
was somehow miraculously able to see the future. But, through the rigorous applica-
tion of logic, Peirce was able to see the requisite primitives of existence. As he wrote,

“The endless variety in the world has not been created by law. It is not of the nature
of uniformity to originate variation, nor of law to beget circumstance. When we gaze
upon the multifariousness of nature we are looking straight into the face of a living
spontaneity. A day’s ramble in the country ought to bring that home to us.” (1887, CP
6.553)

Peirce posited five reasons to believe in the reality (objective existence) of absolute
chance:7 1) mechanical forces cannot explain growth and complexity in nature; 2) the
sheer variety of nature; 3) uniformity develops from some state of determinacy; 4) no
empirical  evidence  supports  determinism;  and  5)  we  can  draw  verifiable  conse-
quences from the hypothesis of chance. (from 1892, CP 6.58-62)

Existents

Existents are what is actual, what exists, and consists of events and entities. Ev-
erything that exists is an individual and has an identity. Existents reside entirely in
Secondness.  “...  existence  (not  reality)  and  individuality  are  essentially  the  same
thing.” (1901, CP 3.613) Existents have the nature of ‘haecceity,’ the idea of ‘thisness’
from the Latin, that gives them their particular uniqueness and identity. 

Existents are thus an instantiation, something actual with identity, in comparison
to the possibilities or qualities of Firstness, and in contrast to the generalities or con-
tinuities of Thirdness.1 Existents embody qualities as found in Firstness, and may be
generalized or related to continuous collections as found in Thirdness. Existents have
some limits that bound their thisness, or haecceity, in either space (entities) or time
(events). They exist whether we think them to do so or not. In Peirce’s semiosis, ac -
tual existents are sinsigns.16 We may indicate existents (via an index) as an object. Ex-
istents are real, but reality is not limited to them. Secondness is the most straightfor-
ward of the universal categories.

Continuity

Synechism,  which Peirce equated to continuity,17 is the notion that space, time,
and law are continuous and form an essential Thirdness of reality in contrast to ex-
isting things and possibilities. Peirce notes that continuity is one of “the most diffi -
cult, the most important, the most worth study of all philosophical ideas.” (1893, MS
717; NEM 4:310) I tend to agree.

“Now if we are to accept the common sense idea of continuity (after correcting its
vagueness and fixing it to mean something) we must either say that a continuous line
contains no points or we must say that the principle of excluded middle does not hold
of these points. The principle of excluded middle only applies to an individual (for it is

1 Peirce sometimes also refers to relations between two existent objects as also being existent.

371

https://en.wikipedia.org/wiki/Haecceity


A KNOWLEDGE REPRESENTATION PRACTIONARY

not true that ‘Any man is wise’ nor that ‘Any man is not wise’). But places, being mere
possibles without actual existence, are not individuals. Hence a point or indivisible
place really does not exist unless there actually be something there to mark it, which,
if there is, interrupts the continuity.... On the whole, therefore, I think we must say
that continuity is the relation of the parts of an unbroken space or time.... The precise
definition is still in doubt; but Kant's definition, that a continuum is that of which ev-
ery part has itself parts of the same kind, seems to be correct. This must not be con-
founded (as Kant himself confounded it) with infinite divisibility, but implies that a
line, for example, contains no points until the continuity is broken by marking the
points. In accordance with this it seems necessary to say that a continuum, where it is
continuous and unbroken, contains no definite parts; that its parts are created in the
act  of  defining  them  and  the  precise  definition  of  them  breaks  the  continuity....
Breaking grains of sand more and more will only make the sand more broken. It will
not weld the grains into unbroken continuity.” (1902, CP 6.168)

Peirce clearly excludes individuals from continuity; indeed, they are disruptions to
it. The principle of  excluded middle also does not apply, since we are also dealing
with generalities.  He illustrates  these ideas in multiple  passages with  the idea of
points on a continuous line, such as this next example:

“A true continuum is something whose possibilities of determination no multitude of
individuals can exhaust. Thus, no collection of points placed upon a truly continuous
line can fill the line so as to leave no room for others, although that collection had a
point for every value towards which numbers, endlessly continued into the decimal
places, could approximate; nor if it contained a point for every possible permutation
of all such values. It would be in the general spirit of synechism to hold that time
ought to be supposed truly continuous in that sense.” (1902, CP 6.170)

We can not distinguish things without making the line discontinuous. If some-
thing is inexplicable, it cannot be continuous:

“... synechism amounts to the principle that inexplicabilities are not to be considered
as possible explanations; that whatever is supposed to be ultimate is supposed to be
inexplicable; that continuity is the absence of ultimate parts in that which is divisible;
and that the form under which alone anything can be understood is the form of gen-
erality, which is the same thing as continuity.” (1902, CP 6.173)

We now begin to see the intimate connection between continuity and generality.
“True generality is, in fact, nothing but a rudimentary form of true continuity. Conti-
nuity is nothing but perfect generality of a law of relationship.” (1902, CP 6.172) We
can also relate continuity to the concepts of regularity:

“That continuity is only a variation of regularity, or, if we please so to regard it, that
regularity is only a special case of continuity, will appear below, when we come to an-
alyze the conception of continuity. It is already quite plain that any continuum we can
think of is perfectly regular in its way as far as its continuity extends. No doubt, a line
may be say an arc of a circle up to a certain point and beyond that point it may be
straight. Then it is in one sense continuous and without a break, while in another
sense, it does not all follow one law. But in so far as it is continuous, it everywhere fol -
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lows a law; that is, the same thing is true of every portion of it; while in the sense in
which it is irregular its continuity is broken. In short, the idea of continuity is the idea
of a homogeneity, or sameness, which is a regularity. On the other hand, just as a con-
tinuous line is one which affords room for any multitude of points, no matter how
great, so all regularity affords scope for any multitude of variant particulars; so that
the idea [of] continuity is an extension of the idea of regularity. Regularity implies
generality; and generality is an intellectual relation essentially the same as signifi-
cance, as is shown by the contention of the nominalists that all generals are names.
Even if generals have a being independent of actual thought, their being consists in
their being possible objects of thought whereby particulars can be thought. Now that
which brings another thing before the mind is a representation; so that generality and
regularity are essentially the same as significance. Thus, continuity, regularity, and
significance are essentially the same idea with merely subsidiary differences. That this
element is found in experience is shown by the fact that all experience involves time.
Now the flow of time is conceived as continuous. No matter whether this continuity is
a datum of sense, or a quasi-hypothesis imported by the mind into experience, or even
an illusion; in any case it remains a direct experience. For experience is not what anal-
ysis discovers but the raw material upon which analysis works. This element then is
an element of direct experience.” (1908, CP 7.535)

At one point, Peirce claims that “continuity represents Thirdness almost to per-
fection,” (CP 1.337) and Haack notes that abductive reasoning is the preferred logic
for positing continuities.18 Peirce relates his concept of time to continuity (CP 6.132),
and claims his ideas about fallibility are grounded in it: 

“The principle of continuity is the idea of fallibilism objectified. For fallibilism is the
doctrine that our knowledge is never absolute but always swims, as it were, in a con -
tinuum of uncertainty and of indeterminacy. Now the doctrine of continuity is that all
things so swim in continua.” (1897, CP 1.171)

Peirce notes that classifying and typing things are also grounded in continuity:

“...  it will be found everywhere that the idea of continuity is a powerful aid to the for-
mation of true and fruitful conceptions. By means of it, the greatest differences are
broken down and resolved into differences of degree, and the incessant application of
it is of the greatest value in broadening our conceptions.” (1878, CP 2.645)

We thus see that Peirce’s conception of continuity is a metaphysical theory as
well as a methodological principle. Peirce and others have noted that the presence of
continuity is not a construct of the human mind, but is part of reality.19

What is Real

Peirce grew over his working life to believe that all of these universal categories
were real, and not merely figments of the human mind. “If I truly know anything, that
which I know must be  real.” (EP 2:181) Fisch dated this transition to about 189720

when Peirce accepted the reality of the category of Firstness, i.e., of possibility, in ad-
dition to his then acceptance of the reality of the categories of Thirdness and Sec-
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ondness, becoming what Fisch called a ‘three-category realist.’1 In Peirce’s words:

“’Truth is the conformity of a representation to its object,’ says Kant. One might make
this statement more explicit; but for our present purpose it may pass. It is nearly cor-
rect, so far as it is intelligible. Only, what is that ‘object’ which serves to define truth?
Why it is the reality: it is of such a nature as to be independent of representations of it,
so that, taking any individual sign or any individual collection of signs (such, for ex -
ample, as all the ideas that ever enter into a given man's head) there is some charac-
ter which that thing possesses, whether that sign or any of the signs of that collection
represents the thing as possessing that character or not. Very good: now only tell me
what it means to say that an object possesses a character, and I shall be satisfied. But
even now, in advance of our study of definition, [we can] sufficiently see that we can
only reach a conception of the less known through the more known, and that conse-
quently the only meaning which we can attach to the phrase that a thing ‘has a char-
acter’ is that something is true of it. So there we are, after threading the passages of
this labyrinth, already thrown out at that very conception of truth at which we en-
tered it. Indeed, when one comes to consider it, how futile it was to imagine that we
were to clear up the idea of truth by the more occult idea of reality!” (1902, CP 1.578)

Reality, for Peirce,  is  that which has character independent of what we might
think about it in our minds. It rejects the Cartesian mind-body duality. The measures
of a character of a thing arise from its disruptions in continuity. These disruptions
arise from evolving design and absolute chance.

Leaning Into Pragmatism

In a probabilistic world, which it is, we see lines of evidence everywhere for infer-
ring various aspects of the world, now and into the future. The truth is, as Peirce of-
ten makes clear, only the here and now is knowable; what might come next (into the
future) is a probability. The stronger, or more definitive, means of inference, deduc-
tion, and induction, can never apply to the future. I am not sure Peirce understood
that his formulation of abductive reasoning was the needed pathway here, but it is
also true that abductive reasoning is the only path to new knowledge or novelty. We
must make practical choices in our limited time. From Ika’s dissertation:12

“The point is that pragmatism as a logical maxim is set to serve the assertion that
there are real things; for without that assertion, pragmatism would be a meaningless
enterprise, no matter how hard we think of it as only a logical principle. In his classifi -
cation of the sciences, Peirce describes logic as the science of the category of Second-
ness, and metaphysics as the science of Thirdness. His whole point is that the sciences
are just as closely related to one another as are the three categories. That is, according
to his theory of categories, Secondness is meaningful because of the Thirdness it in-
volves. Similarly, pragmatism as a logical maxim would simply remain meaningless if
it did not involve metaphysics.”12 (p. 149)

The future is  not given. The future may be changed via action, or via chance.

1 h/t to Jon Alan Schmidt; also see EP 2:186-195.
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Some future conditions are more favorable to me as an entity in the present than
other future conditions. The choice of next actions among many possible next ac-
tions should be guided, in Peirce’s view, by pragmatic considerations for three rea-
sons. One, not all alternatives may be tested simultaneously. Two, some alternatives
are more likely instrumental than others. Three, any alternative has its own unique
set of actions and steps, what might be called costs. Peirce developed the pragmatic
maxim to provide guidance for what we should attend to next, and how.

PEIRCE, THE POLYMATH

C.S. Peirce was a man of many capabilities and many accomplishments. His con-
tributions spanned all three of the sciences of discovery (as he named them) — math-
ematics,  cenoscopy,  and  idioscopy  —  previously  discussed.  Peirce’s  advances  in
mathematics, logic, the physical sciences, and the scientific method are legion. He
was the first to develop a theory of signs (semiosis), is the acknowledged ‘father’ of
American  pragmatism,  developed  diagrammatic  ways  to  represent  logic  via
existential graphs, and explicated a new kind of inference,  abductive reasoning. He
made contributions to linguistics, the categorization of the sciences, geodesy, and
topology. His precise work on physical measures with pendulums and in chemistry
led him to make advances in probability, statistics, and instrument errors. He was a
realist and understood the limits to truth. His advances appear grounded in a relent-
less questioning of premises and a rigorous application of logic to the most basic
questions. These quests led him to a fundamental cosmogony built around the irre-
ducible and universal categories of Firstness, Secondness, and Thirdness.

One of the best general introductions to Peirce’s lifelong accomplishments is pro-
vided in the hard-to-find “Introductory Note” by Max Fisch to Chapter 2 of Thomas
Sebeok’s 1981 book, Play of Musement.21 For those keenly interested in Peirce’s life and
accomplishments, this obscure paper is worth tracking down. One thing we do know
is that Peirce was a classifier throughout his life. His classifications range from the
foundations  of  cosmology  to  phenomena,  relations,  natural  classes,  sciences  and
knowledge, signs and knowledge representation, logic, and mathematics. In keeping
with that spirit, I, too, will classify Peirce’s accomplishments according to the sci-
ences of discovery. 

Mathematics

Peirce’s father, Benjamin, was a noted mathematician, and Charles grew up being
tutored and challenged in math, including mathematical games. Peirce made sub-
stantial  contributions  to  the  field  of  mathematics  in  many  areas  throughout  his
working career, though he did admit to backing away from rigorous mathematical
problems late in his life. 

Peirce’s deepest and broadest contributions were in mathematical logic, where he
pioneered many new areas.22 Putnam provides a good overview of Peirce’s many in-
tellectual contributions to logic23 We have already noted his explication of the third
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mode of logical  reasoning,  abductive logic,  and his invention of the notation and
rigor of existential graphs. The term ‘first-order logic’ is due to Peirce. He was a keen
student and critic of the leading logicians of his era, De Morgan, Boole, Schröder, and
Venn. Peirce considered his work on the logic of numbers and the analysis of the in-
finite as being one of his major mathematical contributions.2 Peirce also referenced a
three-valued logic, many methods for which he had already developed.24 We can also
point to a second major area of contributions in probability theory, then known as
the Doctrine of Chances. (1878, CP 2.645-66) He explicated important ideas in ran-
domness and sampling and analytic methods. We have already seen how important
probability and continuity were to Peirce’s metaphysics.

