/robowaifu/ - DIY Robot Wives

Advancing robotics to a point where anime catgrill meidos in tiny miniskirts are a reality.

Build Back Better

More updates on the way. -r

Max message length: 6144

Drag files to upload or
click here to select them

Maximum 5 files / Maximum size: 20.00 MB

More

(used to delete files and postings)


Have a nice day, Anon!


Open file (32.62 KB 341x512 unnamed.jpg)
Cyborg general + Biological synthetic brains for robowaifus? Robowaifu Technician 04/06/2020 (Mon) 20:16:19 No.2184
Scientists made a neural network from rat neurons that could fly a fighter jet in a simulator and control a small robot. I think that lab grown biological components would be a great way to go for some robowaifu systems. It could also make it feel more real. https://www.google.com/amp/s/singularityhub.com/2010/10/06/videos-of-robot-controlled-by-rat-brain-amazing-technology-still-moving-forward/amp/ >=== -add/rm notice
Edited last time by Chobitsu on 08/23/2023 (Wed) 04:40:41.
Bioinspired bio-voltage memristors https://www.nature.com/articles/s41467-020-15759-y Abstract >Memristive devices are promising candidates to emulate biological computing. However, the typical switching voltages (0.2-2 V) in previously described devices are much higher than the amplitude in biological counterparts. Here we demonstrate a type of diffusive memristor, fabricated from the protein nanowires harvested from the bacterium Geobacter sulfurreducens, that functions at the biological voltages of 40-100 mV. Memristive function at biological voltages is possible because the protein nanowires catalyze metallization. Artificial neurons built from these memristors not only function at biological action potentials (e.g., 100 mV, 1 ms) but also exhibit temporal integration close to that in biological neurons. The potential of using the memristor to directly process biosensing signals is also demonstrated.
https://phys.org/news/2022-11-bacterial-cells-artificial-neural-circuits.html Synthetic neuromorphic computing in living cells https://www.nature.com/articles/s41467-0 Abstract >Computational properties of neuronal networks have been applied to computing systems using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links. Analogously to their revolutionary impact on computing, neuro-inspired models can transform synthetic gene circuit design in a manner that is reliable, efficient in resource utilization, and readily reconfigurable for different tasks. To this end, we introduce the perceptgene, a perceptron that computes in the logarithmic domain, which enables efficient implementation of artificial neural networks in Escherichia coli cells. We successfully modify perceptgene parameters to create devices that encode a minimum, maximum, and average of analog inputs. With these devices, we create multi-layer perceptgene circuits that compute a soft majority function, perform an analog-to-digital conversion, and implement a ternary switch. We also create a programmable perceptgene circuit whose computation can be modified from OR to AND logic using small molecule induction. Finally, we show that our approach enables circuit optimization via artificial intelligence algorithms.
>>20262 >>20268 This is neat. Imagine if we have a soon breakthrough where we could have general-purpose computing of say an 8-bit complexity? It would change a whole lot of things!
This guy is growing mammalian cells at home... (it's complex) https://youtu.be/Z_ZGq8Tah0k https://github.com/thethoughtemporium/meatcubator
>>20813 >meatcubator LOL. This guy is clearly a funposter at heart. Hopefully he'll discover our little enclave here on /robowaifu/. :^)
>>20813 Thought emporium is based. He once made a ghost heart (decellularized pig heart) on his channel.
>>20813 For anyone that wants to do something like this at home here is where you can buy the supplies https://www.the-odin.com
From our academicians who were front-and-center in bringing the world The Coronahoax & Deadly Vaxx Follies, now comes a brand-new cliffhanger: Human Brains powering AI >This time, its the 'what could possibly go wrong?' edition https ://www.frontiersin.org/journals/science/articles/10.3389/fsci.2023.1017235 https ://hub.jhu.edu/2023/02/28/organoid-intelligence-biocomputers/ >=== -minor edit
Edited last time by Chobitsu on 03/02/2023 (Thu) 18:05:52.
>>20937 Thanks, Ribose!
>>20989 Human neurons seem like a really poor choice for biocomputers because they are very difficult to keep alive. Geobacter, slime molds, and mycelium look like more attractive options imo. It is strange that the neuron computers are a more mature technology than the other options.
>>21014 >Human neurons seem like a really poor choice for biocomputers because they are very difficult to keep alive. Geobacter, slime molds, and mycelium look like more attractive options imo. Makes perfect sense. Maybe if you could suspend the organoids in a bioreactor (instead of on a Petri dish), then you'd have a better shot at maintaining them in a functional state. Regardless, it's the optics that JHU is going for here first-and-foremost IMO. This bunch of miscreants are very clearly deeply ingrained with the Globohomo, and having a Frankenstein AI """loose""" could be made to serve their evil purposes in numerous ways. But ATM, in essence, this amounts to little more than a dog-and-pony-show useful to them primarily to guage public reaction, I suspect. >=== -prose edit