In his earlier years, Peirce developed a calculus founded on the actualness of in-
finity and infinitesimals.  He suggested a cardinal arithmetic for infinite numbers,
years before any work by Cantor (who completed his dissertation in 1867) and with-
out access to Bolzano's 1851 work. In 1880–81, he showed how to do Boolean algebra
via a repeated and sufficient single binary operation. 

In 1881 he set out the axiomatization of natural number arithmetic, a few years
before Dedekind and Peano. In the same paper, Peirce gave, years before Dedekind,
the first purely cardinal definition of a finite set. In that same year of 1881, Peirce
provided  the first successful axiom system for the natural numbers. Soon after, he
distinguished between first-order and second-order quantification. In the same pa-
per, he set out what can be read as the first (primitive) axiomatic set theory, antici -
pating  Zermelo by about two decades. He also made contributions in the areas of
finite differences and linear associative algebra.25

Peirce was intrigued with the ideas of geometric or notational expressions of al-
gebra, often regarding notions of continuity. He was an explicator of some of the ear-
liest foundations of  topology, and his invention of existential graphs is a direct ex-
pression of this interest. Peirce is the inventor of the quin  cuncial   projection   of the
sphere. He also claimed a proof that only four colors are needed to color a spheroidal
map (the so-called ‘four-color problem’).

Peirce was also the first to apply statistical methods to comparative biography,2

and he also applied his mathematical approaches to what is today known as political
economy and econometrics.  In 1880 Peirce was elected as a member of the London
Mathematical Society. 

Cenoscopy

A prior section and many references throughout this book deal with Peirce’s con-
tributions to the science of cenoscopy, or philosophy, which are legion, including his
co-founding of the Metaphysical Club in Cambridge in 1872. I only want to add one
further point here, and it relates to the idea of the ‘highest good,’ or summum bonum.
Peirce sees striving for the summum bonum as moving toward the perfection of Third-
ness of continuity or generality by the process of evolution:

“... the pragmaticist does not make the summum bonum to more consist in action, but
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makes it to consist in that process of evolution whereby the existent comes more and
more to embody those generals which were just now said to be destined, which is what
we strive to express in calling them  reasonable. In its higher stages, evolution takes
place more and more largely through self-control, and this gives the pragmaticist a
sort of justification for making the rational purport to be general.” (1905, CP 5.433)

In his sciences of discovery, Peirce places esthetics and ethics with logic as the three
normative sciences, with their dependence on one another: 

“My own view in 1877 was crude. Even when I gave my Cambridge lectures [1898] I
had not really got to the bottom of it or seen the unity of the whole thing. It was not
until  after that that  I  obtained the proof that  logic must  be founded on ethics,  of
which it is a higher development. Even then, I was for some time so stupid as not to
see that ethics rests in the same manner on a foundation of esthetics...” (1910, CP
8.235)

Regarding which, Peirce elaborates further on the definition of esthetics and its rela-
tions to the summum bonum:

“Esthetics is the science of ideals, or of that which is objectively admirable without
any ulterior reason. I am not well acquainted with this science; but it ought to repose
on phenomenology. Ethics, or the science of right and wrong, must appeal to Esthetics
for aid in determining the summum bonum. It is the theory of self-controlled, or delib-
erate, conduct. Logic is the theory of self-controlled, or deliberate, thought; and as
such, must appeal to ethics for its principles. It also depends upon phenomenology
and upon mathematics.” (1900, CP 1.191)

Peirce alludes to what is goodness, the esthetics to which ethics impels action as
the governing principle of logic, in many areas throughout his writings. 26 His ideals
of  looking to the community to  help guide inquiry and adjudicate truth are  also
grounded in his practical ethics. We can see an esthetic core to the ethics that govern
Peirce’s overall philosophy.

Idioscopy

In the area of the special sciences, that is, the standard sciences plus the humani-
ties (nature and mind) that Peirce termed the idioscope, Peirce’s contributions occur
in three different areas. The first area, and most prolific, were Peirce’s contributions
as a scientist.  The second area was as an inventor. The last area of contributions
come from Peirce’s special skills as a person, a humanist.

Scientist

For most of his employed life, apart from his teaching at Johns Hopkins and the
piecework that constituted much of his later employment, Peirce was a practicing
physical scientist. He made notable contributions in geodesy, astronomy, metrology,
and chemistry. As a practicing scientist, Peirce gained much appreciation for the dif-
ficulty and lack of precision and repeatability in measurements. He understood the
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importance of accurate tools and measurement standards for capturing small differ-
ences. These first-hand experiences contributed greatly to his views on probabilities
and the role and significance of the scientific method.

Geodesy  was  a  primary  responsibility  for  Peirce  during  his  more  than  three-
decades-long employment at the U.S. Coast and Geodetic Survey, as introduced pre-
viously. He proposed using the wavelength of sodium light as a means to measure the
length  of  pendulums more accurately,  anticipating the  metric  standard  by many
decades. These studies also helped improve our understanding and calculation of the
exact shape of the earth.22 

Peirce made many contributions to astronomy, including computations of theo-
retical astronomy, stellar observations, and theories of error. He was among the first
to propose (correctly) that the Milky Way forms a disc, and did pioneering work on
the magnitude of stars in the Milky Way.2 The only full-length book authored solely
by Peirce during his lifetime was an 181-page monograph in 1878,  Photometric Re-
searches, on the applications of spectrographic methods to astronomy.27

In many areas, various researchers have noted Peirce’s foresight in his scientific
endeavors. For example, Ilya Prigogine claimed Peirce's “Design and Chance” article,
written in 1884, with its view of time and the second law of thermodynamics, antici-
pated the ‘new physics’ of the 20th century. We note other areas for which Peirce
foresaw or alluded to future science or discoveries throughout this book. Peirce was
elected as a Fellow of the American Academy of Arts and Sciences in 1867, and a
member of the National Academy of Sciences in 1877.

Inventor

Besides  inventions  such  as  map  projections,  semiotics,  and  pendulum  design
mentioned elsewhere, Peirce was also a prolific developer of notations and classical
inventions. In notations, his existential graphs certainly stand out. However, he was
also an inventor of the Peirce arrow symbol for the logical ‘neither nor,’ also called
the Quine  dagger (NOR), and its NAND complement, the  Sheffer stroke. Peirce also
created a unique method of iconic handwriting, which he dubbed ‘Art Chirography.’

In 1892, Peirce developed an electrolytic bleaching process for wood pulp. A few
years later, he also invented an acetylene lamp generator, also later tied into a hy-
droelectric  project,  that was competing with  Edison’s  electric  light.  At  this  same
time, after his dismissal from Hopkins, he also conducted stress engineering analysis
for what would eventually become the George Washington Bridge in New York City.22

His strengths in logic and his inventive mind also foreshadowed the modern com-
puter era. Some claim that he invented the electronic switching-circuit computer.22

In 1886, he saw that Boolean calculations could be carried out via electrical switches,
anticipating Claude Shannon by more than 50 years. He also wrote on Charles Bab-
bage and posited the use of electricity and logic gates for reasoning machines.28 
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Humanist, as Person

Along with his student Joseph   Jastrow   at Hopkins, Peirce was one of the first ex-
perimental  psychologists in the United States,  pioneering experimental studies in
‘subliminal’ perception. He had definite views on the concept of higher academic ed-
ucation as a pursuit of collective research, an approach that he embodied in the Stud-
ies in Logic in 1893, a collection of essays by Peirce and his students. He wrote over
three hundred book reviews for the  Nation  magazine, and wrote a textbook in ele-
mentary mathematics, unpublished in his lifetime, that Carolyn Eisele painstakingly
re-created in the  New Elements of Mathematics series.29 30 24 25 For many years, Peirce
documented individual studies of great men. (1900, CP 7.256) He proposed the  Lo-
gotheca as an updated replacement for Roget’s Thesaurus. 

Peircean ideas have been influential in linguistics, specifically in the fields of cog-
nitive  linguistics,  diachronic  linguistics,  linguistic  semantics  and pragmatics,  and
text linguistics, most driven by his semiotic insights.31 Peircean ideas have also in-
formed computational approaches to linguistics32 and language parsing33 (see also
Chapter 16). He produced an important work on pronunciation of Shakespearean Eng-
lish.22 Peirce was also an avid book collector and adviser to the New York Public Li -
brary for the purchase of scientific books.2 As will be noted in the next section, Peirce
was an accomplished lexicographer, specializing in definitions of technical topics. He
also was a translator, sometimes for hire, in Greek, Latin, French and German.

According to Brent,2 Peirce was a practiced actor, belonging to many amateur act-
ing groups, and his wife, Juliette, was reportedly an actress of some ability. He was
lauded at times as a storyteller, orator and debater, teacher, and lecturer, though
other occasional reports characterize certain of his lectures as rambling, unintelligi-
ble,  or  dislocated.  Peirce  even  knew  card  tricks  and  practiced  occasional  magic
tricks. He was very much interested in mazes and games and published a series in
The Monist on “Amazing Mazes” later in his life. As a hobby and because of family ill-
nesses, Peirce was also well versed in the history and theory of medicine.

AN OBSESSION WITH TERMINOLOGY

Though Peirce frequently railed against nominalism, arguing instead for a realis-
tic view of the world, he also was very attuned to names, labels, and definitions. He
sought the ‘correct’ way to label his constructs. As one instance, at various times,
Peirce called abductive reasoning hypothesis,  abduction,  presumption, and retroduction.
He also called the methodeutic speculative rhetoric, general rhetoric, formal rhetoric, and
objective logic. Such changing names were not uncommon with Peirce.

In his lifetime, Peirce both enjoyed and made money as a lexicographer defining
terms. He personally wrote 6,000 entries for the 12-volume Century Dictionary,34 and
oversaw a total of 16,000 entries where he had primary responsibility in such areas
as logic, mathematics, mechanics, measurement, philosophy, astronomy, and univer-
sities.22 Peirce  held  that  the  understanding  of  a  language  symbol  is  a  process  of
shared consensus among its community of users; he was loathe to use common terms
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for  his  constructs.  Indeed,  when  one  of  his  terms,  pragmatism,  was  adopted  by
William James who gave it a different spin and interpretation, Peirce disavowed his
earlier term and replaced it with the term pragmaticism.

 “So then, the writer [Peirce], finds his bantling ‘pragmatism’ so promoted, feels that
it is the time to kiss his child good-bye and relinquish it to its higher destiny; while to
serve the precise purpose of expressing the original definition, he begs to announce
the birth of the word ‘pragmaticism’, which is ugly enough to be safe from kidnap-
pers.”  (pp 165-166)35 

Peirce should have realized that understandability holds sway over individualized 
perspective. He was silly to argue with James about the term pragmatism, as James 
was doing so much to promote awareness of Peirce’s ideas.

agapism coenoscopy interpretant phaneroscopy semeiotic

anancasticism cyclosy legisign pragmastic
definition sinsign

apeiry dicent medisense pragmaticism speculative
rhetoric

antethics entelechy methodeutic precission stecheotic

architectonic fallibilism objective
idealism qualisign synechism

axiagastics hylozoism percipuum representamen transuasion

ceno-pythagorean hypostatic
abstraction periphraxy retroduction tychasticism

chorisy idioscopy phaneron rheme tychism

Table A-1: Examples of Obscure Peirce Terminology

This penchant for ‘ugly’ terms was not uncommon for Peirce. As examples, Table
A-1 above presents some terminology from Peirce’s writings. Changing and ‘ugly’ ter-
minology is but the first of the difficulties in reading and understanding Peirce. His
evolution as a thinker, plus the interpretations of those who study Peirce, also com-
plicate matters.  A real point about interpretation, I think, is to try to get past his
sometimes off-putting terminology. Mostly what is hard to understand are terms you
may be encountering for the first time.

I can appreciate Peirce’s preference for precision in how he described things. I
can  also  understand  scholars  sometimes  concentrating  more  on  literalness  than
meaning. But the use of obfuscatory terms or concentrating on labels over the con-
ceptual is  a mistake. When looking for a precise expression of new ideas I  try to
harken to key Peircean terms and concepts, but I sometimes find that alternative de-
scriptions within Peirce’s writings better communicate to modern sensibilities. Con-
cepts attempt to embody ideas, and while it is useful to express those concepts with
clear, precise and correct terminology, it  is the idea that is real, not the label. In
Peirce’s worldview, the label  is  only an index.  I  concur.  In the semantic Web, we
sometimes refer to this as ‘things, not strings.’

380



PERSPECTIVES ON PEIRCE

PEIRCE, THE POLESTAR

That we live in an age of information and new technologies and new develop-
ments is a truth evident to all. These developments lead to a constant barrage of new
information, often leading to new or revised assertions (‘facts’). What we believe and
how we interpret that information is what we call knowledge. New facts connect to
or change our understanding of old ‘facts’; those connections, too, are a source of
new knowledge. Our: 1) powers of observation and learning and discovery; 2) interac-
tions and consensus-building with communities; and 3) the methods of scientific in-
quiry, all cause us to test, refine and sometimes revise or discard what we thought
were prior truths. Knowledge is thus dynamic, continually growing, and subject to
revision.

What I call a Peircean  mindset can help inform answers to new problems, prob-
lems that Peirce did not directly address himself. Indeed, the problems that set this
context  are  machine learning and natural  language understanding,  all  driven by
computers and electronic data unimagined in Peirce’s day. Because my views come
from my own context, something that Peirce held as an essence of Thirdness, I can-
not say that I  base my views on Peirce’s views. Who knows if he would endorse my
views more than a century after his death? However, my take on these matters is the
result of much reading, thought, repeat reading and study of Peirce’s writings. So
while I can not say I base my views on Peirce, I can certainly say that he guides me. 

Peirce’s universal categories of Firstness, Secondness, and Thirdness provide the
mindset for how to think about and organize knowledge. The tasks of defining and
organizing knowledge demand that we bring meaning, context, and perspective to
the task. I believe Peirce’s universal categories and what they imply offer the next
adaptive climb upward for knowledge representation. The overarching framework of
Peirce’s philosophy — his architectonic — is grounded in these categories. As a scien-
tist and logician, Peirce applied this mindset in pragmatic and testable ways. These
methods, indeed the scientific method itself, further guide how and where to apply
this mindset in ways that are economical and promise the most knowledge among all
of the possible paths of inquiry. 

Peirce’s fierce realism, his belief in reality beyond our minds, and his insistence
that this reality is subject to inquiry and the fixation of belief leading ever closer to
truth are distinctly different from the mind-body duality put forward by Descartes.
Richard Bernstein in a recent book,36 called this viewpoint a sea change:

“Pragmatism begins with a radical critique of Cartesianism. In one fell swoop, Peirce
seeks to demolish the inter-related motifs that constitute Cartesianism [mind-body
duality; primacy of personal experience; doubt as a starting condition; there are in-
controvertible truths to be discovered] .... We can view the development of pragma-
tism from Peirce until its recent resurgence as developing and refining this funda-
mental change of philosophical orientation — this sea change. A unifying theme in all
the classical pragmatists as well as their successors is the development of a philosoph-
ical orientation that replaced Cartesianism (in all its varieties).” (pp 18-19)

Our real world is always changing, continually unfolding. Our real world is viewed
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by all of us differently, based on background, predilection, perspective, and context.
What we think we know about the world today is subject to inquiry and new insights.
New factors are arising to shift what we think we know about ourselves  and our
place in the world.

How I interpret Peirce, and why he has become a polestar in my thinking about
knowledge representation, embraces three perspectives. First, given the breadth of
Peirce’s insights, I try to read as much by him and about his writings by others as I
can.  This  exposure helps set  a  fertile  milieu,  useful  to  interpretation and critical
judgment. Second, despite my awe of Peirce’s genius, I do not treat his writings as
gospel. Were he alive today, I do not doubt that the massive increase in knowledge
and information since his day would cause him to alter his viewpoints — perhaps
substantially so in some areas. Third, no similar reason compels us to shy away from
questioning any of Peirce’s assertions. Nonetheless, given Peirce’s immense powers
of logic, one better be well prepared with evidence and sound reasoning before un-
dertaking such a challenge.

RESOURCES ABOUT PEIRCE

Slowly at first, and then growing after the publication of the Collected Papers,1 a le-
gion of researchers and academics have labored to preserve, understand and expli-
cate Peirce’s insights. Virtually every author and name mentioned in this book has
played such a role, with hundreds more, some more active than those cited, con-
tributing their part. I share in this section some of my preferences and personal se-
lections for useful resources about Peirce.

My  first  recommendation  to  begin  learning  about  Peirce  is  to  start  with
Wikipedia. Its English entry on Charles Sanders Peirce is quite good and rather com-
plete. An entire category is dedicated to Peirce on Wikipedia, with some 40 articles
listed. I think the articles on  semiosis,  abductive reasoning, and  pragmaticism are
some of the better ones. Unfortunately, the article on Peirce’s universal categories is
pretty weak. To compensate, however, the Wikipedia Peirce bibliography is an excel-
lent reference source.

Peirce is hardly easy to read, and most of what others write about him is also
pretty dense. Though those seasoned in Peirce studies might find it covering stan-
dard ground, the 2013 Cornelis de Waal guide to Peirce22 is an accessible introduction
to Peirce and his contributions. I no longer consult it for facts or details, but as an in-
tro, it is helpful and a relatively quick read. If this piques your interest, then it is
probably worth your time to start  exploring Peirce in  more depth.  I  also like de
Waal’s labeling of the ‘doctrine of the categories.’

After introductions, it is best to study Peirce in his own words. The earliest known
compilation of Peirce’s writings was by Cohen in 1923,37 nearly a decade after Peirce’s

1 The jumbled nature of the original Collected Papers means they  should be need used with caution, since they
have no chronology. Many contemporary Peirce scholars now tend to date by year the passages they quote 
in order to overcome this problem.
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death and is both a good intro and starting compilation. An even better starting com-
pilation is that of Buchler.38 However, I did not start with either of these nor with de
Waal, because my initial research discovered that searchable PDF versions of the first
‘complete’ compilations of Peirce’s writings could be obtained for free online. 39 The
Complete Papers are available online in a version easier to read than the PDF versions,
and which you can search.40 The problem with these CP sources, however, is that the
editorial order of CP is not chronological, gaps exist because of the sources initially
chosen, and the formatting and editorial decisions are not equal to later standards.
The online version is better for learning and reading purposes, but the lack of edito-
rial oversight hurts CP irrespective of format. (A prior CD library is also no longer
available.34)

Of  course,  many editors  have compiled Peirce’s  writings.  In mathematics,  you
likely want to focus on the fantastic four-volume series from Eisele,41 which can often
be found for free online. As a non-mathematician, I found Volume 4 the most useful.
For my interests in logic and knowledge representation, I have found Vol 1 of The Es-
sential Peirce 42 the best single compilation of relevant writings. In fact, you can re-as-
semble the entire contents of EP (as it is abbreviated) from free, online PDFs, and I
have, but that also means you lose the fantastic Nathan Houser introduction and the
excellent packaging and portability of an actual paperback book. Many other compi-
lations are also available (see the various bibliographic   sources  ).

I  almost uniformly find the introductions by the editors of these compilations
provide useful insights about Peirce. The introductions often weave in relevant per-
sonal details to help evaluate Peirce as a person. The editors bring a perspective and
context to Peirce’s accomplishments since they offer an external vantage. Under the
category of editorial compilations, I especially like Nathan Houser’s introduction to
EP. However, from different perspectives, the intros by both Brent and Murphey (see
below) helped bring him alive to me.

After this kind of a dive into Peirce’s writings, again usefully supported by the ed-
itor’s intros, I find I want a big picture of Peirce, which covers his motivations, cir -
cumstances, discoveries, and maturation. I suspect these are the hardest of the books
about Peirce to write. It requires a breadth of familiarity and a deep understanding
of (at least what the author thinks are) Peirce’s intentions. There also are variants of
this approach, focusing on specific slices (such as religion43) or particular concepts or
academic perspectives.

The online Arisbe, the Peirce Gateway,1 lists some 210 books published on Peirce
and related topics since 1995 or so, with 114 published since 2006 alone. The site fur-
ther lists 357 doctoral   dissertations   about Peirce, most in the last few decades. Note,
many of these sources are not in English since Peirce is studied worldwide, with a
strong following in Latin America, especially Brazil and Colombia. The Arisbe site is
helpful in that most entries include at least a paragraph of description, and often
with links to more extended online excerpts. Arisbe is a good resource should spe-
cific topics pique your interest while studying Peirce.

Amongst the comprehensive studies covering the entirety of Peirce’s life work, I

1 http://www.iupui.edu/~arisbe/
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will mention two. The first is the book from Kelly Parker in 19988 that focuses on
Peirce’s emphasis on continuity (synechism). Parker writes well, is lucid, and has an
excellent notes section. The second compilation, and one of my favorite Peirce reads,
is  the earlier 1993 book by Murphey7 on the development of Peirce’s philosophy.
Some other scholars, notably Hillary Putnam, have suggested that Murphey’s inter-
pretations are often controversial. Murphey did, indeed, change some of his opinions
of Peirce, especially about continuity, in the second edition. However, I find Mur-
phey’s analysis of the phases of Peirce’s developments to conform to my sense. The
latter section of his book is excellent. I find it strange that many other general rec-
ommendations for Peirce readings tend to overlook this book. Perhaps a bit of this
neglect came from Putnam’s early comments, but Murphey is one of the resources I
most often consult.

When first learning about Peirce, it is striking how dominant semiosis and his
theory of signs (and logic) pervade many of the resources. These are critical Peircean
topics, but I find that it took me a while to probe beyond these topics into others I
find even more fascinating. I have focused on Peirce’s universal categories of First-
ness, Secondness, and Thirdness. I have also been studying abductive reasoning, lan-
guage grammars, the link between logic and mathematics, and how Peirce’s views
dovetail into current topics in topology and category theory. About these last topics,
I recommend Fernando Zalamea.44 Zalamea’s scholarship is quite advanced, and I do
not recommend as a starting point, but after some exposure to Peirce, I like the syn-
thetic view that Zalamea brings to the table. His scholarship shows that Peirce con-
tinues to produce major insights for modern logic and mathematics.

Biographies are another useful source. Louis Menand won a Pulitzer prize for his
recounting of the birth of pragmatism in the US.45 He told the story through the lens
of the major participants in the Metaphysical Club, really more of an informal group-
ing of intellectuals. William James, Chauncey Wright, and Oliver Wendall Holmes fig-
ured prominently in that group, but none perhaps more so than Peirce. (Peirce and
James were lifelong friends, but Peirce tremendously respected Wright for his insight
and intellect, and they were very close friends; Wright, unfortunately, died young at
45.) What is great about this book is that the author frames the movement to prag-
matism through the prism of slavery and abolition, the Civil War, and rapid intellec-
tual and technological change. This perspective makes for an excellent read because
it does such a marvelous job of placing Peirce into the context of his times, as well as
providing equivalently fascinating looks at his very accomplished colleagues. How-
ever, this is not the single book to read if you want to probe deeply into Peirce’s the-
ories and worldview.

My favorite biography of Peirce, whose publication is a pretty astonishing story in
its own right, is Brent’s life biography of C.S. Peirce.2 Brent first began his biography
of Peirce to answer the question of who invented the US philosophy of pragmatism,
triggered by clues in a biography of Peirce’s friend, William James. He completed his
dissertation in 1960 and intended to publish it, but ran into permission difficulties
from Harvard, which was still acting poorly about Peirce’s archival papers. Brent had
to drop the project and moved on to other things. Then, in 1988, Thomas Sebeok,
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himself a then emerging-Peirce scholar, encountered a description of the disserta-
tion in a footnote in another book. He was able to get the dissertation through inter -
library loan and finally read it in 1990. He was astonished by what he learned and the
quality of the work and set out to find Brent, whom he eventually tracked down in
Washington, DC. Through Sebeok’s catalyst, a publisher was found, Brent agreed to
update his 30-year old dissertation,  itself  an effort  of considerable labor, and the
work was finally published in 1993. Brent provides an unvarnished and, I believe, fair
look at Peirce, the person, and shows insight into his accomplishments and unique
ways of thinking about the world. Brent tackled head on all of Peirce’s foibles and
weaknesses as well. The resulting biography is a masterpiece, what Sebeok termed a
‘tragicomic thriller.’ Brent himself came to believe “in philosophy [Peirce] was one of
the most original thinkers and system builders of any time, and certainly the great-
est philosopher the United States has ever seen.” Brent came to feel ‘deep affection’
for his subject, despite those foibles and weaknesses. However, some Peirce scholars,
such  as  Gary  Richmond,  think  the  biography  unfair,  with  too  much prominence
given to Peirce’s critics.

The Brent biography is an incredibly intelligent treatment of an incredibly intelli-
gent man. As might be expected from a work that began as a dissertation, it is thor-
ough and well referenced. As might not be expected from a dissertation, it is well
written. Brent uses Peirce’s own ‘architectonic,’ a term new to me then but studied
by me now, a term drawn from Aristotle but modified by Kant and then Peirce, as a
way of framing his treatment. Brent is also attuned to shifts in Peirce’s thinking over
time, a great boon to better understand the development of his theories. Since I be-
lieve others will study Peirce for centuries, along with other great thinkers of hu-
mankind, Brent’s biography will be a must-include companion to Peirce’s writings.
As I note in the close to this article, Brent and Sebeok are but two of the hundreds of
individuals who have made it their life’s work and passion to understand Peirce bet-
ter, to convey what he was trying to tell us, and to bring awareness of him to broader
audiences. Also, a fictionalized biography of Peirce’s mysterious second wife, Juliette,
has some voyeuristic interest but is an unsuitable source for any reliable information
about either Charles or Juliette.46

The bulk of commentary, of course, about Peirce may be found in the academic
literature. I often find when studying Peirce that a new topic (or one that finally gets
my attention) will arise about which I want to learn more. As with all such topics, I
first consult Wikipedia for a starting article, if one exists, to get a bit of background
and then some key links and useful search terminology. However, my real focus in
such investigations centers on Google Scholar. Google Scholar contains nearly 40,000
articles about or discussing Peirce, with the bulk, perhaps 70%, in English.47 When
searching Scholar, I always use “peirce” as one of my keywords and keep that search
term in quotes (without the quotes, Scholar will also give you results from “pierce”
since it seems to assume “peirce” is a misspelling). For papers of keen importance, I
will also click the link ‘Cited by xx’ link on Scholar and do a secondary inspection of
those to find other interesting papers that have cited the one of interest. I have as-
sembled a complete electronic Peirce library of hundreds of documents over time in
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this manner.
A society is devoted to Peirce. One may find many Web sites such as Arisbe at the

University of Indiana, online forums including for biosemiotics, annual conferences,
and many individuals with their Web sites and writings who analyze and pronounce
strong views as to what Peirce meant and how we should interpret him. I have often
mentioned the influence of John Sowa in first getting me interested in Peirce, so his
site (with query specific to Peirce) is a good one to include on your list. Sowa tends to
focus on existential graphs, knowledge representation, logic and natural language
understanding. You may also find a good source for Web writers on Peirce on the
Arisbe site; check out the blogroll on the left column. Of course, I, too, write not in-
frequently about Peirce. You may obtain my Peirce articles under my blog’s  Peirce
category. I hope the dozen or so others who often write on Peirce forgive me for not
directly mentioning them. Thank you, and I hope we see more.

For broad electronic resources on Peirce, probably the best is  Arisbe, noted al-
ready.1 Two  high-quality,  online  philosophy  sites,  the  Stanford  Encyclopedia  of
Philosophy and the  Internet Encyclopedia of Philosophy, are often useful introduc-
tory resources when beginning to learn about a new topic. Authoritative scholars
write many of the Peirce articles. A site not updated since the early 2000s, but which
has  some  unique  and  high-quality  articles  by  outside  experts,  is  the  Digital
Encyclopedia of Peirce. A useful site to see some different uses of specific Peircean
terms is the Commens Web site. The Charles S. Peirce Project was established in 1976
to continue the mission of making Peirce’s writings available, started by the Collected
Papers (CP)  project39 going back to the 1930s.  The Project  continues to produce a
multi-volume  chronological  and  critical  edition  of  Peirce’s  writings.  Romanini’s
Minute Semeiotic Web site is a fun way to explore what Peirce might have intended
with his (incomplete) 66-sign schema.