Edited last time by Chobitsu on 03/03/2023 (Fri) 17:29:53.
Open file (60.71 KB 1200x675 CtU3tj3UIAEdZHH.jpg)
>>21014 Yeah that bit about the braincells playing did creepy me the fuck out tbh. That's kind of where the ai ethics should kick in you know not whether it offends people...
>>21016 >That's kind of where the ai ethics should kick in you know Pardon me, but isn't that Bio Ethics, Anon? And, given the rampant abuses during Current Year, you can be quite sure that so-called AI """Ethics""" has little currency around these parts, heh. :^) >=== -minor edit
Edited last time by Chobitsu on 03/03/2023 (Fri) 07:50:32.
https://www.popsci.com/technology/unconventional-computing-lab-mushroom/ I know it's popsci but the I looked up the guy running the lab and he is doing some very interesting research. https://people.uwe.ac.uk/Person/AndrewAdamatzky
>>21025 https://scholar.google.com/citations?hl=en&user=suo5D8wAAAAJ A few of his publications >Kombucha electronics >Fungal Gray Matter >Electrical spiking of psilocybin fungi >Electrical potential spiking of kombucha zoogleal mats: a symbiotic community of bacteria and yeasts >Electrical frequency discrimination by fungi Pleurotus ostreatus >>17988 >Towards a Physarum learning chip >Mining logic circuits in fungi >Living wearables: Bacterial reactive glove >Fungal States of Minds He has tons of papers like these. He also has lots of papers on other forms of non-conventional computing.
I hate pay walls so much it's unreal. These journals don't even pay the fucking scientists for their work. If anyone knows a place other than scihub where I might be able to pirate these please let me know. https://www.researchgate.net/publication/264054783_An_arsenic-specific_biosensor_with_genetically_engineered_Shewanella_oneidensis_in_a_bioelectrochemical_system https://www.researchgate.net/publication/255752803_Bacteria-based_biocomputing_with_Cellular_Computing_Circuits_to_sense_decide_signal_and_act
https://www.advancedsciencenews.com/a-computing-system-made-from-heart-cells/ >https://onlinelibrary.wiley.com/doi/10.1002/aisy.202200356 >Modern computers require an exponential increase in resources when solving computationally hard problems, motivating the need for an alternative computing platform to solve such problems in an energy-efficient manner. Vertex coloring, a nondeterministic polynomial time (NP-hard) combinatorial optimization problem, is one such problem. Herein, an experimental demonstration of using cardiac cell-based bio-oscillator network coupling dynamics to solve a vertex coloring problem in various scales of graphs using a simple cell patterning method to construct scalable and controlled cardiac cell networks is presented. Although there are limitations to using these cardiac cells as oscillators, such as their low frequency compared to complementary metal–oxide–semiconductor (CMOS) oscillators, that result in longer processing times, the accuracy in large graph instances, the significantly less amount of energy consumption, and the ease of fabrication and potential to extend this system to massively parallel 3D structures make the bio-oscillators a promising new platform for collective computing applications.
>>22547 Neat! Heart tissue is pretty remarkable in several ways. Wouldn't surprise me a bit if this effort eventually succeeds. Thanks Ribose! Cheers. :^)
>>22565 I'm sure one of these efforts will succeed. This is the third biocomputer to make headlines this year.
>>21014 youd have to provide them with food and oxygen somehow but i cant think of any other realistic way to make a sentient robowaifu. Honestly if ethics doesnt bother you simply growing a woman in an artificial womb to use as a sex slave would be much easier and cheaper
>>23032 >Honestly if ethics doesnt bother you simply growing a woman in an artificial womb to use as a sex slave would be much easier and cheaper Except it isn't, since artificial wombs don't exist in reality, and there also might be some legal issues. Also, we don't just develop sex slaves here but companions and mothers. Women will always be tempted to get 'their rights", while well developed robowaifus won't, even if they had the choice in terms of power and legalities.
>>23085 >while well developed robowaifus won't, even if they had the choice in terms of power and legalities. This. What's almost ironic in the end is that robowaifus will turn out to be much more like the form women were intended to be by God (helpful companions to a man), while Current Year Stronk, Independynts fancy themselves to be some kind of men. Lol.