Since first established by Joe Ransdall in 1993, a dedicated discussion list, Peirce-
L, with often lively discussion, has nearly daily activity. That link will allow you to
search archives going back to 2011, and to subscribe to the list. A similar mail list ex-
ists for a group in biosemiosis, another field that Peirce played no small role in help-
ing to gestate. A useful piece of information if you study Peirce further, given that so
much of his writing appeared long ago or has been transcribed or compiled by edi-
tors, is how to decipher the citation schemes. Good sources on Peirce citation stan -
dards are the  Wikipedia CSP abbreviations and  Robin catalog for citing papers and
manuscripts. For the truly dedicated, you can help crowd-translate Peirce’s unpub-
lished manuscripts  via  the  SPIN project co-directed by the Peirce scholar,  Jeffrey
Brian Downard. 

Appendix Notes
1. Some material in this appendix was drawn from the author’s prior articles at the AI3:::Adaptive Information 

1 See http://www.iupui.edu/~arisbe/faqs/whyarisb.HTM for the history of the term Arisbe as used by Peirce 
for his Pennsylvania home.
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APPENDIX B:

THE KBPEDIA RESOURCE

Bpedia  is  a  computable  knowledge  structure  resulting  from  the  combined
mapping of six, large-scale, public knowledge bases —  Wikipedia,  Wikidata,

OpenCyc,  GeoNames,  DBpedia  ,   and  UMBEL.1 The KBpedia structure separately cap-
tures entities, attributes, relations, and concepts. KBpedia classes these into a natural
and rich diversity of types, with their meaning and relationships, logically and co-
herently organized into about 80 typologies.

K

KBpedia is the first full-blown ontology based on Charles Sanders Peirce’s univer-
sal categories and logic of relations. The KBpedia knowledge structure is written in
the OWL semantic language; all underlying structures are represented in either OWL
or RDF. KBpedia follows best practices, many of which were pioneered by KBpedia's
editors, governing knowledge and concept representation and annotations. All lan-
guages and knowledge representations are written in W3C-compliant standards. 

The focal objective of KBpedia is to exploit large, public knowledge bases to sup-
port artificial intelligence using both supervised and unsupervised machine learning
methods. KBpedia is explicitly designed to expose rich and meaningful feature sets to
support the broadest range of machine learning methods. KBpedia is also specifically
structured to enable useful splits across a myriad of dimensions from entities to rela-
tions to types that can all be selected to create positive and negative training sets,
across multiple perspectives. The disjointedness of the SuperTypes that organize the
55,000 entity types in KBpedia provides a powerful selection and testing mechanism.2

The coherency of KBpedia provides a basis for logic tests to further improve accu-
racy, including the creation of local gold standards, at an acceptable cost. 

KBpedia is a continually evolving reference structure for knowledge representa-
tion and management. KBpedia is staged to provide working levels of interoperabil-
ity for the linked data ecosystem. Artificial intelligence (AI) and machine learning
are revolutionizing knowledge systems. The most important factor in knowledge-
based AI’s renaissance has been the availability of massive digital datasets for the
training of machine learners. Wikipedia and data from search engines are central to
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recent breakthroughs. Wikipedia is at the heart of Siri, Cortana, the former Freebase,
DBpedia, Google’s Knowledge Graph and IBM’s Watson, to name just a prominent few
AI question answering or virtual assistant systems. Natural   language understanding  
is showing impressive gains across a range of applications. To date, all of these exam-
ples have been the result of bespoke efforts leveraging Wikipedia, in whole or part.
The tens of millions of instances captured by Wikidata adds an entire ABox compo-
nent to the knowledge structure.  It  is  costly for standard enterprises to leverage
these knowledge resources on their own.

Today’s practices for leveraging these resources pose significant upfront and test-
ing effort. Much latent knowledge remains unexpressed and not readily available to
learners; it must be exposed, cleaned and vetted. We need to spend further upfront
effort on selecting the features (variables) used and then to label the positive and
negative training sets accurately. Without ‘gold standards’ — at still more cost — it is
difficult to tune and refine the learners. The cost to develop tailored extractors, tag-
gers, categorizers, and natural language processors is too high. KBpedia is meant to
systematize a starter reference structure that new users may tailor to local domains
at lower costs. Users may then apply integration and interoperability to structured,
semi-structured and unstructured data; that is, everything from text to databases.
KBpedia proves that existing knowledge bases can be staged to automate much of the
tedium and reduce the costs now required to set up and train machine learners for
knowledge purposes. Besides labeled training sets for supervised machine learning,
KBpedia, with its rich feature sets across all aspects of the knowledge structure, is
also an excellent basis for selecting training corpora for unsupervised learning. It is
often advisable to include some initial unsupervised learning in a more general su-
pervised learning context. 

COMPONENTS

KBpedia is organized into a knowledge graph, KKO, the KBpedia Knowledge Ontol-
ogy, with an upper structure based on Peircean logic. KKO sets the umbrella struc-
ture for how KBpedia’s six constituent knowledge bases are related to the system.
One of the three major branches of KKO, the Generals, represents the types in the
system, with about 85% of the KBpedia’s reference concepts residing there. These RCs
are themselves entity types — that is, 47,000 natural classes of similar entities such as
‘astronauts’  or  ‘breakfast  cereals’  —  which  we  organize  into  about  30  'core'
typologies (among the 80 or so) that are mostly disjoint (non-overlapping) with one
another. The typologies provide a flexible means for slicing-and-dicing the knowl-
edge structure; the entity types provide the tie-in points to KBpedia’s millions of in-
dividual instances. The separate Glossary defines many of the terms used by KBpedia;
Chapter 8 provides a more detailed discussion of KBpedia’s vocabulary.
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The KBpedia Knowledge Ontology (KKO)

 We inform the upper structure that is the KBpedia Knowledge Ontology (KKO) us-
ing the triadic  logic  and universal  categories  of  Charles  Sanders  Peirce.  This  tri-
chotomy, also the basis for his views on  semiosis (or the nature of signs), was in
Peirce's view the most primitive or reduced manner by which to understand and cat-
egorize things, concepts, and ideas. We devote Chapter 6 to the universal categories
and touch upon them and semiosis throughout the main book. We express KBpedia's
knowledge base grammar in the semantic Web language of OWL 2. Thus, we may ap-
ply most W3C standards to the KBpedia structure. The resulting, combined structure,
as shown in Figure B-1, brings consistency across all source knowledge bases. 
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This diagram, drawn from KBpedia’s online demo, shows the main topic areas, or ty-
pologies, that tie into KKO, which we list in their entirety in the Structure section be-
low. The structure of KKO makes it a computable knowledge graph that supports in-
ference, reasoning, aggregations, restrictions, intersections, and other logical opera-
tions. KKO’s logic basis provides a powerful way to represent individual things, 
classes of things, and how those things may combine or emerge as new knowledge.3

The KBpedia Knowledge Bases

Six,  large-scale  public  knowledge  bases  are  central  to  the  KBpedia  knowledge
structure. These six sources are:

 
 Wikipedia   - five million articles that capture the fundamental concepts and en-

tities of basic human knowledge, often including structured data and with many
linkages;

 Wikidata   - structured data records for about 40 million individual entities;

 OpenCyc   - an extract of Cyc that represents the common sense and vetted rela-
tionships amongst KBpedia's base 55,000 concepts;

 DBpedia   - a machine-readable version of parts of Wikipedia in RDF;

 GeoNames   - a geographical database of some 10 million places linked to about
800 distinct feature classes; and

 UMBEL   - the initial organizational structure for the knowledge graph. 

We have mapped and re-expressed each of these sources into the single, coherent
knowledge system of KBpedia. We split the resulting KBpedia knowledge graph along
the lines of concepts and topics, entities, events, attributes, annotations, and rela-
tions and their associated natural classifications or types. This resulting combination
gives KBpedia a rich set of structural   components  . 

Wikipedia and Wikidata are the two most important KB sources, Wikipedia for
concepts, Wikidata for instances and properties, and both for multi-lingual capabili-
ties. Certain aspects of Wikipedia have proven their usefulness for general knowl-
edge acquisition, for example, using article (concept or entity) content to inform top-
ical tagging using explicit semantic analysis (ESA),4 automatic topic identification,5

information extraction6 or a myriad of others. A weakness of Wikipedia has been its
category structure, which was not part of the original design but added in 2004. Vari-
ous  reviewers  have  likened  Wikipedia  more  to  a  thesaurus  than  a  classification
scheme, others that it is different from classical knowledge organization systems in
that it has no specified root or hierarchy. This situation improved a wee bit from
2006 to 2010, when editors organized the main Wikipedia topics according to top-
level and main topics.7 Still, typical commentaries point to the fact that Wikipedia’s
category structure is “noisy, ill-formed, and difficult to make sense of.”8 Its crowd-
sourced nature has led to various direct and indirect cycles in portions of the cate-
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gory structure. All of these problems lead to the inability to do traditional reasoning
or inference over the Wikipedia category graph.9 We have done much to clean the
Wikipedia categories and remapping them and their instances to KBpedia has now
made the structure computable.

The choice of Wikipedia’s founders to make its full content available electroni-
cally for free and without restriction was a masterstroke, and now carries over to
Wikidata, a sister project to Wikipedia under the Wikimedia banner. I only hope we
can honor this philosophy. Wikidata takes as its starting point the structured data
about entities evident in Wikipedia infoboxes. Rather than extracting and cleaning
that entity information as DBpedia does, the roles of Wikidata are as a standalone
reference base and as a multilingual source for all  entities feeding the Wikimedia
network, including Wikipedia. As of June 2018, Wikidata contained about 50 million
data items in its system. The Wikidata approach leads to more uniformity and consis-
tency and provides a central Wikimedia access point for structured data.10 However,
somewhat akin to Wikipedia, Wikidata also has struggled to find an appropriate ty-
pology (or ontology) for its millions of entities.11 Again, KBpedia provides one such
structure.

Besides these main six KBs, KBpedia has extended mappings to a further 20 other
vocabularies, including schema.org,  Dublin Core, the Bibliographic Ontology (BIBO),
and others. KBpedia also supports exports in various formats and finite state trans-
ducers or specialty lists, used as inputs to third-party analysis, management, and vi -
sualization tools. We also transform external and domain data into KBpedia’s inter-
nal canonical forms for interacting with the overall structure.

The KBpedia Typologies

A typology is a grouping of similar types, sharing some essential characters. Each
type is a parent to a particular group of instances, which also share essential traits or
attributes.  Chapter 10 is devoted to a discussion of KBpedia’s typologies and the ad-
vantages of their modular, expandable design. Table 10-2 provides a listing of the cur-
rent typologies; Table 10-3 describe those that are core.

STRUCTURE

This section goes into a bit more detail on the structure of the KBpedia knowledge
graph, KKO. At each level in the KBpedia Knowledge Ontology, we strive to organize
each entry according to Peirce’s universal categories of Firstness (1ns), Secondness
(2ns) and Thirdness (3ns). Most of the reference concepts (RCs) in KKO are organized
under the Generals (3ns) branch, though that is not evident from inspection of the
upper nodes alone. All of KKO's SuperTypes (typologies) reside there. 

Most of the 30 or so core typologies in KBpedia do not overlap with one another,
what is known as disjoint. Disjointness enables us to perform powerful reasoning and
subset selection (filtering) on the KKO graph. Upper typologies are useful to organize
core entities, plus they providing homes for shared concepts. Living Things, for ex-
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ample, can capture concepts shared by all plants and animals, by all life, which then
enables better segregation of those life forms. We apply such natural segregations
across the KKO structure. Here is the upper structure of KKO with its 171 concepts: 

level 1 level 2 level 3 level 4 level 5 level 6 level 7 
Monads [1ns] 

FirstMonads [1ns] 

Suchness [1ns] 

Accidental [1ns] 

Inherent [2ns] 

Relational [3ns] 

Thisness [2ns] 

Chance [1ns] 

Being [2ns] 

Form [3ns] 

Pluralness [3ns] 

Absolute [1ns] 

Inclusive [1ns] 

Exclusive [2ns] 

Difference [3ns] 

SimpleRelative [2ns] 

Conjugative [3ns] 

DyadicMonads [2ns] 

Attributives [1ns] 

Oneness [1ns] 

Identity [1ns] 

Real [2ns] 

Matter [1ns] 

SubstantialForm [2ns] 

AccidentalForm [3ns] 

Fictional [3ns] 

Otherness [2ns] 

Inherence [3ns] 

Quality [1ns] 

Negation [2ns] 

Intrinsic [3ns] 

Relatives [2ns] 

Concurrents [1ns] 

Opponents [2ns] 

Conjunctives [3ns] 
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Quantity [1ns] 

Values [1ns] 

Numbers [1ns] 

Multitudes [2ns] 

Magnitudes [3ns] 

Discrete [2ns] 

Complex [3ns] 

Subsumption [2ns] 

Connective [3ns] 

Unary [1ns] 

Binary [2ns] 

Conditional [3ns] 

Indicatives [3ns] 

Iconic [1ns] 

Indexical [2ns] 

Associative [3ns] 

Denotative [1ns] 

Similarity [2ns] 

Contiguity [3ns] 

TriadicMonads [3ns] 

Representation [1ns] 

Icon [1ns] 

Index [2ns] 

Symbol [3ns] 

Mediation [2ns] 

Mentation [3ns] 

Particulars [2ns] 

MonadicDyads [1ns] 

MonoidalDyad [1ns] 

EssentialDyad [2ns] 

InherentialDyad [3ns] 

Events [2ns] 

Spontaneous [1ns]

Action [2ns] 

Exertion [1ns] 

Perception [2ns] 

Thought [3ns] 

Continuous [3ns] 

TriadicAction [1ns] 

Activities [2ns] 
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Processes [3ns] 

Entities [3ns] 

SingleEntities [1ns] 

Phenomenal [1ns] 

States [2ns] 

Situations

Continuants [3ns] 

Space

Points [1ns]

Areas [2ns]

2D-dimensions

SpaceRegions [3ns]

3D-dimensions

Time

Instants [1ns]

Intervals [2ns]

Eternals [3ns]

PartOfEntities [2ns] 

Members [1ns] 

Parts [2ns] 

FunctionalComponents [3ns] 

ComplexEntities [3ns] 

CollectiveStuff [1ns] 

MixedStuff [2ns] 

CompoundEntities [3ns] 

Generals [3ns] (== SuperTypes) 

Constituents [1ns] 

NaturalPhenomena [1ns] 

SpaceTypes [2ns] 

Shapes [1ns] 

Places [2ns] 

LocationPlace 

AreaRegion 

Forms [3ns] 

TimeTypes [3ns] 

Times [1ns] 

EventTypes [2ns] 

ActivityTypes [3ns] 

Predications [2ns]

AttributeTypes [1ns] 
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IntrinsicAttributes [1ns]

AdjunctualAttributes [2ns]

ContextualAttributes [3ns]

RelationTypes [2ns] 

DirectRelations [1ns]

CopulativeRelations [2ns]

ActionTypes

MediativeRelations [3ns]

SituationTypes

RepresentationTypes [3ns]

Denotatives [1ns]

Indexes [2ns]

Associatives [3ns]

Manifestations [3ns] 

NaturalMatter [1ns] 

AtomsElements [1ns] 

NaturalSubstances [2ns] 

Chemistry [3ns] 

OrganicMatter [2ns] 

OrganicChemistry [1ns] 

BiologicalProcesses 

LivingThings [2ns] 

Prokaryotes [1ns] 

Eukaryotes [2ns] 

ProtistsFungus [1ns] 

Plants [2ns] 

Animals [3ns] 

Diseases [3ns] 

Agents [3ns] 

Persons [1ns] 

Organizations [2ns] 

Geopolitical [3ns] 

Symbolic [3ns] 

Information [1ns] 

AVInfo [1ns] 

VisualInfo 

AudioInfo 

WrittenInfo [2ns] 

StructuredInfo [3ns] 

Artifacts [2ns] 
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FoodDrink 

Drugs 

Products 

Facilities 

Systems [3ns] 

ConceptualSystems [1ns] 

Concepts [1ns] 

TopicsCategories [2ns] 

LearningProcesses [3ns] 

SocialSystems [2ns] 

FinanceEconomy 

Society 

Methodeutic [3ns] 

InquiryMethods [1ns]

KnowledgeDomains [2ns]

EmergentKnowledge [3ns]

Table B-1: The KKO Upper Structure Organized by the Universal Categories

Note that Table 10-2 in the main book provides an expansion on the typologies found
under the Generals branch in the table above.

CAPABILITIES AND USES

Online demos, various search and discovery facilities, and documentation on the
KBpedia Web site provide further details about KBpedia. The primary purpose of KB-
pedia is to serve as a starting template for creating local domain knowledge graphs.
However, as is, KBpedia also has the following capabilities:

 
 A consistent, coherent combination of six (6) large and leading public knowl-

edge bases into the computable KBpedia knowledge structure;  

 Mappings to a further 20 ‘extended’ knowledge bases; 

 A structured organization of the contributing knowledge sources that enables
separate treatment of concepts, entities, events, attributes, and relations and
their associated types; 

 Powerful and flexible manipulation and filtering capabilities; 

 Robust and configurable search and retrieval functions; 

 Pre-built taggers, classifiers, and mappers; 

 Ingest and export of multiple data formats; 

 All functions available via microservice-like APIs and Web services; 
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 Use of open and accepted languages and standards;

 A modular and expandable architecture; 

 A completely Web-based system, which we may deploy locally or in the cloud;

 Integration and incorporation of all data assets — unstructured text, semi-struc-
tured and markup data, and structured datasets and databases; 

 A reference structure for inter-relating and integrating your domain content; 

 Inherent multi-linguality, supported by the 200+ languages of the source knowl-
edge bases; 

 Precise  semantic  representation for  all  items,  enabling better  selections  and
matches; 

 The ability to make selections via inference and other logical operations; 

 The potential to recognize and train up to 47,000 fine-grained entity types;

 A knowledge graph suitable for network analytics such as influence, centrality,
shortest paths, assortative mixing, and betweenness;

 Faster, cheaper creation of positive and negative machine learning training sets;
and 

 Faster, cheaper configuration and testing of machine learners.

You may download the open source KBpedia and other supporting materials  and
documentation from the project’s GitHub site. 
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KBPEDIA FEATURE POSSIBILITIES

he two most labor-intensive steps in machine learning for natural language
are:  1)  feature  engineering,  and  2)  labeling  of  training  sets.  Supervised

machine learning uses an input-output pair, mapping an input, which is a feature, to
an output, which is the label. The machine learning consists of inferring (‘learning’) a
function  that  maps  between  these  inputs  and  outputs  with  adequate  predictive
power. We can apply this learned function to previously unseen inputs to predict the
output label.  The technique is  particularly suited to problems of  regression or of
classification.  Yet,  despite  the  integral  role  of  features in  the  machine  learning
process, we often overlook their importance compared to labels and algorithms.

T

Before we can understand how best to leverage features in our knowledge-based ar-
tificial intelligence (KBAI) efforts, we need first to define and name the feature space.
Separately, we also need to study what exists on how to select, construct, extract or
engineer these features. Armed with this background, we can now assemble an in-
ventory of what features might contribute to natural language or knowledge base
learning. 

We have followed these steps to produce a listing of possible KBpedia features.1

We have organized that inventory a bit to point out the structural and conceptual re-
lationships among these features, which enables us to provide a lightweight taxon-
omy for the space. Since others have not named or exposed many of these features
before, we conclude this appendix with some discussion about what next-generation
learners may gain by working against this structure. Of course, since much of this
thinking is incipient, forks and dead ends may unfold, but there also will likely be
unforeseen  expansions  and  opportunities  as  well.  A  systematic  view  of  machine
learning and its knowledge and human language features — coupled with large-scale
knowledge bases such as Wikipedia and Wikidata — can lead to faster and cheaper
learners across a comprehensive range of NLP tasks.
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What is a Feature?

A  “feature  is  an  individual  measurable  property  of  a  phenomenon  being  ob-
served.”2 It is an input to a machine learner, an explanatory variable, sometimes in
the form of a function. Some equate features with attributes, but this is not strictly
accurate, since a feature may be a combination of other features, or a statistical cal-
culation, or an abstraction of other inputs (some would say it could be about any-
thing!). In any case, we must express a feature as a numeric value (including Boolean
as 0 and 1) upon which the machine learner can calculate its predictions. Machine
learner  predictions  of  the  output  can  only  be  based  on  these  numeric  features,
though they can be subject to rules and weights depending on the type of learner.

Pedro Domingos emphasizes the importance of features and the fact they may be
extracted or constructed from other inputs:3

“At the end of the day, some machine learning projects succeed and some fail. What
makes the difference? Easily the most important factor is the features used.... Often,
the raw data is not in a form that is amenable to learning, but you can construct fea-
tures from it that are. This is typically where most of the effort in a machine learning
project goes. It is often also one of the most interesting parts, where intuition, creativ-
ity and ‘black art’ are as important as the technical stuff.”

Many experienced ML researchers make a similar reference to the art or black art of
features. In broad strokes in the context of natural language, a feature may be: a sur-
face form, like terms or syntax or structure (such as hierarchy or connections); de-
rived (such as statistical, frequency, weighted or based on the ML model used); se-
mantic (in terms of meanings or relations); or latent, either as something hidden or
abstracted from feature layers below it. Unsupervised learning or deep learning fea-
tures arise from the latent form.

For a given NLP problem domain, features can number into the millions or more.
Concept classification, for example, could use features corresponding to all of the
unique words or phrases in that domain. Relations between concepts could also be as
numerous. We calculate some form of vector relationship over, say, all of the terms
in the space so that we may assign a numerical value to ‘high-dimensional’ features.4

Because learners may learn about multiple feature types, the potential combinations
for the ML learner can be astronomical. This combinatorial problem has been known
for decades and has been termed the curse of dimensionality for more than 50 years.5

Of course, just because a feature exists says nothing about whether it is useful for
ML predictions.  Features  may thus  be  one  of  four  kinds:  1)  strongly  relevant,  2)
weakly relevant, 3) irrelevant, or 4) redundant.6 We should favor strongly relevant
features; we may sometimes combine weakly relevant to improve the overall rele-
vancy. We should remove all irrelevant or redundant features from consideration.
Often, the fewer the features, the better, so long as the features used are strongly rel-
evant and orthogonal (that is, they capture different aspects of the prediction space)
to one another.
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A (Partial) Inventory of Natural Language and KB Features

To make this discussion tangible, we have assembled a taxonomy of feature types
in the context of natural language and knowledge bases. I drew this inventory from
the limited literature on feature engineering and selection in the context of KBAI
from the perspectives of ML learning in general,7 8 9 ML learning ontologies10 11 and
knowledge bases.12 13 14 15 16 This listing is only partial, but does provide an inventory
of more than 200 feature types applicable to natural language.

We have organized this inventory into eight (8) main areas in Table C-1, shown in
italics, which tend to cluster into these four groupings:

 Surface features — these are features that one can see within the source docu-
ments  and  knowledge  bases.  They  include:  Lexical items  for  the  terms  and
phrases in the domain corpus and knowledge base;  Syntactical items that show
the word order or syntax of the domain;  Structural items that either split the
documents and corpus into parts or reflect connections and organizations of the
items, such as hierarchies and graphs; or Natural Language items that reflect how
we express the content in the surface forms of various human languages;

 Derived features — are surface features that we transform or derive in some
manner, such as the direct Statistical items or the Model-based ones reflecting the
characteristics of the machine learners used; 

 Semantic features — these are summarized in the  Semantics area,  and reflect
what the various items mean or how they are conceptually related to one an-
other; and 

 Latent features — these features are not observable from the source content. In-
stead, these are statistically derived abstractions of the features above that are
one- to  N-levels removed from the initial source features. These  Latent items
may either be individual features or entire layers of abstraction removed from
the surface layer.  These features result  from applying unsupervised or  deep
learning machine learners. 

We may nucleate features and training sets based on the  syntax,  morphology,
semantics (meaning of the data) or relationships (connections) of the source data in
the knowledge base. Continuous testing and the application of machine learning to
the system itself creates virtuous feedback where the accuracy of the overall system
is constantly and incrementally improved.

The compiled taxonomy listing of features in Table C-1 exceeds any prior listings.
In fact, most of the feature types we show have yet to participate in NLP machine
learning tasks. We organize our taxonomy according to the same eight main areas,
shown under the shaded entries, noted above:

Lexical
Corpus
Phrases

Averages
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Counts
N-grams
Weights

Words
Averages
Counts
Cut-offs (top N)
Dictionaries
Named entities
Stemming
Stoplists
Terms
Weights

Syntactical
Anaphora
Cases
Complements (argument)
Co-references
Decorations
Dependency grammar

Head (linguistic)
Distances
Gender
Moods
Paragraphs
Parts of speech (POS)
Patterns
Plurality
Phrases
Sentences
Tenses
Word order

Statistical
Articles

Vectors
Information-theoretic

Entropy
Mutual information

Meta-features
Correlations
Eigenvalues
Kurtosis
Sample measures

Accuracy
F-1

Precision
Relevance

Skewness
Vectors
Weights

Phrases
Document frequencies
Frequencies (corpus)
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Ranks
Vectors

Words
Document frequencies
Frequencies (corpus)
Ranks
String similarity
Vectors

Cosine measures
Feature vectors

Structural
Documents

Node types
Depth
Leaf

Document parts
Abstract
Authors
Body
Captions
Dates
Headers
Images
Infoboxes
Links
Lists
Metadata
Templates
Title
Topics

Captions
Disambiguation pages
Discussion pages

Authors
Body
Dates
Links
Topics

Formats
Graphs (and ontologies)

Acyclic
Concepts

Centrality
Relatedness

Directed
Metrics (counts, averages, min/max)

Attributes
Axioms
Children
Classes
Depth
Individuals
Parents
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Sub-graphs
Headers

Content
Section hierarchy

Infoboxes
Attributes
Missing attributes
Missing values
Templates
Values

Language versions
Definitions
Entities
Labels
Links
Synsets

Links
Category
Incoming
Linked data
Outgoing
See also

Lists
Ordered
Unordered

Media
Audio
Images
Video

Metadata
Authorship
Dates
Descriptions
Formats
Provenance

Pagination
Patterns

Dependency patterns
Surface patterns

Regular expressions
Revisions

Authorship
Dates
Structure

Document parts
Captions
Headers
Infoboxes
Links
Lists
Metadata
Templates
Titles
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Versions
Source forms

Advertisements
Blog posts
Documents

Research articles
Technical documents

Emails
Microblogs (tweets)
News
Technical
Web pages

Templates
Titles
Trees

Breadth measures
Counts
Depth measures

Web pages
Advertisements
Body
Footer
Header
Images
Lists
Menus
Metadata
Tables

Semantics [most also subject to Syntactical and Statistical features above)
Annotations

Alternative labels
Notes
Preferred labels

Associations
Association rules
Co-occurrences
See also

Attribute Types
Attributes

Cardinality
Descriptive
Qualifiers
Quantifiers

Many
Values

Datatypes
Many

Categories
Eponymous pages

Concepts
Definitions
Grouped concepts (topics)
Hypernyms
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Hypernym-based feature vectors
Hyponyms
Meanings
Synsets

Acronyms
Epithets
Jargon
Misspellings
Nicknames
Pseudonyms
Redirects
Synonyms

Entity Types
Entities
Events
Locations

General semantic feature vectors
Relation Types

Binary
Identity
Logical conjunctions

Conjunctive
Disjunctive

Mereology (part of)
Relations

Domain
Range

Similarity
Roles
Voice

Active/passive
Gender
Mood
Sentiment
Style
Viewpoint (Worldview)

Natural Languages
Morphology
Nouns
Syntax
Verbs
Word order

Latent
Autoencoders

Many; dependent on method
Features

Many; dependent on method
Hidden

Many; dependent on method
Kernels

Many; dependent on method
Model-based

Decision tree
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Tree measures
Dimensionality
Feature characteristics

Datatypes
Max
Mean
Min
Number
Outliers
Standard deviation

Functions
Factor graphs
Functors
Mappings

Landmarking
Learner accuracy

Method measures
Error rates

Table C-1: A (Partial) Taxonomy of Machine Learning Features

Fully 50% of the features listed in the inventory in  Table C-1 above arise from
unique KB aspects, especially in the areas of Semantics and Structural, including graph
relationships. Many, if not most, of these new feature possibilities may prove redun-
dant or only somewhat relevant or perhaps not at all. Not all features may ever prove
useful. Some, such as Case, may be effectively employed for named entity or specialty
extractions, applicable to copyrights or unique IDs or data types, but may prove of
little use in other areas. 