>>21178 "...where I might be able to pirate these please let me know..." Here. They have a vast amount of articles. Click the "scientific papers" radio button and search. http://libgen.rs/ Just for fun I entered the papers you linked and both are there. Click on the article name or open ion new tab. At the next page will be download servers, (more than one usually), at the bottom to the right of "download". Sometimes you have to change up as some get canned.
>>23085 >artificial wombs don't exist in reality Actually some early prototypes do exsit and have been used to raise lambs with no oil effects. From egg to finish I don;t think has...publically. I expect that privately there are such thngs. A multi-millionare with a say ten year program funded at $10 million a year could likely do this "if" you totally disregarded ethics and destroyed all the beings that didn't work out. In fct a VERY IMPORTANT fact about reproduction is that eggs can be made from Female skin cells. It's THE SPERM that kicks off the dividing to start humans forming. So as soon as you get a artificial womb you could pay a girl for a few cells, combine with your sperm and have kids that no Women could take away from you. I personally think this will happen in the future and if Women wish to be a part of a family they will join a Males preexisting children family. The 2 kids and divorce tread mill is just too much risk for most Males and is getting worse.
https://www.nature.com/articles/s41467-023-37752-x >Biological computation is becoming a viable and fast-growing alternative to traditional electronic computing. Here we present a biocomputing technology called Trumpet: Transcriptional RNA Universal Multi-Purpose GatE PlaTform. Trumpet combines the simplicity and robustness of the simplest in vitro biocomputing methods, adding signal amplification and programmability, while avoiding common shortcomings of live cell-based biocomputing solutions. We have demonstrated the use of Trumpet to build all universal Boolean logic gates. We have also built a web-based platform for designing Trumpet gates and created a primitive processor by networking several gates as a proof-of-principle for future development. The Trumpet offers a change of paradigm in biocomputing, providing an efficient and easily programmable biological logic gate operating system. https://phys.org/news/2023-05-biocomputing-method-enzymes-catalysts-dna-based.html Not something that would likely be used in a robowaifu, but it's the 4th biocomputing approach to make headlines this year.
>>23263 well isn't this stuff creepy
Open file (509.54 KB 2000x2000 1092rrrr3MEME150523.jpg.jpeg)
>>23263 >Here we present a biocomputing technology called Trumpet <not just stopping at 'Trump' :^) >providing an efficient and easily programmable biological logic gate operating system. This will be remarkable if they can pull it off effectively. In fact, I predict that it will be the combo of in vivo + in silico that will give rise to true manmade biocomputing. We'll never match what God fashioned with His DNA/RNA transcription and '3D printing' in protein :^) system, but still I think we can do much based off these templates. Thanks Anon, exciting stuff! Cheers. :^) >>23264 You should take that frown and turn it upside down Friend! :^) > >=== -minor fmt, edit
Edited last time by Chobitsu on 06/18/2023 (Sun) 03:58:10.
>>23118 >>>artificial wombs don't exist in reality >Actually some early prototypes do exsit Everyone here knows that. But it's besides the point, since it's an early prototype, especially the thing with the lamb is not for the early stages. This will require a much different approach. >eggs can be made from Female skin cells Actually, it's just human skin cells, not female. Which means men could have children without women, which would be weird and feels kinda gay. But, if we get to a point of making artificial cells from DNA in the lab as well, those wouldn't refer to a specific human. Then Sandman MGTOW had actually a good idea, in between his wild speculations and often bad ideas: Cloning is one thing, and he brought that up. Why even go on making humans from two people? Then he had the idea of just making these egg cells from one's owns cells. To use those for your own child. Which he also called cloning, where I disagree. That said, the idea is quite good. It might work better than real cloning. Also it might be easier to do it, bypassing laws and cutting down on the need of a female donor. You could let one lab make the egg cells from your skin cells, then go to some lab and tell them these are egg cells from a female donor. Then have them make a child from your own genetic material by fertilizing the egg cell... Well, I guess in a way it's like you'd had a child with your (not existing) twin sister, but I'm more comfortable with that, than picking another man as the skin (egg) cell donor for my child.
https://newatlas.com/computers/human-brain-chip-ai/ Cortical Labs just got funding from the U.S. military for their human brain based biocomputers.
>>24827 Wew lads, here we go! :^)