Still, because many of these KB features cover orthogonal aspects of the source
knowledge bases, the likelihood of finding new, strongly relevant features is high.
Further, except for the Latent and Model-based areas, each of these feature types may
be used singly or in combination to create coherent slices for both positive and nega-
tive training sets, helping to reduce the effort for labor-intensive labeling as well. By
extension, we can use these capabilities to more effectively bootstrap the creation of
gold standards, useful when we are testing parameters.

The  Statistical  and  Meta-features sections of  Table C-1 are first derivatives of the
base structure. The few listed here are examples of how we may include such mea -
sures in the feature pool, and they all are common ones. The point is that we may use
derivatives and embeddings from other features in the table as legitimate features in
their own right. 

Though the literature most often points to classification as the primary use of
knowledge  bases  as  background knowledge  supporting  machine learners,  in  fact,
many natural language processing (NLP) tasks may leverage KBs. Here is but a brief
listing of application areas for KBAI:
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• Entity recognizers 
• Relation extractors 
• Classifiers 
• Q & A systems 
• Knowledge base mappings 

• Ontology development 
• Entity dictionaries 
• Data conversion and mapping 
• Master data management 
• Specialty extractors 

Table C-2: NLP Applications for Machine Learners Using KBs

See also Table 4-1. Undoubtedly other applications will emerge as this more system-
atic KBAI approach to machine learning evolves over the coming years.

Feature Engineering for Practical Limits

This richness of feature types leads to the combinatorial problem of too many fea-
tures. Feature engineering is the way both to help find the features of strongest rele-
vance  while  reducing the feature space dimensionality  to  speed the ML learning
times. Initial feature engineering tasks should be to transform input data, regularize
them if need be, and to create numeric vectors for new ones. These are preparation
tasks to convert the source or target data to forms amenable to machine learning.
This staging now enables us to discover the most relevant (‘strong’) features for the
given ML method under investigation.

In a KB context, specific learning tasks as outlined in  Table C-2 are often highly
patterned. The most effective features for training, say, an entity recognizer, will
only involve a limited number of strongly relevant feature types. Moreover, the rele-
vant feature types applicable to a given entity type should mostly apply to other en-
tity types, even though the specific weights and individual features (attributes and
other type relations) will differ. This patterned aspect means that once we train a
given ML learner for a given entity type, its relevant feature types should be approxi-
mately applicable to other related entity types. We can reduce the lengthy process of
initial feature selection as training proceeds for similar types. It appears we may dis-
cover combinations of feature types,  specific  ML learners,  and methods to  create
training sets and gold standards for entire classes of learning tasks.

Probably the most time-consuming and demanding aspect of these patterned ap-
proaches  resides  in  feature  selection and  feature  extraction.  Feature  selection is  the
process of finding a subset of the available feature types that provide the highest
predictive value while not overfitting.17 Researchers typically split feature selection
into three main approaches:6 18 19

 Filter — select the N most promising features based on a ranking from some form
of  proxy  measure,  like  mutual  information or  the  Pearson  correlation
coefficient,  which provides  a  measure  of  the  information  gain  from  using  a
given feature type; 

 Wrapper — test feature subsets through a greedy search heuristic that either
starts  with  an  empty  set  and  adds  features  (forward  selection)  keeping  the
‘strongest’ ones, or starts with a full set and gradually removes the ‘weakest’
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ones (backward selection); the wrapper approach may be computationally ex-
pensive; or 

 Embedded — include feature selection as a part of model construction. 

For high-dimensional features, such as terms and term vectors, we may apply sto-
plists or cut-offs (only considering the top N most frequent terms, for example) to re-
duce dimensionality. Part of the ‘art’ portion resides in knowing which feature candi-
dates may warrant formal selection or not; this learning can be codified and reused
for similar applications. One may also apply some unsupervised learning tests at this
point to discover additional ‘strong’ features.

Feature extraction transforms the data in the high-dimensional space to a space of
fewer  dimensions.  Functions  create  new features  in  the form of  Latent variables,
which are not directly observable. Also, because these are statistically derived values,
many input features are reduced to the synthetic measure, which naturally causes a
reduction in dimensionality. Advantages of a reduction in dimensionality include:

1. Often a better feature set (resulting in better predictions);20 

2. Faster computation and smaller storage; 

3. Reduction in collinearity due to a reduction in weakly interacting inputs; and 

4. Easier graphing and visualization. 

On the other hand, the latent features are abstractions, and so not easily understood
as the literal. Deep learning generates multiple layers of these latent features as the
system learns. 

Of course, we may also combine the predictions from multiple ML methods, which
then also raises the questions of ensemble scoring. We may also self-learn (that is,
meta-  learn  )  more  systematic  approaches  to  ML  such  that  the  overall  learning
process can proceed in a more automated way.

Considerations for a Feature Science

In supervised learning, it is clear that more time and attention have been given to
the labeling of the data, what the desired output of the model should be. Much less
time and attention has been devoted to features, the input side of the equation. The
purposeful use of knowledge bases and structuring them is one way we can make
progress. Still, progress also requires some answers to some fundamental questions.
A scientific approach to the feature space would likely need to consider, among other
objectives:

 Full understanding of surface, derived, and latent features; 

 Relating various use cases and problems to specific machine learners and classes
of learners; 

 Relating specific machine learners to the usefulness of particular features (see
also hyperparameter optimization and model selection); 
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 Improved methods for feature engineering and construction; 

 Improved methods for feature selection; and 

 A better understanding of how to select supervised and unsupervised ML. 

Some tools and utilities would also help to promote this progress. Some of these ca-
pabilities include:

 Feature inventories — how to create and document taxonomies of feature types;

 Feature generation — methods for the codification of leading recipes; and

 Feature transformations — the same for transformations, up to and including
vector creation.

Role of a Platform

The object of these efforts is to systematize how knowledge bases, combined with
machine learners, can speed the deployment and lower the cost of creating bespoke
artificial  intelligence  applications  of  natural  language  for  specific  domains.  KBAI
places primary importance on  features.  An abundance of opportunity exists in this
area, and an abundance of work required, but little systematization.

The good news is we can build platforms that manage and grow the knowledge
bases and knowledge graphs supporting machine learning, as we discussed in Parts III
and IV. We can apply machine learners in a pipeline manner to these KBs, including
orchestrating the data flows in generating and testing features, running and testing
learners,  creating positive  and negative training sets,  and establishing gold stan-
dards.  The heart  of the platform must be an appropriately structured knowledge
base organized according to a coherent knowledge graph; this is the primary purpose
of KBpedia. 

Still, in the real world, engagements always demand unique scope and unique use
cases. We should engineer our platforms to enable ready access, extensions, configu-
rations, and learners. It is vital to structure our source knowledge bases such that
slices and modules can be specified, and all surface attributes may be selected and
queried. Mapping to the external schema is also essential.  Background knowledge
from a coherent knowledge base is the most efficient way to fuel this.
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Throughout this book many terms have been presented, often defined in context.
This section attempts to gather all of these definitions. Sources include my online
glossary1 on my working blog, but many sources have also contributed.2 3 4 5  Note that
italicized entries refer to other terms defined in the glossary. Also, see the glossary at
the end of Brent’s biography.6

A

ABox 

An ABox (for assertions, the basis for A in ABox) is an “assertion component”; that is, a fact associated with a terminological
vocabulary within a knowledge base. ABox are TBox-compliant statements about instances belonging to the concept of an on-
tology. Instances and instance records reside within the Abox

Abductive reasoning

Abduction (or abductive reasoning) is a mode of symbolic inference that involves the screening and selection from a domain D
of the possible explanation paths to an outcome O possibly involving any element E of D, with the selection of candidate paths
for inductive testing based on plausibility, economy, and potential impact; abduction does not produce probable results, only
winnowed candidates.

Access control

Access control is the protection of resources against unauthorized access; a process by which use of resources is regulated ac -
cording to a security policy and is permitted by only authorized system entities according to that policy; see further RFC 2828

Actions

Actions are reactions to perceptions or stimuli, are energetic, or are thought, as understood to be broadly construed; actions
reside in Secondness

Activities

Activities are sustained actions over durations of time; activities may be organized into natural classes 

Accuracy 

A statistical measure of how well a binary classification test correctly identifies or excludes a condition. It is calculated as the
sum of true positives and true negatives divided by the total population

Adaptive ontology 

An adaptive ontology is a conventional knowledge representational ontology that has added to it a number of specific best
practices, including modeling the ABox and TBox constructs separately; information that relates specific types to different
and appropriate display templates or visualization components; use of preferred labels for user interfaces, as well as alterna -
tive labels and hidden labels; defined concepts; and a design that adheres to the open world assumption

Administrative ontology 

Administrative ontologies govern internal application use and user interface interactions

Annotation 

Annotations are indexes and the metadata of the KB; these cannot be inferenced over and do not participate in reasoning or
coherency testing. But, they can be searched, and language features can be processed in other ways. Annotations may be
grouped for convenience, but may not be typed

API

An application programming interface (API)  defines how communication may take place between applications. Implementing
APIs that are independent of a particular operating environment (as are the W3C DOM Level 2 specifications) may reduce im-
plementation costs for multi-platform user agents and promote the development of multi-platform assistive technologies. Im -
plementing conventional APIs for a particular operating environment may reduce implementation costs for assistive technol -
ogy developers who wish to interoperate with more than one piece of software running on that operating environment
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Architectonic

Architectonic is a governing philosophy expressed iconically as a design, schema or structure

Architecture

Architecture, as limited to the use herein, is the structure of a knowledge base (or bases) written in a knowledge representa-
tion formalism, and embedded in a general knowledge management platform. The architecture combines knowledge artifacts
with software program(s) or computing system(s), the relationships among them, and the conditions on their use 

Artificial intelligence 

AI is the use of computers to do or assist complex human tasks or reasoning. There are many, broad sub-fields from pattern
recognition to robotics and complex planning and optimizations.

Aspects

Aspects are aggregations of an entity type that are grouped according to features or views different from the type itself. As
examples, the type of ‘music composer’ may have an aspect of being from the 19th century, or ‘authors’ may have the aspects
of being Russian or writing novellas. The organization of aspects closely parallels that for SuperTypes

Assertion 

Assertion is a statement, wherein a fact or logical expression with consequences is made 

Attributes 

Attributes are the intensional characteristics of an object, event, entity, type (when viewed as an instance), or concept. The
relationship is between the individual particular and its attributes and characteristics, in the form of A:A. Attributes may be
intrinsic characteristics or essences of single particulars, adjunctual or accidental happenings to the particular, or contextual
in time or space or situations. Collectively known as depth, comprehension, significance, meaning or connotation

Attribute type 

Attribute types are an aggregation (or class) of multiple attributes that have similar characteristics amongst themselves (for
example, colors or ranks or metrics). As with other types, attribute types do not have attributes

Axiom 

An axiom is a premise or starting point of reasoning. In an ontology, each statement (assertion) is an axiom

B

Base concept

Base concepts are all of the classes in the overall KBpedia, comprised of the KBpedia Knowledge Ontology and all of its official
typologies

Belief

Belief is a state of evidence sufficient to enable action

Binding 

Binding is the creation of a simple reference to something that is larger and more complicated and used frequently. The sim -
ple reference can be used instead of having to repeat the larger thing

Blank node 

Also called a bnode, a blank node in RDF is a resource for which a URI or literal is not given. A blank node indicates the exis-
tence of a thing, implied by the structure of the knowledge graph, but which was never explicitly identified by giving it a URI.
Blank nodes have no meaning outside of their current graph and therefore cannot be mapped to other resources or graphs

C

Cardinality

Cardinality is where the number of members in a class or type is set or limited, such as hasBiologicalParent being set
to two

Class 

Class is a collection of one or more instances or classes that share the same potential attributes or relations; concepts and entity
types are both classes

Closed   w  orld   a  ssumption   

CWA is the premise that what is not currently known to be true is false. CWA is the most common logic applied to relational
database systems, useful for transaction-type systems. In knowledge management, CWA is used in at least two situations: 1)
when the knowledge base is known to be complete, and 2) when the knowledge base is known to be incomplete, but a ‘best’ def-
inite answer must be derived from incomplete information. See contrast to the open world assumption
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Coherence

Coherence is the state of being coherent for logic systems, where the knowledge base (domain) is consistent and has a high
degree of conjunction for non-deductive assertions

Collection 

See class

Complete

Complete is an evaluative criterion for logic systems where all statements which are true in all models are provable

Concept 

See class

Cyc 

Cyc is a common-sense knowledge base that has been under development for over 20 years backed by 1000 person-years of ef-
fort. The smaller OpenCyc version is available in OWL as open source; a ResearchCyc version of the entire system is available
to researchers. The Cyc platform contains its own logic language, CycL, and has many built-in functions in areas such as natu-
ral language processing, search, inferencing and the like. UMBEL is based on a subset of Cyc

Cycle

A cycle is where, in a graph, a path from a given node may reach itself (such as A  B  C  A). In a subsumption hierarchy,→ A and B itself is a rich external source. → A and B itself is a rich external source. → A and B itself is a rich external source.
this is an error

D

Data integration

Data integration is the bringing together of data from heterogeneous and often physically distributed data sources into a sin -
gle, coherent view