https://www.nature.com/articles/s41598-023-40163-z >Growing colonies of the split-gill fungus Schizophyllum commune show action potential-like spikes of extracellular electrical potential. We analysed several days of electrical activity recording of the fungus and discovered three families of oscillatory patterns. Very slow activity at a scale of hours, slow activity at a scale of 10 min and very fast activity at scale of half-minute. We simulated the spiking behaviour using FitzHugh–Nagume model, uncovered mechanisms of spike shaping. We speculated that spikes of electrical potential might be associated with transportation of nutrients and metabolites. This was done by the same guy doing the mushroom biocomputers.
https://www.researchsquare.com/article/rs-3292325/v1 >Advancements in mycelium technology, stemming from fungal electronics and the development of living mycelium composites and skins, have opened new avenues in the fusion of biological and artificial systems. This paper explores an experimental endeavour that successfully incorporates living, self-regenerating, and reactive Ganoderma sessile mycelium into a model cyborg figurine, creating a bio-cybernetic entity. The mycelium, cultivated using established techniques, was homogeneously grown on the cyborg model’s surface, demonstrating robust reactivity to various stimuli such as light exposure and touch. This innovative merger points towards the future of sustainable biomaterials and the potential integration of these materials into new and existing technologies.
New type of neural cell discovered, that might lead to better understanding of neural pathways. www.genengnews.com/topics/translational-medicine/scientists-identify-new-type-of-brain-cell-that-could-represent-targets-for-protective-cns-therapies/
>>2184 Creating lab grown women is the end game, but that isn't really a possibility right now. I think it's possible that we can create synthetic cells fit with basic cell functions to maintain the body's integrity. Controlled water absorption and excretion is needed. It's possible to make artificial glands using synthetic cells that function differently from the others. We could use water content in the body to have the glands produce lubricants. I'm thinking we use alginic acid to accomplish this. Then we could bind the synth cells together to form body parts. The mind portion of the body would still be computerized however.
Open file (24.46 KB 319x571 Robot Architecture.png)
>>25340 Forgot the architecture diagram
>>25340 Aside from the super strength and built in weapons, armitage is by far the most similar to the likely end product when robowaifus become real. She is a hybrid system with both organic and electrical parts. Figuring out how to make a lab grown brain and muscle system would be by far the most realistic with the level of tech that currently exists
>>25340 A combination of both organic and electronic/mechanical component is the way to go in my opinion. AI is in reality not even remotely close to sentience and soft robotics suck ass. Lab grown brains, muscles and the support systems needed to provide them with oxygen and food is actually much closer to being feasible than sentient general ai is
Another biocomputer makes headlines. It is from China though so take it with grain of salt. https://www.thestack.technology/scientists-make-dna-computer-breakthrough/ >A team of researchers from China’s Shanghai Jiao Tong University have created what may be the world’s first programmable DNA computer. >In a paper published in prestigious magazine Nature they explained how they created DNA-based programmable gate arrays or “DPGAs” that can support more than 100 billion distinct computational circuits.
https://www.nature.com/articles/s41586-023-06484-9 >DNA-based programmable gate arrays for general-purpose DNA computing >The past decades have witnessed the evolution of electronic and photonic integrated circuits, from application specific to programmable1,2. Although liquid-phase DNA circuitry holds the potential for massive parallelism in the encoding and execution of algorithms3,4, the development of general-purpose DNA integrated circuits (DICs) has yet to be explored. Here we demonstrate a DIC system by integration of multilayer DNA-based programmable gate arrays (DPGAs). We find that the use of generic single-stranded oligonucleotides as a uniform transmission signal can reliably integrate large-scale DICs with minimal leakage and high fidelity for general-purpose computing. Reconfiguration of a single DPGA with 24 addressable dual-rail gates can be programmed with wiring instructions to implement over 100 billion distinct circuits. Furthermore, to control the intrinsically random collision of molecules, we designed DNA origami registers to provide the directionality for asynchronous execution of cascaded DPGAs. We exemplify this by a quadratic equation-solving DIC assembled with three layers of cascade DPGAs comprising 30 logic gates with around 500 DNA strands. We further show that integration of a DPGA with an analog-to-digital converter can classify disease-related microRNAs. The ability to integrate large-scale DPGA networks without apparent signal attenuation marks a key step towards general-purpose DNA computing.