Dataset 

Dataset is a combination of one or more records, transmitted as a single unit (though it may be split into parts due to size)

Datatypes

Datatypes are pre-defined ways that attribute values may be expressed, including various literals and strings (by language),
URIs, Booleans, numbers, date-times, etc. See XSD (XML Schema Definition) for more information

DBpedia 

A project that extracts structured content from Wikipedia, and then makes that data available as linked data. There are millions
of entities characterized by DBpedia in this way. As such, DBpedia is one of the largest — and most central — hubs for linked
data on the Web

Deductive reasoning

Deductive reasoning extends from premises known to be true and clear to infer new facts

Description logics 

Description logics and their semantics traditionally split  concepts and their  relationships from the different treatment of  in-
stances and their  attributes and roles expressed as  fact assertions. The concept split is known as the TBox and represents the
schema or taxonomy of the domain at hand. The TBox is the structural and intensional component of conceptual relationships.
The second split of instances is known as the ABox and describes the attributes of instances (and individuals), the roles be -
tween instances, and other assertions about instances regarding their class membership with the TBox concepts

Disjoint

Disjoint is where membership in one class specifically excludes membership in another; this is a useful property in that it al-
lows large, well-designed knowledge bases to be ‘sliced-and-diced’ for more effective processing or analysis

Distant supervision 

A method to use knowledge bases to label entities automatically in text through machine learning, which is then used to extract
features and train a machine learning classifier. The knowledge bases provide coherent positive training examples and avoid
the high cost and effort of manual labeling

Documents

Documents (or articles or records) may be in the form of articles or data records. Whatever the form, extractions are needed to
convert source information into the triples useful to the knowledge base

Domain 

Domain is the bounded scope of real-world considerations that may contribute to the knowledge representation or information
queries at hand. Scoping the domain is one of the first activities undertaken in a new KR project
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Domain (property)

Domain, as applied to a property, is a statement that declares the classes or types from which the subject of the assertion
must be drawn

Domain ontology 

Domain (or content) ontologies embody more of the traditional ontology functions such as information interoperability, infer-
encing, reasoning and conceptual and knowledge capture of the applicable domain

E

Edges

Edges, in a graphical representation of a  knowledge graph, are the connections or the  relations between  subjects and  objects;
edges are the linking properties in a “triple” statement

Entailment

Entailment is a consequence arising from a statement deemed to be true based on some underlying logic. The logical conse -
quence is said to be necessary and formal; necessary, because of the rules of the logic (the conclusion is the consequent of the
premises); and formal because the logical form of the statements and arguments hold true without regard to the specific in-
stance or content

Entity 

Entities are the basic, real things in our domain of interest; they are nameable things or ideas that have an identity, are de -
fined in some manner, can be referenced, and may be related to types; entities are most often the bulk of an overall knowledge
base. An entity is an individual object or instance of a class, a Secondness; when affixed with a proper name or label it is also
known as a  named entity (thus, named entities are a subset of all entities). Entities are described and characterized by  at-
tributes. Entities are connected or related to one another through external relations and are referred to, signified or indexed by
representations. An entity may be independent or separate or can be part of something else. Entities cannot be topics or types

Entity recognition 

The use of natural language processing to identify specific entities in text. Often used in conjunction with named entities, where
it is abbreviated NER 

Entity type 

Entity types are the aggregations or collections or classes of similar entities, which also share some essence;  entity types have
the attributes (but not the same values) of instances of the type

Essence 

The attribute or set of attributes that make an entity what it fundamentally is; it is a unique or distinguishing attribute that
helps define a type 

Event

Events are nameable sequences of time, are described in some manner, can be referenced, and may be related to other time
sequences or types. Events are like entities, except they have a discrete time beginning and end. Events are a Secondness and
may be typed 

Extensional 

The extension of a class, concept, idea, or sign consists of the things to which it applies, in contrast with its intension. For ex-
ample, the extension of the word “dog” is the set of all (past, present and future) dogs in the world. The extension is most
akin to the attributes or characteristics of the instances in a set defining its class membership

External linkages

External linkages (or mappings) are any of the relational properties may be used to map external datasets and schema to KB -
pedia. In its base form, which can be expanded, KBpedia has mappings to more than 20 external sources

External relations

External relations are assertions (relationships) between an object, event, entity, type, or concept and another particular or gen-
eral. An external relationship has the form of A:B. External relations may be simple ones of a direct relationship between two
different instances; may be copulative by combining objects or asserting membership, quantity, action or circumstance; or
mediative to provide meaning, context, relevance, generalizations, or other explanations of the subject with respect to the ex-
ternal world. External relations are extensional

F

Fact 

A basic statement or assertion within a knowledge graph or knowledge base 
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Fallibility

Fallibility is the doctrine that truth is a limit function, unknowable in the absolute, and provides the logical basis for ques-
tioning premises

False negative 

An error where a test result indicates that a condition failed, while it actually was successful. That is, the test result indicates
a negative when the correct result should have been positive. Also known as a false negative error or Type II error in statis-
tics. It is abbreviated FN

False positive 

An error where a test result indicates that a condition was met or achieved, while it actually should have failed. That is, the
test result indicates a positive when the correct result should have been negative. Also known as a false positive error or Type
I error in statistics. It is abbreviated FP 

Feature

A feature is a measurable property of the system being analyzed, equivalent to what is known as an explanatory variable in
statistics 

Feature engineering

Feature engineering is a process of creating, generating and selecting the features to be used in machine learning, based on an
understanding of the underlying data and choosing features based on their likely impact on learning results and effectiveness

Firstness

Firstness is possibility, the essences of what may be, the unexpected chance occurrence

Folksonomy 

A folksonomy is a user-generated set of open-ended labels called tags organized in some manner and used to categorize and
retrieve Web content such as Web pages, photographs, and Web links

Function

Function is any algebraic or logical expression allowable by the semantics and primitives used in the KR language where an
input is related to an output

G

Generals

Generals are the mediating, continuous, vague and indeterminate aggregations of instances into concepts, classes,  types, col-
lections or sets. Generals are in Thirdness. Generals may often be considered real, and their understanding and identification
may be shared through representations

GeoNames 

GeoNames integrates geographical data such as names of places in various languages, elevation, population, and others from
various sources

Gold standard

A gold standard is a reference, benchmark test set where the results are already scored and known, with a minimum (if not
zero) amount of false positives or false negatives; good gold standards also include true negative results

I

Identifier

Identifier is a reference pointer, a sign pointing to an object, but not the object itself. Identifiers should not be confused with
the naming or defining label for the object; in practice, it is often a unique string assigned to the object. In RDF and KBpedia
this identifier is a URI

Individual 

Individual in RDF and OWL (indeed, commonly in description logics) is synonymous with an instance or entity; we try not to
use this term because of general terminological confusion; see instance

Inductive reasoning

A method of reasoning where lines of possible evidence are weighed to determine probable outcomes

Inferenc  e   

Inference is the act or process of deriving logical conclusions from premises known or assumed to be true. The logic within
and between statements in an ontology is the basis for inferring new conclusions from it, using software applications known as
inference engines or reasoners
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Instance 

Instances are individual entities or events, the ground level components of a knowledge base. Instances may include concrete ob-
jects such as people, animals, tables, automobiles, molecules, and planets, as well as abstract instances such as numbers and
words; instances are in Secondness. An instance is also known as an individual, with member and entity also used somewhat in-
terchangeably

Instance record 

An instance with one or more attributes also provided

Intensional 

The intension of a class is what is intended as a definition of what characteristics or properties its members should have. In -
tension is most akin to the attributes or characteristics of the instances in a set defining its class membership. It is therefore
like the key-attribute pair aspects of an instance (or ABox) in an ontology

Inverse

Inverse is when a property, say, hasParent, can be defined as the inverse property of hasChild

K

Key-value pair 

Also known as a name-value pair or attribute–value pair, a key-value pair is a fundamental, open-ended data representation. All
or part of the data model may be expressed as a collection of tuples <attribute name, value> where each el-
ement is a key-value pair. The key is the defined  attribute, and the value may be a reference to another object or a literal
string or value. In RDF triple terms, the subject is implied in a key-value pair by nature of the instance record at hand

Kind 

Used synonymously herein with class

Knowledge base 

A knowledge base (abbreviated KB or kb) is a special kind of database for knowledge management. As used in KBpedia, a KB
includes instances and classes related to each other via triple statements

Knowledge-based artificial intelligence

Knowledge-based artificial intelligence, or KBAI, is the use of large statistical or knowledge bases to inform feature selection
for machine-based learning algorithms used in AI

Knowledge graph 

See ontology

Knowledge management

Knowledge management, or KM, is the practice of creating, sharing, finding, annotating, connecting, and extending informa-
tion and knowledge for a given domain 

Knowledge representation 

A field of artificial intelligence dedicated to representing information about the world in a form that a computer system can uti -
lize to solve complex tasks 

Knowledge supervision 

A method of machine learning to use knowledge bases in a purposeful way to create features, and negative and positive  training
sets in order to train the classifiers or extractors. Distant supervision also uses knowledge bases, but not is such a purposeful, di-
rected manner across multiple machine learning problems

L

Leaf nodes

Leaf nodes are terminal nodes in a tree structure, often representing instances (but not always so)

Linkage 

A specification that relates an object or attribute name to its full URI (as required in the RDF language)

Linked data 

Linked data is a set of best practices for publishing and deploying  instance and class data using the RDF data model, and uses
uniform resource identifiers (URIs) to name the data objects. The approach exposes the data for access via the HTTP protocol
while emphasizing data interconnections, interrelationships, and context useful to both humans and machine agents
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Lists

Lists are unordered members or instances, with or without gaps or duplicates, useful for bulk assignment purposes. Lists gener -
ally occur through a direct relation assignment (e.g., rdf:Bag)

M

Machine learning 

The construction of algorithms that can learn from and make predictions on data by building a model from example inputs. A
wide variety of techniques and algorithms ranging from supervised to unsupervised may be employed

Mapping 

A considered correlation of objects in two different sources to one another, with the relation between the objects defined via a
specific property. Linkage is a subset of possible mappings

Member 

Used synonymously herein with instance

Metadata 

Metadata are  annotations and provide information about one or more aspects of the content at hand such as means of cre -
ation, purpose, when created or modified, author or provenance, where located, topic or subject matter, standards used, or
other descriptive characteristics. In contrast to an attribute, which is an individual characteristic intrinsic to an instance, meta-
data is a description about that data

Metamodeling 

Metamodeling is the analysis, construction, and development of the frames, rules, constraints, models, and theories applica -
ble and useful for modeling a predefined class of problems

Microdata 

Microdata is a proposed specification used to nest semantics within existing content on web pages. Microdata is an attempt to
provide a simpler way of annotating HTML elements with machine-readable tags than the similar approaches of using RDFa or
microformats

Microformats 

A microformat (sometimes abbreviated F or uF) is a piece of mark up that allows expression of semantics in an HTML (orμF or uF) is a piece of mark up that allows expression of semantics in an HTML (or
XHTML) web page. Programs can extract meaning from a web page that is marked up with one or more microformats

N

Natural language processing 

NLP is the process of a computer extracting meaningful information from natural language input and/or producing natural
language output. NLP is one method for assigning structured data characterizations to text content. NLP applications include
automatic summarization, coreference resolution, machine translation, named entity recognition, question answering, rela -
tionship extraction, topic segmentation and recognition, word segmentation, and word sense disambiguation

Named entity 

See entity

Named entity recognition 

See entity recognition; also called NER

Negation

Negation is a unary operation that produces a value of true when its operand is false and a value of false when its operand is
true 

Nodes

Nodes, in a graphical representation of a  knowledge graph, are the  subjects and  objects  in a “triple”  statement; they are con-
nected to one another via relations (or edges in a graphical representation)

O

OBIE 

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-
structured machine-readable documents. Ontology-based information extraction (OBIE) is the use of an ontology to inform a
“tagger” or information extraction program when doing natural language processing. Input ontologies thus become the basis
for generating metadata tags when tagging text or documents
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Object 

An object is an entity, event, class, concept or property that can be referred to via an identifier of some sort; in KBpedia, every ob-
ject has a URI identifier 

Ontology 

An ontology is a data model that represents a set of concepts or instances within a domain and the relationships between those
concepts. Loosely defined, ontologies on the Web can have a broad range of formalism, or expressiveness or reasoning power

Ontology-driven application 

Ontology-driven applications (or ODapps) are modular, generic software applications designed to operate in accordance with
the specifications contained in one or more ontologies. The relationships and structure of the information driving these appli-
cations are based on the standard functions and roles of ontologies (namely as domain ontologies), as supplemented by UI and
instruction sets and validations and rules

Open Semantic Framework 

The open semantic framework, or OSF, is a combination of a layered architecture and an open-source, modular software
stack. The stack combines many leading third-party software packages with open source  semantic technology developments
from Structured Dynamics

Open   w  orld   a  ssumption   

OWA is a formal logic assumption that the truth-value of a statement is independent of whether or not it is known by any sin-
gle observer or agent to be true. OWA limits the kinds of inference and deductions to those that are known to be true. OWA is
useful when we represent knowledge within a system as we discover it, and where we cannot guarantee that we have discov -
ered or will discover complete information, typical of knowledge. See contrast to the closed world assumption

OWL 

The Web Ontology Language (OWL) is designed for defining and instantiating formal Web ontologies. An OWL ontology may in-
clude descriptions of classes, along with their related properties and instances. There are also a variety of OWL dialects

P

Particulars

Particulars are all entities and events; they are in Secondness

Pragmatic maxim

Pragmatic maxim is the understanding of a topic or object by an apprehension of all of the practical consequences potentially
arising from it

Pragmatism

Pragmatism, what Peirce came to term pragmaticism because of what he felt was a misappropriation of his idea, is the consid-
eration and weighing of available alternatives or explanations in order to pick the most likely ones with a return

Precision 

The fraction of retrieved documents that are relevant to the query. It is measured as true positives divided by all measured pos-
itives (true and false). High precision indicates a high percentage of true positives in relation to all positive results

Predicate 

See Property 

Preferred label

Preferred Label  (or  prefLabels or  title) is the readable string (name) for each object in KBpedia. The labels are provided as a
readable convenience; the actual definition of the object comes from the totality of its description, prefLabel, altLabels, and
connections (placement) within the knowledge graph. Labels of all kinds are representations and reside in Thirdness 

Prescission

Prescission, or its verbs prescind or prescinded from, is the process of comparing two items and seeing if either may exist inde -
pendent of the other. If so, we say the independent one is prescinded from the dependent one; it is one way to determine a
subsumption relationship.

Property 

Property is an official term in RDF and OWL that includes what we term attributes, external relations, and representations; we try
to use the term sparingly, generally when only referencing those items in relation to RDF or OWL

Punning 

In computer science, punning refers to a programming technique that subverts or circumvents the type system of a program-
ming language, by allowing a value of a certain type to be manipulated as a value of a different type. When used for ontologies,
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it means to treat a thing as both a class and an instance, with the use depending on context

Q

Query

Query is a request for information from an agent using a suitable knowledge representation

R

Range (property)

Range (property) declares the classes or data types from which the object data or types of an assertion must be drawn

RDF 

Resource Description Framework (RDF) is a data model with a syntax that allows statements about resources in the form of sub-
ject-predicate-object expressions, called triples in RDF terminology. The subject denotes the resource, and the predicate denotes
traits or aspects of the resource and expresses a relationship between the subject and the object

RDFa 

RDFa uses attributes from meta and link elements and generalizes them so that they are usable on all elements allowing anno-
tation markup with semantics. RDFa 1.1 is a W3C Recommendation that removes prior dependence on the XML namespace
and expands HTML5 and SVG support, among other changes

RDF Schema 

RDFS or RDF Schema is an extensible knowledge representation language, providing basic elements for the description of ontolo-
gies, otherwise called RDF vocabularies, intended to structure RDF resources

Reasoner 

A semantic reasoner, reasoning engine, rules engine, or simply a reasoner, is a piece of software able to infer logical conse -
quences from a set of asserted facts or axioms. The notion of a semantic reasoner generalizes that of an inference engine, by
providing a richer set of mechanisms

Reasoning 

Reasoning is one of many logical tests using inference rules as commonly specified by means of an ontology language, and of-
ten a description language. Many reasoners use first-order predicate logic to perform reasoning; inference commonly pro -
ceeds by forward chaining or backward chaining

Recall 

The fraction of the documents that are relevant to the query that is successfully retrieved. It is measured as true positives di-
vided by all potential positives that could be returned from the corpus. High recall indicates a high yield in obtaining relevant
results

Record 

As used herein, a shorthand reference to an instance record

Reference concept 

Reference concepts (or RefConcepts or RCs), the base concepts in KBpedia, are any of the noun objects within KBpedia and abbre-
viated as RC. An RC may be either an entity,  entity type,  attribute,  attribute type,  relation,  relation type,  topic or abstract concept.
RCs are a distinct subset of the more broadly understood ‘concept’ such as used in the SKOS RDFS controlled vocabulary 7 or
formal concept analysis or the very general or abstract concepts common to some ontologies. The KBpedia knowledge graph is
a coherently organized structure of the nearly 60,000 RCs in KBpedia. All RCs are OWL classes

Referent

The object referred to by an identifier

Reflexivity

Reflexivity is when every element of X is related to itself, every class is its own subclass, such as every person is a person

Reinforcement learning

Reinforcement learning (RL) is a method of machine learning wherein actions are evaluated, most often as a Markov decision
process, in accordance with stated performance objectives via a reward function to help converge to those desired goals. 

Relation 

Relations are the way we describe connections between two or more things; attributes, external relations, and representations are
all instances of the relations class

Relation type 

An aggregation (or  class)  of multiple  relations that have similar characteristics amongst themselves.  As  with other types,
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shared characteristics are subsumed over some essence(s) that give the type its unique character

Representations

Representations are signs, and the means by which we point to, draw or direct attention to, or designate, denote or describe a
particular object, entity, event, type or general.  A representational relationship has the form of re:A. Representations can be des-
ignative of the subject, that is, be icons or symbols (including labels, definitions, and descriptions); indexes that more-or-less
help situate or provide a traceable reference to the subject; or associations, resemblances and likelihoods in relation to the
subject, more often of an indeterminate character

Root

Root is the name for the top-level node in a taxonomy, knowledge graph, ontology or typology

RSS 

RSS (an acronym for Really Simple Syndication) is a family of web feed formats used to publish frequently updated digital
content, such as blogs, news feeds or podcasts

S

Satisfies

Satisfies means that all statements have an interpretation that can be shown to be true

schema.org 

Schema.org is an initiative launched by major search engines to create and support a common set of schema for structured
data markup on web pages. schema.org provided a starter set of schema and extension mechanisms for adding to them.
schema.org supports markup in microdata, microformat and RDFa formats

Semantic enterprise 

An organization that uses semantic technologies and the languages and standards of the semantic Web, including RDF, RDFS, OWL,
SPARQL, and others to integrate existing information assets, using the best practices of linked data and the open world assump-
tion, and targeting knowledge management applications

Semantic technology 

Semantic technologies combine software and semantic specifications to encode meanings separate from data and content files
and separate from application code. This approach enables machines as well as people to understand, share and reason with
data and specifications separately. Semantic technologies provide an abstraction layer above existing IT technologies that en-
ables bridging and interconnection of data, content, and processes

Semantic Web 

The Semantic Web is a collaborative movement led by the World Wide Web Consortium (W3C) that promotes common for-
mats for data on the World Wide Web. By encouraging the inclusion of semantic content in web pages, the Semantic Web aims
at converting the current web of unstructured documents into a “web of data.” It builds on the W3C’s Resource Description
Framework (RDF)

Semset 

Semsets (or synsets or alternative labels or altLabels) are collections of alternate labels and terms to describe a concept or entity
or  event.  These semset  alternatives  include true synonyms,  but  may also  be  more expansive and include  abbreviations,
acronyms,  aliases,  argot,  buzzwords,  cognomens,  derogatives,  diminutives,  epithets,  hypocorisms,  idioms,  jargon,  lingo,
metonyms, misspellings, nicknames, non-standard terms (see Twitter), pejoratives, pen names, pseudonyms, redirects, slang,
sobriquets or stage names; in short, any term or phrase that can be a reference to a given instance or class 

Sequences

Sequences are ordered  members or  instances,  with or without gaps or duplicates, useful for bulk assignment purposes. Se-
quences generally occur through a direct relation assignment (e.g., rdf:Seq)

SKOS 

SKOS or Simple Knowledge Organisation System is a family of formal languages designed for representation of thesauri, clas -
sification schemes, taxonomies, subject-heading systems, or any other type of structured controlled vocabulary; it is built upon
RDF and RDFS 

Sound

An evaluative criteria in logic systems where all provable statements are true in all models

SPARQL 

SPARQL (pronounced “sparkle”) is an RDF query language; its name is a recursive acronym that stands for SPARQL Protocol
and RDF Query Language
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Statement 

A statement is the standard and most basic expression in RDF and OWL. A statement is comprised of a “triple” (subject – prop-
erty – object/value) 

Subject 

A subject is either a concept, entity, event or property (also collectively known as a “resource” in RDF), and is the item currently
under consideration or focus; it is equivalent to the linguistic subject 

Subject extraction 

Subject extraction is an automatic process for retrieving and selecting subject names from existing knowledge bases or data
sets. Extraction methods involve parsing and tokenization, and then generally the application of one or more information ex -
traction techniques or algorithms

SuperType 

SuperTypes (also Super Types) are a collection of (mostly) similar reference concepts. Most of the SuperType classes have been
designed to be (mostly) disjoint from the other SuperType classes. SuperTypes are synonymous with the typologies used in KB-
pedia. SuperTypes (typologies) provide a higher-level of clustering and organization of base concepts for use in user interfaces
and for reasoning purposes

Supervised learning 

A machine learning task of inferring a function from labeled training data, which optimally consists of positive and negative
training sets. The supervised learning algorithm analyzes the training data and produces an inferred function to determine the
class labels for unseen instances correctly

Symmetric

Symmetric is when A relates to B exactly if it relates B with A

Synechism

Synechism is a philosophical doctrine that space, time, and law are continuous and form an essential Thirdness of reality in
contrast to existing things and possibilities

T

Tag 

A tag is a keyword or term associated with or assigned to a piece of information ( e.g., a picture, article, or video clip), thus de-
scribing the item and enabling keyword-based classification of information. Tags are usually chosen informally by either the
creator or consumer of the item

TBox 

A TBox (for terminological knowledge, the basis for T in TBox) is a “terminological component”; that is, a conceptualization
associated with a set of facts. TBox statements describe a conceptualization, a set of concepts and properties for these concepts.
The TBox is sufficient to describe an ontology. Best practice often suggests keeping a split between instance records, the Abox,
and the TBox schema

Taxonomy 

In the context of knowledge systems, taxonomy is the hierarchical classification of entities of interest of an enterprise, organi-
zation or administration, used to classify documents, digital assets and other information. Taxonomies can cover virtually any
type of physical or conceptual entities (products, processes, knowledge fields, human groups, etc.) at any level of granularity

Topic 

The topic (or theme) is the part of the proposition that is being talked about (predicated). In topic maps, the topic may repre-
sent any concept, from people, countries, and organizations to software modules, individual files, and events. Topics are in
Thirdness

Topic Map 

Topic maps are an ISO standard for the representation and interchange of knowledge. A topic map represents information us -
ing topics, associations (similar to a predicate relationship), and occurrences (which represent relationships between topics
and information resources relevant to them), quite similar in concept to the RDF triple

Training set 

A set of data used to discover potentially predictive relationships. In supervised learning, a positive training set provides data
that meet the training objectives; a negative training set fails to meet the objectives

Transitivity

Transitivity is when item A is related to item B, and item B is related to item C, then A is also related to A; this is the critical
property for establishing inheritance chains
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Triple 

A basic statement in the RDF language, which is comprised of a subject – property – object construct, with the subject and prop-
erty (and object optionally) referenced by URIs 

True negative 

A correct result, but one which fails (is negative) to meet the test objective. It is abbreviated TN

True positive 

A correct result, and one which succeeds (is positive) to meet the test objective. It is abbreviated TP

Tychism

A philosophical doctrine that absolute chance is real and operative in the world; it is the source of irregularity and variety
and the underlying force of evolution

Type 

Types are the hierarchical classification of natural kinds of instances as determined by shared attributes (though not necessar-
ily the same values for those attributes) and some common essence, which is the defining determinant of the type. All types
may have hierarchy. Types are in Thirdness

Typology 

Typologies are a natural organization of natural classes or types, with the most general types at the top of the hierarchy, the
more specific at the bottom. All types contained in a typology are children (sub-classes) of the root type that is the basis for
the character of the typology. Typologies provide a modular basis for expanding or collapsing the coverage of similar  in-
stances within a knowledge base. Typologies are central architectural components of KBpedia 

U

UMBEL 

UMBEL, short for Upper Mapping and Binding Exchange Layer, is an  upper ontology of about 35,000 reference concepts, de-
signed to provide common mapping points for relating different ontologies or schema to one another, and a vocabulary for
aiding that ontology mapping, including expressions of likelihood relationships distinct from exact identity or equivalence.
This vocabulary is also designed for interoperable domain ontologies

Unsupervised learning 

A form of machine learning, this approach attempts to find meaningful, hidden patterns in unlabeled data

Upper ontology 

An upper ontology (also known as a top-level ontology or foundation ontology) is an ontology that describes very general con-
cepts that are the same across all knowledge domains. An important function of an upper ontology is to support very broad
semantic interoperability between a large number of ontologies that are accessible ranking “under” this upper ontology

URI

A uniform resource identifier is a Web-accessible address (string) for a specific piece of data; it is a more generalized form of a
URL, which points to a page or resource location

V

Value

Value is a string, literal or data value that pairs a numerical quantity, or quality or utility of a subject in relation to the mean-
ing of its associated attribute, separate from the subject (but in association with it), these are known as key-value pairs ; a value
has no meaning or context absent its paired attribute

Vocabulary 

A vocabulary, in the sense of knowledge systems or ontologies, is a controlled vocabulary. Vocabularies provide a way to organize
knowledge for subsequent retrieval. They are used in formal declarations, subject indexing schemes, subject headings, the-
sauri, taxonomies and other forms of knowledge organization systems

W

Web-oriented architecture

Web-oriented architecture, WOA, is a subset of the service-oriented architectural (SOA) style, wherein discrete functions are
packaged into modular and shareable elements (‘services’) that are made available in a distributed and loosely coupled man -
ner. WOA uses the representational state transfer (REST) style, geared to the HTTP model

Wikidata 

This is a crowdsourced, open knowledge base of (currently) about 18 million structured entity records. Each record consists of at-

426

https://en.wikipedia.org/wiki/Wikidata
https://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Controlled_vocabulary
http://en.wikipedia.org/wiki/Upper_ontology_(information_science)
https://en.wikipedia.org/wiki/Unsupervised_learning
http://www.umbel.org/
https://en.wikipedia.org/wiki/Typology_(archaeology)
https://en.wikipedia.org/wiki/Type%E2%80%93token_distinction
https://en.wikipedia.org/wiki/Tychism
https://en.wikipedia.org/wiki/False_positives_and_false_negatives#true_positive
https://en.wikipedia.org/wiki/False_positives_and_false_negatives#true_positive


GLOSSARY

tributes and values with robust cross-links to multiple languages. Wikidata is a key entities source

Wikipedia 

Wikipedia is a crowdsourced, free-access and free-content knowledge base of human knowledge. It has nearly 5 million articles
in its English version. Across all Wikipedias, there are nearly 35 million articles in 288 different language versions 

WordNet 

WordNet is a lexical database for English that groups words into sets of synonyms called synsets, provides short, general defi -
nitions, and records the various semantic relations between these synonym sets. WordNet provides a combination of dictio -
nary and thesaurus to support text analysis and artificial intelligence applications

Y

YAGO 

“Yet another great ontology” is a WordNet structure placed on top of Wikipedia
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