Open file (99.31 KB 500x500 dystopia meme.jpg)
>>25568 >>25569 I'm not entirely sure about that given that there's always a possibility that you may be dealing with some necrotic tissue if it's not being properly supplied with nutrition. Lab grown organic animal cells are still in their infancy stages with a lot of regulations and moral/ethical concerns impeding further development. I'm all for it as i'm an anarcho capitalist, but there are too many factors at play right now regarding that stuff. Alginic hydrogel is more than appropriate for making soft muscle actuators and other body parts for gynoids. Not to mention how well it is with being anti-microbial. What we do with this approach wil act as a stepping stone for further development inching us toward our goal of fixing the woman problem. My idea has a lot of holes as all of the others do regarding fabrication and lack of adequate R&D, but it'll just have to sit on the shelf for now with all of the other grandiose things I've thought up. I have more important matters to tend to for now. My primary concern is with the advent of government creeping into every facet of normal life. This will also affect any robot wife progress that could happen in the foreseeable future. I'm taking proactive measures to gain the knowledge required to build tools that will allow me and other people to circumvent this phenomenon. For now, sex bots maids will just have to sit on the shelf.
State of the Womb - The Economist: Are artificial wombs the future? https://www.youtu.be/hBSSb462_Z4 - the typical retarded comments from people programmed by entertainment and lack of thinking.
>>26171 >people don't think like me therefore they were brainwashed by the media
>>26185 did anyone ever say anything about incubators other than saddam-hussein=bad, cognitive dissonance is an obvious sign of being indoctrinated
https://www.biorxiv.org/content/10.1101/2024.01.21.576528v1 Functionalising the electrical properties of Kombucha zoogleal mats for biosensing applications Kombucha is a type of tea that is fermented using yeast and bacteria. During this process, a film made of cellulose is produced. This film has unique properties such as biodegradability, flexibility, shape conformability, and ability to self-grow, as well as be produced across customised scales. In our previous studies, we demonstrated that Kombucha mats exhibit electrical activity represented by spikes of electrical potential. We propose using microbial fermentation as a method for in situ functionalisation to modulate the electroactive nature of Kombucha cellulose mats, where graphene and zeolite were used for the functionalisation. We subjected the pure and functionalised Kombucha mats to mechanical stimulation by applying different weights and geometries. Our experiments demonstrated that Kombucha mats functionalised with graphene and zeolite exhibit memfractive properties and respond to load by producing distinctive spiking patterns. Our findings present incredible opportunities for the in situ development of functionalised hybrid materials with sensing, computing, and memory capabilities. These materials can self-assemble and self-grow after fusing their living and synthetic components. This study contributes to an emergent area of research on bioelectronic sensing and hybrid living materials, opening up exciting opportunities for use in smart wearables, diagnostics, health monitoring and energy harvesting applications.
>>28786 Interedasting. So it sound kind of like you could conceivably grow a sensory-network for a robowaifu (say, under her 'skin') using this approach. >memfractive Lol, that's a new one on me. Had to look it up. :D
>>28788 This is exactly what I was hoping for in the long run. That we would get there at some point.
https://www.sciencedirect.com/science/article/abs/pii/S2590238523006483 Biohybrid bipedal robot powered by skeletal muscle tissue Recently, there has been a growing interest in the development of biohybrid robots that combine synthetic components with biological materials, aiming to incorporate advanced biomaterial functions into robotic systems. Conventional biohybrid robots excel in large turning movements. To address this limitation, we report a biohybrid robot equipped with two legs and cultured skeletal muscle tissue, emphasizing the replication of subtle turning movements observed in human bipedal locomotion. The robot successfully demonstrated forward-stop motions and accurate turning compared to conventional biohybrid robots. These findings offer valuable insights for the advancement of soft robots powered by muscle tissue and have the potential to contribute to a deeper understanding of biological locomotion mechanisms. This constructive approach may pave the way for further mimicking the intricacies of the human gait mechanism in biohybrid robotics development.
>>28812 I'm starting to get Evangelion vibes from this ngl

Report/Delete/Moderation Forms
Delete
Report